Relational Rippling:

A General Approach *

Alan Bundy and Vincent Lombart
Department of Artificial Inl.diligence, University of Edinburgh,
80 South Bridge, Edinburgh, EH1 1HN, Scotland. Email: {bundy,vincent}aisb.ed.ac.uk

Abstract

We propose a new version of rippling, called
relational rippling. Rippling is a heuristic for
guiding proof search, especially in the step
cases of inductive proofs. Relational rippling
is designed for representations in which value
passing is by shared existential variables, as op-
posed to function nesting. Thus relational rip-
pling can be used to guide reasoning about logic
programs or circuits represented as relations.
We give an informal motivation and introduc-
tion to relational rippling. More details, includ-
ing formal definitions and termination proofs
can be found in the longer version of this pa-
per, [Bundy and Lombart, 1995].

Keywords: Rippling, heuristics, inductive proof,
automated theorem proving, logic program transform-
ation.

1 Introduction

Rippling is a heuristic technique for controlling search
during automatic theorem proving, [Bundy et a/., 1993].
It was originally developed for inductive theorem prov-
ing. Its role is to manipulate the induction conclusion
to make it more like the induction hypothesis, thus en-
abling the hypothesis to prove the conclusion. Rippling
can also be used for non-inductive proofs whenever a
problem can be solved by reducing a syntactic difference
between it and some previously solved problem.

"Part of the research reported in this paper wes conducted
while the first author wes a visitor at the Max Planck Insti-
tut fur Informatik in Saarbriicken. He would like to thank
his hosts, Harald Ganzinger and David Basin for inviting
him to MPI and making his stay so pleasant. We would
also like to thank David Basin, Toby Walsh, Helen Lowe, Ju-
lian Richardson and members of the mathematical reasoning
group at Edinburgh for discussions about earlier versions of
the ideas described here. This work is part of a project sup-
ported by SERC grant GR/H/23610, ESPRIT BRP grant
6810 and ARC grant 438. The seocond author is supported
by the Belgian National Fund for Scientific Research, and his
stay in Edinburgh is supported by HC&M Logic Program
Synthesis and Transformation.

Rippling works by identifying the syntactic differ-
ence between the current problem and the previous one,
[Basin and Walsh, 1993], and then moving that difference
through nested functions to a place where it no longer
prevents a match between them. Following Boyer and
Moore, this matching process is called fertilization. Rip-
pling is predicated on the assumption that value passing
is done via function nesting. But there is a popular al-
ternative technique for value-passing: via existentially
quantified shared variables. This is the technique used,
for instance, in logic programming. It is also used in
the relational representation of circuits. There is thus a
strong motivation to adapt the ideas of rippling to situ-
ations in which value passing is done via shared variables
between relations, instead of nested functions. We will
call this adapted rippling, relational rippling. When we
need to draw a distinction, we will call the original rip-
pling: functional rippling.

Our goal is to implement relational rippling in a proof
planning environment, [Bundy, 1988]. This entails de-
vising relational rippling tactics to guide a proof editor
like Oyster and devising methods to specify these tac-
tics in‘a meta-logic for use by a proof planner like C/*M,
[Bundy et al., 1990].

Notational Conventions

We use upper case for variables (free or bound), lower
case for constants and greek letters for meta-variables.
Where variables are universally quantified at top level
we will usually omit the quantifier. The notation p(X)
means that p contains at least one free occurrence of X.
It may also contain other variables.

We use => for the rewrite arrow and —+ for implica-
tion. Reasoning is backwards from goal to hypothesis.
Therefore, when an implication, A —» B, is used as a
rewrite rule on positions of positive polarity it is applied
right to left, i.e. B => A.

2 Background
To make this paper self-contained we give a brief intro-

duction to functional rippling and to value passing via
shared existential variables.

BUNDY AND LOMBART 175

2.1 Functional Rippling

Suppose we are allowed to use the hypothesis:
ol fa(f1(x)}) in the proof of the goal': fa(f2(fi(s1(z)))).
Clearly these two formulae differ only in the inclusion of
the function 8;(...) in the goal. This function is pre-
venting matching the hypothesis against the goal. In
inductive proofs, for instance, s, might be a step func-
tion inserted in the induction conclusion by the induction
rule.

