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Abst rac t 

The Residue-Driven Architecture presented 
here is a model of auditory stream segrega­
tion from input sounds. A subsystem to ex­
tract auditory streams by using some sound at­
tributes is called an agency and the design of 
each agency is based on the residue-driven ar­
chitecture. This architecture consists of three 
kinds of agents: an event-detector, a tracer-
generator, and tracers. The event-detector cal­
culates a residue by subtracting the predicted 
input from the actual input. When a residue 
exceeds a threshold value, tracer-generator gen­
erates a tracerthat extracts an auditory stream 
from the residue and returns a predicted input 
of the next time frame to the event-detector. 
This approach improves the performance of seg­
regation and the resulting system can segre­
gate a woman's voiced stream, a man's voiced 
stream, and a noise stream from a mixture of 
these sounds. Binaural segregation is also de­
signed by the architecture. 

1 In t roduc t i on — W h a t is 
Computa t iona l A u d i t o r y Scene 
Analysis? 

AI research on the understanding of sounds has a rich 
history dating back to the ARPA Speech Understand­
ing Project in the 1970's. While a great deal has been 
learned, systems that can understand general acoustic 
signals (e.g. voiced speech, music and/or other sounds) 
from real-world environments have not been built. There 
are systems that understand clean speech well in rela­
tively noiseless laboratory environments but that cannot 
in more realistic, noisier environments. At a crowded 
party, one can attend one conversation and then switch 
to another. This phenomenon is known as the cocktail-
party effect and it shows that humans can selectively 
attend to sound from a particular source even when it is 
mixed with other sounds. Computers also need to decide 
which parts of a mixed acoustic signal are relevant to a 
particular purpose - which part should be interpreted as 
speech, for example, and which should be interpreted as 

a door closing, an air conditioner humming, or another 
person interrupting. 

A number of researchers have therefore concluded 
that research on speech understanding and on non-
speech understanding need to be unified within a general 
framework. One such framework is suggested by Breg-
man's book, Auditory Scene Analysis [Bregman, 1990], 
which discusses the psycoacoustic aspects. This work 
has inspired a number of attempts to model what is 
known about the human auditory system. It has also 
encouraged researchers to explore more general mod­
els of the structure of sounds in order to deal with 
more realistic acoustic environments. Researchers have 
also begun trying to understand computational audi­
tory frameworks as parts of larger perception systems 
whose purpose is to give a computer integrated infor­
mation about the real world. To discriminate the AI 
and computer science approach from the psychoacous-
tic approach, it has been called Computational Auditory 
Scene Analysis (hereafter, CASA) [Cooke et a/., 1993; 
Nakatani, Okuno, and Kawabata, 1994]. 

Research topics related to CASA include modeling is­
sues, sound understandings issues, architectural issues, 
control issues, representational issues and applications. 
They also include research on how different sensors can 
be integrated with models of how the human's auditory 
apparatus works in concert with vision and other kinds 
of sensation. Here, we focus on system architecture 
based on the multi-agent paradigm. The multi-agent 
system was recently proposed as a new modeling technol­
ogy in artificial intelligence [Brooks, 1986; Maes, 1979; 
Minsky, 1986; Okuno, 1993]. We take Minsky's view that 
an agent has a limited capability, although an agent in 
Distributed Artificial Intelligence is much more powerful 
and more like a human being than ours is. 

In this paper we present a new architecture called 
Residue-Driven Architecture. The rest of this paper is 
organized as follows: Section 2 discusses the related 
works on CASA and identifies the issues. Section 3 in­
troduces the Residue-Driven Architecture and discusses 
intra-agency and inter-agency interactions. Section 4 
presents the design and implementation of two agencies 
based on harmonics and localization (the direction of 
sound source). Evaluations and the conclusions are re­
spectively given in Section 5 and 6. 
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2 Previous Works on Computa t iona l 
A u d i t o r y Scene Analysis 