To initialise rippling, the two formulae are difference
matched [Basin and Walsh, 1993]. We represent the res-
ult by annotating the goal. Those parts of the goal which
differ from the hypothesis are put in boxes with a dir-
ectional arrow, These are called wave-fronts. Any sub-
expressions within these wave-fronts that do match the
hypothesis are underlined. These are called wave-holes.
In our abstract example the annotated expression is:

8 ftfl (ot

Those parts of the expression which are cutside wave-
fronts or are inside wave-holes are called the skelelon.
The skeleton of {1} is fa{ f2{ f1{F))). Note that this is the
same as the induction hypothesis. The expression we get.
by removing all the wave-front annotation is called the
erasure,

Rippling now proceeds to move the wave-fronts out-
wards in a series of rewriting steps:

Atsth{m@]m = pth(a@EE])
X PTATAENIR
= (s fataimn) |

Note that the skeleton is the same in each of these ex-
pressions. Only the wave-front moves. At the end of
rippling a copy of the hypothesis is emnbedded in the
goul. Fertilization is then able to rewrite the goal to:
ag{true).

he rewrite rules that permit this rewriting arc called
longitudinal wave-rules. They are also annotated. In our
abstract example these wave-rules have the form:

(2) fad) = [s (f:i(X))]'

for i =1,2,3. Note how each wave-rule moves the wave-
front outwards one step, while preserving the skeleton.
A strictly decreasing measure can be associated with the
wave-fronts, This gives direction to the wave-rules and
ensures termination of functiona) rippling. This measure
is based on the depth of the wave-front in the skeleton
— see [Basin and Walsh, 1994](§5) for details,

In rippling, not only must the left hand side of the
rewrite rule match the erasure of a sub-expression of the
current goal, the annotations in the ruele must also match
some in the goal. This additional condition forces the
rewriting to happen in a desirable direction. It also sig-
nificantly reduces the search space - usually to a single
branch.

'In line with our notational conventions, the goal may
contain other variables too, suppressed here for the sake of
readability.

176~ AUTOMATED REASONING

For more discussion about functional rippling see
[Bundy et al., 1993] and for a formal definition see [Basin
and Walsh, 1994].

2.2 Value Passing via Shared Variables

In a functional programming language the step case of a
recursive definition of list reversal, rev, might be:

rev{[H[T]} = app(ree(T),[H])

Note how the value of rev on the right hand side is passed
to app by nesting one function inside another. In Prolog
the corresponding definition would look quite different:

rev{{A}!T) ,AL) :- rev(T,RT), app(RT,{R],RL).

The functions rer and app have become relations with
an extra argument. More importantly for our purposes
the method of value passing has changed. Instead of
rev passing its value by function nesting, it does so via
the shared variable RT. This shared variable is implicitly
existentially quantified. The logical form of this Prolog
clause is:

reo([H)T). RL) — 3RT. reo(T, RT) A app{ BT, {H], RL)

Shared variables are also sometimes used to represent
electrical circuits, Electrical components are represen-
ted by relations and the wires between them by such
shared variables. This has the advantage over the fune-
tional representation of circuits that it can more simply
represent components with more than oue ontput wire.

Some of the conjectures and wave-rules we will con-
sider will be translations of equations. For instance, the
equation:

Fles (X)) = sl fLAD)
translates into the equivalence:
() AX". s (X X JAPX Y'Y o 3V, pLX, Y) Asa{Y, Y)

where predicates p, 51 and sg correspond to functions f.
s and gq.

3 The Rippling-Past Method

The key phase in relational rippling is rippling-past. In
functional rippling wave-fronts are passed up through
nested functions. In rippling-past they move sideways
through a conjunction.

Just as in the funectional case we must impose an an-
notation on expressions. These annotations are used to:
locate the right sub-expression to rewrite; locate the ap-
propriate rule to rewrite it; restrict the rewriting to en-
sure it is moving in the right direction; and to ensure
termination of rewriting.

3.1 Special Problems

In relational rippling we face special problems that are
not present in functional rippling.

s Conjunction is both associative and commutative
and existential quantification is both commutative
and alpha convertable. It may be necessary to apply
these rules in order to match a wave-rule to a goal.
Moreover, the skeleton may be altered by these rules
during rewriting. It is, therefore, necessary to define
skeleton preservation modulo these rules and to take
them into account during wave-rule application.

» Value passing by shared existential variables dis-
places the arguments of predicates in skeletons.
Compare the arguments of the two p predicates in
(3). These arguments need to be replaced when de-
fining skeletons, in order to ensure preservation.

» There is a loss of directionality when functional ex-
pressions are translated into relational ones. For
instance, the left hand side of (3) could equally well
represent S1(f(Y') as f(s1(X)). We need to an-
notate wave-rules in a way that imposes a sense of
direction on them to prevent looping and ensure ter-
mination.