One of goals in computational auditory scene analysis 
is to understand acoustic events, or the sources of sounds 
[Bregman, 1990]. An acoustic event is represented by au­
ditory streams (hereafter, simply streams) each of which 
is a group of acoustic components that have consistent 
attributes. Since acoustic events are represented hier­
archically (e.g., as an orchestra), auditory streams have 
also a hierarchical structure. The process that segregates 
auditory streams from a mixture of sounds is called audi­
tory stream segregation. Since acoustic components need 
to be organized into auditory streams, the segregation 
of auditory streams requires the exclusive allocation of 
sound to a particular stream. Auditory stream segrega­
tion is performed at various levels of perception. Some 
streams are very simple and are extracted according to 
simple attributes, while others are extracted by grouping 
streams segregated at earlier stage of processing. 

Bregman proposed two mechanisms of auditory 
stream segregation: simultaneous (spectral) grouping, 
followed by sequential grouping [Bregman, 1990]. In 
the simultaneous grouping, streams are extracted from 
a mixture of sounds; and in the sequential grouping, 
streams from the same acoustic event are grouped to­
gether. No algorithms of grouping for computer imple­
mentations, however, have been proposed. Nakatani et 
al. also showed that Bregman's approach failed in seg­
regating man's and woman's voiced speech in their ex­
periments [Nakatani, Okuno, and Kawabata, 1994]. 

In extracting acoustic attributes, some systems as­
sume the human's auditory model of primary process­
ing and simulate the cochlear processing [Bodden, 1993; 
Brown, 1992; Slaney, Naar and Lyon, 1994]. Brown and 
Cooke designed and implemented the system that builds 
various auditory maps for input sounds and integrates 
them to segregate speech from input sounds [Brown, 
1992; Brown and Cooke, 1992]. An auditory map repre­
sents acoustic attributes such as onset, offset, AM and 
FM modulations, and formants. Since the integration 
process becomes complicated when treating a mixture of 
sounds in real-world environments, the blackboard ar­
chitecture [Erman et a/., 1980] is used to simplify this 
integration process [Cooke et a/., 1993]. The algorithm 
building an auditory map is executed in batch in the 
sense that any part of the input should be available to 
the algorithm at any time. Batch algorithms, however, 
are not suitable for providing a wide variety of system 
responses. If the system needs a reflective response (that 
is, it may react immediately without deliberate consid­
eration), it cannot wait for auditory maps to be built: 
some fragmentary information may be enough to decide 
its behavior. Additionally, it is not easy to incorporate 
schema-based segregation and grouping of streams into 
such a system, since it does not support a mechanism 
for extending capabilities. 

To design a more flexible and expandable system, con­
trol mechanisms are needed. IPUS (Integrated Process­
ing and Understanding Signals) [Lesser et a/., 1993] in­
tegrates signal processing and signal interpretation into 
the blackboard system. IPUS has a small set of front-

end signal processing algorithms (SPAs). It chooses the 
correct parameter setting for each SPA and computes 
the correct interpretation by dynamic SPA reconfigura­
tion. IPUS views this reconfiguration as a diagnosis of 
discrepancy between top-down search for SPA parameter 
settings and bottom-up search for the correct interpreta­
tion. IPUS has various interpretation knowledge sources 
which understand actual sounds such as hair driers, foot­
steps, telephone rings, fire alarms, and waterfalls. IPUS 
may have problems in scaling up, because when the num­
ber of SPAs increases it may fail to choose the correct 
parameter settings. And to support a reflective response, 
another system may be needed to compute required in­
formation. 

Nakatani et al. took a multi-agent approach to audi­
tory stream segregation [Nakatani, Okuno, and Kawa­
bata, 1994]. The HBSS (Harmonic-Based Stream Seg­
regation) system was designed and developed using a 
multi-agent system. It uses the Fourier transformation 
instead of the auditory model because it is easy to im­
plement and its properties are well known. Since the 
HBSS uses only harmonics as a cue of segregation and 
retains only information of the previous time frame, it 
extracts auditory streams incrementally. Although its 
mechanism is simple, it can segregate two streams from 
a mixture of man's and woman's voiced speech. The 
HBSS can in principle segregate any number of harmonic 
sounds that have no fundamental frequencies in common, 
but the HBSS fails in scaling up the segregation because 
of its imperfect exclusive sound allocation caused by its 
poor prediction of next inputs and because of its crude 
mechanism for checking the consistency of streams. The 
main cause of these problems is that each agent does not 
use any temporal information about streams. Spatial in­
formation may be also used to cope with the problems. 
Another error is due to background noise. The definition 
of noise is relative, because a noise is simply something 
that cannot be classified by the focused attributes. 