Relational rippling needs to be supplemented with
other processes. It needs to be initialised and it
needs to be integrated with functional rippling.

For these reasons relational rippling has proved quite
difficult to formalise. Before arriving at the proposals in
this paper, we experimented with a number of alternat-
ives, each of which was eventually rejected, often because
of quite subtle problems.

3.2 Skeleton Preservation

Consider annotating the equivalence (3) as a wave-rule.
We will want to hide the predicates S7 and ,S2 as wave-
fronts, but we also want to hide the existential quanti-
fication that connects them to the ps. This suggests:

X s (X XA P(X YY) ' = ‘ Y. p{X.¥) A sal ¥, 1-"}JT

However, note that the skeletons on each side are not
preserved due to their different arguments. The prob-
lem is caused by the displacement of their arguments by
the wave-fronts. These displaced arguments need to be
replaced. To do this we annotate each argument position
with the argument that has been displaced fromit, e.g.

X (XX AR, YY] 2 [3Y ptX, V) A sy, Y]
[o = @ @l [A Bl i

where the annotation appears in a box beneath the argu-
ment position. In the process of matching the wave-rule
against the current goal, the meta-variables a and B are
instantiated to the displaced arguments. In simple cases,
they will be instantiated to X and Y’, respectively, but
in more complex cases it might not be the case.

When forming the skeleton we not only remove wave-
fronts but we replace each argument in the skeleton with
its annotation. The skeletons on both sides of the wave-
rule are both now p{a. 3), i.e. the skeleton is preserved.
For readability, these displaced argument annotations
will be dropped when not needed.

3.3 Directionality

Note that (3) can also be annotated as a wave-ule in
the reverse direction.

LEIY. PLX,Y) A salY, Y')]‘ > | X (X, X"V APIX YY) |:

To prevent looping we require some additional annota-
tion to give a direction to the rule. The intuition behind
relational rippling is that the wave-fronts ripple past each
part of the skeleton in turn. We see them as going into

one argument and out of another. We can capture this
intuition by annotating each argument position in the
skeleton with an arrow. A downwards arrow means that
the wave-front must go into this argument and upwards
arrow means that the wave-front must go out of this ar-

ument. Arrows in wave-rule and goal must match. So
?3) can be annotated in two ways:

@)

1 1)
HX'.sl{X,X')Ap(X',Y'}| =}]3Y.p(.‘:f,}1')a'\sg(}".Y'}
{5)

1l 1 i
Y. p(X, Y Aaal¥, Y| = [3X7. 60X, XY A pLX ¥

If wave-rule (4) applies to a goal then the arrows in the
goal will prevent the immediate application of wave-rule
{5) to reverse the ripple.

Moreover, these annotations can be used to prove ter-
mination of relational rippling wsing ideas similar to
[Basin and Walsh, 1994]. The skeleton of a goal defines
a directed graph in which the nodes are the arguments
of the predicates and an arc goes from node m to node

7 iff the skeleton contains a predicate with arguments
i

m and 117 Wave-fronts move through this graph in the
direction of the arcs. As long as it is acyclic this move-
menl must cventually stop.

We can define a measure on annotated expressions in
the following way. The depth of each node is the length
of the longest path from that nede. A wave-front is at
uode n iff n is an annotation on one of its arguments.
The weight of a node is the number of wave-fronts at
that node. The measure is a vector whose #** element
is the sum of the weights of nodes of depth i. Measures
are well-founded by the lexicographic order, =, on the
reversed vectors. For instance, the measure of the left-
hand side of (4} is [0, 1] and the measure of the right-hand
side is [1.0]. Under the lexicographic erder rev([0, 1]} =
(1,0] = [0,1} = rex({1,0]). It is a defining property of
wave-rules that they must be measure-decreasing. This
ensures that wave-rule application is terminating when
it is applied te goals whose skeleton graphs are acyclic.

Those directionality annctations can be added dynam-
ically. i.e. the application of a wave-rule can add arrows
to the skeleton, In this case, adding an arrow adds an are
to the graph, but acyclicity must be checked dynamically
too.

3.4 Abstract Example of Rippling-Past

To illustrate rippling-past we translate the abstract
functional wave-rules {2} into relational form:

N Iax;. 8 (X XD APLXL XL,) (

=> Iaxin- PilXi. Xig1) A -!-+|(-\'-'-r.t.-\'.'n)Jl

where § = 1,2,3. Some further examples of wave-rules
are given in figure 5. To illustrate rippling-past we give
the relational analogue of the functional rippling from
§2.1 in figure 1.