In this paper we present a new architecture to cope 
with the following problems of the HBSS: 
(1) imperfect exclusive allocation 
(2) usage of temporal and spatial information 
(3) noise treatment. 

3 Residue-Dr iven Arch i tec tu re 
Auditory stream segregation systems must (1) deter­

mine that streams appear, (2) trace the streams, (3) de­
termine that the streams have ended, and (4) resolve in­
terference between simultaneous streams. The Residue-
Driven Architecture (Figure 1) consists of subsystems 
comprising three kinds of agents: an event-detector, a 
tracer-generator, and tracers. A subsystem extracting 
auditory streams by using some auditory attributes is 
called on agency. An agency based on the Residue-
Driven Architecture extracts streams as follows: 
(1) An event-detector subtracts a set of predicted in­

puts from the inputs and sends the residue to the 
tracer-generator and tracers. 

(2) if the residue exceeds some threshold value, a tracer-
generator searches for the values of focused auditory 
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attributes. If it finds appropriate values of the at­
tributes, it generates a tracer to trace on the at­
tributes. If it does not find such values, it generates 
a noise-tracer. 

(3) Each tracer extracts a stream fragment by tracing 
the attributes of the stream. It also generates a 
predicted next input by adjusting the segregated 
stream fragment to the next input and sends this 
predicted input to the event-detector. 

Once a tracer-generator generates a new tracer that 
starts extracting a stream, the agency returns to a stable 
state because the residue becomes zero unless an input 
does not contain a new sound. When a new sound comes 
in, the residue becomes nonzero and a new tracer to ex­
tract the new sound is generated and the system returns 
to a stable state. If a tracer predicts that the next in­
put will be zero and the actual input is zero, the tracer 
terminates by itself. If the tracer-generator fails to find 
an appropriate attribute, it considers that a noise comes 
in. Since the agency treats unknown sounds as noise, 
the definition of noise is relative to each agency. There 
is only one event-detector and one tracer-generator and 
one noise-tracer, but the number of tracers changes ac­
cording to the input. 

A tracer extracts information and generates a stream 
fragment Stream fragments are grouped into a stream. 
The important constraint in grouping is exclusive allo­
cation, which means that each input fragment should be 
allocated to only one auditory stream. 

Interactions between agents can be classified as intra-
agency interactions and inter-agency interactions. Intra-
agency interactions are performed between agents within 
the same agency and the main way these kinds of in­

teractions occur is via the predicted next input. Since 
tracers are of the same kind, predicted next input is of 
the same kind and it is easy to calculate a residue by us­
ing these predicted next inputs. A noise-tracer, however, 
differs from other tracers and thus its predicted next in­
put should be given to each tracer and event-detector 
(Figure 1). Another way of such an interaction is via 
shared variables. 

One way inter-agency interactions occur is via the in­
put/output relation. To model binaural hearing, for ex­
ample, a pair of agencies behave like a pair of ears and 
each agency extracts stream fragments with spatial in­
formation. Such stream fragments are given to a group­
ing agency, which constructs auditory streams according 
to spatial information. Another way of intra-agency in­
teraction is modeled by the subsumption architecture 
[Brooks, 1986], a simple example of which is shown in 
Figure 2. 

Agency 1 in this figure extracts streams from monaural 
inputs, and agency 2 extracts auditory stream fragments 
from binaural inputs. Agency 3 extracts spatial informa­
tion such as the direction of sound sources from binaural 
inputs. It also uses the information given by agency 2. 
Agencies 5 and 6 construct streams by grouping stream 
fragments generated by agencies 1 and 2. Agency 4 ex­
tracts voiced speech stream fragments by using informa­
tion extracted by agencies 2 and 3. Agency 4 may replace 
the output of agency 6 with its own output or simply 
suppresses the output. Streams extracted by monaural 
processing may be replaced by those of binaural process­
ing. The output of agency 3 may be replaced by a visual 
agency (e.g., a video-camera tracking system). The rea­
son that the grouping agency is separated from agency 
1 or 2 is that it can be modeled by the Residue-Driven 
Architecture [Nakatani et al, 1995b]. 
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that gives the maximum Et(w) is selected by the tracer-
generator and generates a tracer. If there is no active 
pitch watcher during a dormant period, the noise-tracer 
is activated. The current setting of constants is as fol­
lows: c = 0.15, p = 0.05, r = 0.1, and m = 10. 

Harmonics tracer 
A harmonics tracer gets the initial fundamental fre­

quency from a pitch watcher when it is generated. At 
each residual input, each harmonics tracer extracts the 
fundamental frequency that maximizes the valid har­
monic intensity E't(w). It then calculates the intensity 
and the phase of each overtone by evaluating the abso­
lute value and the phase of Htk{w)- It generates a pre­
dicted next input in a waveform by adjusting the phase 
of its overtones to the phase of the next input frame. 
The event-detector calculates a residue by subtracting 
the predicted inputs from the actual input [Nakatani, 
Okuno, and Kawabata, 1994; Ramalingam and Kumare-
san, 1994]. Each tracer recovers its input by adding its 
predicted input to the residual input before calculating 
the fundamental frequency. If there are no longer valid 
overtones, or if the intensity of the fundamental overtone 
drops below a threshold value, it terminates itself. 

Noise tracer 
The noise tracer segregates the static noise stream ac­

cording to the average spectral intensity [Boll, 1979]. It 
calculates the spectral intensity time average of the resid­
ual input during the dormant period. The noise tracer 
sends a predicted next input to other agents by sending 
the spectral intensity. When a tracer receives a spectral 
intensity, it estimates the intensities of its sound com­
ponents at each frequency by subtracting the predicted 
values. The predicted next input of the noise tracer in­
hibits the generator from generating unnecessary tracers 
and makes harmonics tracers robust against a nonhar-
monic noise. The noise tracer calculates average spectral 
intensity for a long-time range as well as for a short-time 
range, and it terminates itself when the short-time range 
average intensity drops below a threshold value. 

4.2 Harmonics-based Localizing Agency 
The harmonic agency uses monaural (single-channel) 

input. If multi-channel inputs from a pair of micro-
phones or a microphone array is available, localization, 
or the direction of a sound source, can be also used to 
segregate auditory streams. In fact, binaural processing 
of signals or spatial hearing is said to play a critical role 
in the cocktail-party effect [Blauert, 1983]. There are 
several ways to extract spatial information from binau­
ral input. One common way is called coincidence model, 
which calculates the interaural difference in time that 
the same sound arrives at each of a pair of microphones 
[Jeffress, 1948]. Another is to use the interaural intensity 
difference. These two information can be extracted by 
calculating interaural cross-correlation, which is based 
on the auditory model. Bodden used both information 
to get spatial information and to control the parameters 
of filters to extract one sound from a mixture of sounds 
[Bodden, 1993]. Some research also uses microphone ar­
ray systems [Stadlerand Rabinowitz, 1993]. 
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a pair of binaural streams 
Figure 4: The structure of the binaural tracer and group­
ing agency. Interaural coordinator agent determines the 
parameters, such as fundamental frequency and direc­
tion, of the stream being extracted by a pair of tracers. 