BUNDY AND LOMBART 177

(6) ax;.x;.lax;. »I(r,.x;n\p,(ﬁf;,x;)]' Ap2(X3, X3) A pa{ X3, 2))

3Xy, X4 pr(r, Xa) n[ax;, 02(X2, X3) A pa(X3, ';)J' A (XS, 2)

3Ny, X3 prlzs, X2) A pa(Xa, Xa) A [33';, sl Xs. XY A pal X5, 24)]

AX,, Xy, pr (21, Xa) A (X, '31n[ax..pa(xa‘xnm.(xh::)['

As the wave-fronts pass each shared variable they rename it. Ench ‘step predicele’, s;, relaies a value, X,
fo its ‘successor’, X]. The hypothesis contains the X; values end, initially, the goal contains only their
successors, X!, As the s; wave-front ripples pest the successor, X|, it replaces it with its ‘predecessor’, X;.
At the end of rippling-past the ‘successors’ are all replaced by their ‘predecessvra’, whick are the values in
the induction hypothesis. The goal is now much more like the hypothesis than if was al the beginning. Noie
that the akeieton of the goal 45 preserved throughout the ripple and the measure decreases at each step.

Figure 1: Rippling-Past: An Abstract Example

3.5 The Transport Problem

Note that we have omitted some steps from the abstract
ripple-past in figure 1 above. Consider, for instance, (6).
After the ripple-past it will be left in the state labelled
(8) in figure 2. To prepare this goal for the next ripple-
past we need to rearrange the conjunction and the ex-
istential quantifiers into the state labelled (9). We call
this the transport problem.

We have experimented with various solutions to this
problem. One solution is to use a matching algorithm
which builds in the associativity and commutativity of
conjunction and the commutativity and alpha convert-
ability of existential quantification. For instance, we can
treat both goal and rule LHS as a set of conjuncts and
rearrange them as required for the match. This is a
straightforward solution but has two disadvantages:

« if it is necessary to justify such a match in the un-
derlying logic then it must be unpacked into the
various rule applications; and

* it does not scale up to a situation where other con-
nectives are interleaved with the conjunctions.

For these reasons we have also experimented with the
use of attraction, [Bundy and Welham, 1981], and nor-
malisation. The variable to be rippled-past is identified
and annotated. Rewrite rules are then applied which
bring occurrences of this variable closer together while
preserving the skeleton. These rules are based on associ-
ativity and commutativity of conjunction and commut-
ativity of existential quantification. Wave-rules are kept
in a normal form, also based on these rules. The sub-
expression to be rewritten is put in this normal form after
collection. The major disadvantage of this approach is
that the normal form is not canonical, so backtracking
is theoretically required — although seldom needed in
practice.

4 The Initialisation Method

The ripple-past method assumes that the goal contains
wave-fronts. Unfortunately, after induction the induc-
tion conclusion will not contain any wave-fronts. The

178 AUTOMATED REASONING

relational form of induction usually creates a step case
of the form:

slriz), ola) koG

where we have annotated the *successor{s)’ of the in-
duction vatiable with a distinguished variable marker:

a solid circle. We will call{z}jan initial candidate. As

with functional rippling, we wilt assume that this initial
annotation is buiit into the induction and inherited into
the step case.

Since the induction conclusion contains no wave-
fronts, an initialisation phase is required to prepare for
rippling-past. This will use wave-rules of the form:

(10) s (X(X]) —~

(X0 = [p (X,) A (X)]

which we will call initialising wave-rules. Initialising
wave-rules introduce wave-fronts into the induction con-
clusion.

The defining characteristic of initialising wave-rules is
that they reduce the number of initial candidates, while
preserving the skeleton. Eventually the number of ini-
tial candidates can be reduced no more and initialisation
terminates, A formal definition of initialising wave-rules,
a well-founded measure and a termination proof for ini-
tialisation are given in [Bundy and Lombart, 1995], Ex-
amples of initialising wave-rules are given in figure 3.