Since the design of harmonics segregating agency is 
independent of the (human) auditory model, we take 
the same approach to design a localizing agency. The 
localizing agency consists of two agencies: harmonics-
based binaural segregating agency and binaural grouping 
agency [Nakatani et al, 1995b]. Harmonic-based binaural 
segregating agency is modeled by the Residue-Driven Ar­
chitecture and is an extension of harmonics segregating 
agency described in the previous subsection. Its event-
detector is the same as that of monaural system. The 
structure of its tracer-generator and tracers are shown 
respectively in Figure 3 and 4. The binaural tracer-
generator consists of a pair of tracer-generators and an 
interaural coordinator. Its interaural coordinator takes 
candidates of new sounds from a pair of tracer-generator 
and orders them to generate a binaural tracer to extract 
a stream. 

A binaural tracer consists of a pair of tracer and an 
interaural coordinator. Its interaural coordinator takes 
information about harmonic structure from a pair of 
tracers and determines the fundamental frequency and 
direction of the stream being traced by calculating the 
interaural difference in time and the interaural intensity 
difference. A pair of tracers extract stream fragments 
with their direction, which are organized into streams 
by grouping according to their directions. This grouping 

agency is also modeled by the Residue-Driven Architec­
ture. In this case, the directional information is used 
to generate a tracer which constructs a pair of binau­
ral streams by grouping stream fragments of the same 
direction. 

The merit of using harmonics is that it is easy to cal­
culate the two kinds of interaural differences. Otherwise, 
we have to use spectrum for frequencies up to about 1.5 
KHz to calculate them and use the envelop of sounds 
instead for frequencies of more than 1.5 KHz. 

5 Evaluat ions 

5.1 Evaluations of Harmonics-based 
Segregation Agency 

We evaluated the performance of the system by using 
a mixture of a man's voiced speech and a woman's voiced 
speech, both saying "a-i-u-e-o". Figure 5 shows the fun­
damental frequency patterns of two speeches. The upper 
curve is that of the man's voiced speech and the lower one 
is of the woman's voiced speech. There is no common 
fundamental frequency, but there are several common 
overtones. We also used other four sets of mixed sounds 
by adding different power levels of white noise to it (see 
Table 1). Sounds are put into the system at each time 
frame (30-ms frame period, with a hamming window). 

Experiment 1 
The first experiment compared the proposed system 

based on the Residue-Driven Architecture and the HBSS 
system. Figure 6 shows fundamental frequency patterns 
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time (x 7.5 ms) 

(b) Proposed system 
Figure 6: Experiment 1. Comparison of fundamental 
frequency patterns of streams segregated from bench­
mark mixture 1 (a) by the HBSS system ([Nakatani, 
Okuno, and Kawabata, 1994]) and (b) by the proposed 
system based on Residue-Driven Architecture. 

O 100 200 300 4O0 500 600 
time (x 7.5 ins) 

(b) With noise tracer 

Figure 7: Experiment 2. Effect of noise tracer in seg­
regation of benchmark mixture 4, where the power of 
white noise was the same as that of the man's voiced 
speech. 

of streams segregated from benchmark mixture 1 by each 
system. Only two harmonic tracers were generated in the 
proposed system and thus no grouping was needed. In 
the HBSS system, on the other hand, 37 harmonic trac­
ers were generated. In Figure 6(a), a woman's voiced 
speech was segregated as one stream, while a man's 
voiced speech was segregated as two consecutive streams. 
The segregation is much improved by using temporal in­
formation in the proposed system. 

Experiment 2 
The second experiment evaluated the noise tracer by 

benchmark mixture 4 in which the power of white noise 
was the same as that of the man's speech. More precisely, 
the benchmark first contained only white noise and then 
a woman started to speak "a" and was followed by a man 
starting to speak. Without the noise tracer, many trac­
ers were generated in trying to find a harmonic structure 
in white noise, and the woman's voiced speech could not 
be segregated well. The quality of segregated streams of 
the man's voiced speech was also poor. With the noise 
tracer, the man's and the woman's voiced speeches were 
well segregated, although several false streams were also 
segregated. False harmonic tracers were generated but 
terminated immediately. The total numbers of harmonic 
tracers generated with and without the noise tracer were 

respectively 13 and 55. In the HBSS system, the total 
number of harmonic tracers generated with and with­
out the noise tracer were respectively 46 and 268. The 
proposed system reduces the number of harmonic trac­
ers effectively, demonstrating that sound components are 
allocated exclusively. 
Experiment 3 

The results of the third experiment, evaluating the 
quality of segregated sound streams with regard to spec­
tral distortion and pitch error, are shown in Tables 2 and 
3. Spectral distortion is a square root of errors of the en­
velop of sounds and calculated in kepstrum distance. In 
evaluating spectral distortion, benchmark mixture 1 to 4 
were used. Their signal-noise (SN) ratios of white noise 
to the man's voiced speech varied from 10 dB, 5 dB, 0 
dB to -2.8 dB. With noise tracer, the spectral distortion 
for each segregated sound was reduced by less than half. 

Pitch errors, or errors of fundamental frequency, of 
segregated sounds were evaluated by using all bench­
mark mixtures in Table 1. When white noise was very 
small like benchmark mixture 2, the segregated man's 
voiced speeches were better than those segregated from 
benchmark mixture 1 (without noise). Pitch error with­
out the noise tracer was small when the noise level was 
low, but error increased as the noise level became higher. 
These experimental evaluations showed that the noise 
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tracer is effective in improving the quality of segregated 
streams. 

5.2 Evaluation of Localizing Agency 
Localizing agency was evaluated by using a mixture 

of the same woman's speech saying "a-i-u-e-o" in Fig­
ure 5, synthesized by adding the first speech and the sec­
ond speech starting 1.1 seconds after the first one. One 
speaker was positioned at -45 degree and the other was at 
45 degree in the frontal plane. The proposed system with 
monaural input could not segregate two streams well as 
is shown in Figure 8(a). In particular, the initial part of 
second woman's voice could not be segregated, because 
the harmonic structures of both sounds resemble each 
other. The binaural system segregated two streams well 
as is shown in Figure 8(b), since it could use directional 
information to remove ambiguities of the harmonic struc­
ture between both sounds. The results of other bench­
marks of different spatial settings also showed the good 
performance similar to Figure 8(b). 

6 Conclusions and Future Works 
This paper described the Residue-Driven Architecture 

for segregating auditory streams in computational au­
ditory scene analysis. The previous HBSS system has 
several problems concerning imperfect exclusive alloca­
tion, usage of temporal and spatial information, and 
noise treatment. The Residue-Driven Architecture can 
easily incorporate mechanisms to cope with these prob­
lems. This architecture is used to define an agency that 
segregates auditory streams by tracing sound attributes. 
Two agencies, harmonic segregating agency and localiz­
ing agency, are presented. Both harmonic agency with 
the noise tracer and localizing agency improve the qual­
ity of segregation. 

A lot of issues remain, since auditory stream segre­
gation is a primitive function for computational audi­
tory scene analysis. Okuno et al. proposed two essential 
problems [Okuno, Nakatani, and Kawabata, 1995]. 
(1) the cocktail-party effect — selectively attending one 

conversation or sound source and then changing the 
focus of attention to another [Okuno, Nakatani, and 
Kawabata, 1995]. 

(2) the Prince Shotoku effect — listening to several 
things at the same time [Cooke et a/., 1993]. This 
effect is named for Prince Shotoku (574-622) in 
Japan, who is said to have been able to listen to 
seven people petitioning him at the same time. 

These problems require speech stream segregation, 
whose main issues are handling consonants or jumping 
sounds. There may be many clues in speech stream 
segregation, such as temporal structure, spectral struc­
ture, spatial structure and attributes of voiced speech. 
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From the view-point of AI research, the representation of 
voiced speech including vowels and consonants is manda­
tory, but as far as we know, no such representation 
has been proposed. We are instead using the localizing 
agency to extract speech streams from binaural inputs. 
The cocktail-party effect is seldom observed when one 
ear is plugged or hearing is impaired, and this is because 
the ability to localize a sound source is damaged. Speech 
stream segregation has many potential applications and 
we think that CASA will contribute various aspects of 
social life. 
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