5 Hybrid Rippling

It is sometimes necessary to combine relational rippling
with functional rippling. For instance, suppose we try
{0 prove:

Xz, p2{ X1, X)) Apn{Xa, Xp) & AV, (X0, 1) A @ (Y2, X3)

After the completion of rippling-past, the induction con-
clusion might take the form:

(11) 3X;. pi{zs, Xa) "\Iaxs- pa{Xa, Xa) A ay(Xy, 23)]‘

« ¥y g (21, Y3) n[3Ys. @(Ye, Va} A :;(Y,.xaﬂ‘

(8) 3%, X (3Xa pule, Xa) nazm.x;)]‘ A XL X5 A (X))

(%) 3X2, X3 (pr(z), X2) nlaxa. 82(-Y2,-Y5}J\P2(«Y5.X§)‘Il»‘\Ps(:'i,r;)

The problem here is to bring all the aub-ezpreasions in (8) contetning the variable, X}, close together and
pul them in the same order as the corresponding parts of wave-rule (7). Brackets show how the conjunction
is grouped. Note that X switches from skelefon o wave-front and X, does the reverse,

Figure 2: The Transport Problem

conalH, L,@) — If’.ﬂ(izl N =

AN, len(L N} A «(N, N')]T

cona(H, L.@}) — ret:(\ijl Ry =

3R rev(L,R)A[ARL. cons(H,nil HL) A app(R,HL, A')] I

ap{ X, Y,L(Z‘) - IenﬁZ}. Ky =

31,0 tenl X, 1) Alen(Y, Ty A +(1, 7, K)J'

Initialising wave-rules are readily oblainable from the slep cases of recursive definitions and from rertoin
lemmas, Compare these rules with the relational wave-rules in figure 5.

Figure 3: Example Initialising Wave-Rules

3.\',[33/. A Y)Y = [3R3X A1) r
(3% AN)] «[30 B[= VX A) ~ BX)|
[AnC] «[BAD| =[Ae BAC~D]

These longitudinal wave-rules are only 2 selec-
tion of those required.

Figure 4: Exaniple Longitudinal Wave-Rules

This is not yet. ready for fertilization because wave-fronts
arc still embedded within the skeleton. However, the
various connectives above these wave-fronts are now be-
having like functions which pass their values by nesting.
So to prepare for fertilization we need only some rippling-
out.

Some of the longitudinal wave-rules required to ripple-
out (11) are given in fignure 4. With the aid of these rules
we can rewnite (11) to:

(12) {VX5 (3Xs. i (e, X2) A pal Xy, Xay)) =

(3. g1 (71, Y2) A qa(¥s, Ks)) A 83(X5, 75) = a(X5, 2} |

Strong fertilization reduces this to:
VX3, true A sg(Xs, x3) = 13{X3.13)
which is, hopefully, easier to prove than the original con-
jecture,

Hybrid rippling is also necessary when the initial wave-
front is functional, but becomes relational after some
tippling. An example of hybrid wave-rule illustrating
this transformation is (14).

6 Results

The relational rippling method described in this paper
has not yet been completely implemented, but an up-

dating of the implementation of [Lombart and Deville,
1994] (sce §7.1} 1o cope with the new requirements is
in progress. So in order to test cur method we have
applied it by hand to a range of exatnples. Below we ex-
plore one such example in detail. Some other examples
on which we have tested relational rippling are listed
in figure 6. We have yet to find a relational inductive
theorem for which relational rippling is inappropriate.
However, as with functional rippling, it is sometimes ne-
cessary to supplement relational rippling with unblock-
ing techniques.

Our worked example is a lemma used in a {sirnplified)
proof that the transitive closure of a relation preserves
the Church-Rosser (CR) property.

The CR property is defined as:

X YVATX, 2) = V. /Y, VI AR(Z, V)
where r(X,Y) means X rewrites to Y in one step, We

define the transitive closure of r with explicit length of
the branch as:

FOX)= X=Y
P (&N}, X,Y) = IV #(X, V) A+ (N, V.Y)

where r°(N, XY} means X rewrites to Y in N steps,
Those definitions give us the wave-rules in figure 5.
The lemma we prove is then:

(N, A,C)Ar(A B) — 3D.r*(N,B, D) Ar(C, D)

This is proved by induction on n, with the induction
conclusion:

i
el ®] 40 AKA B
GG

1
— 3D, !"(-l(bﬂ) B DY ARC.D)
m B3 M

BUNDYANDLOMBART 179

{13) r(X,Y)A r(ll',é] =

W, oY, VIARZ,V)
[& NS

o &]
1
L
(14) "'(-ﬂ(ﬂ) ALY =
=

W X, VYA r'(x‘l\". ‘I/'. Y)
BE _epa

Wave-rules (15) ond (14) are drown from the Church-Rosser property and the transitive closure definition,

respectively. Note that (14) is ¢ hybrid wave-rule.

Figure 5: Example Relational Wave-Rules

Applying the definjtion of transitive closure {14) gives:

T

V. (A, V) AP (N, V.C)Ar(A.B)
[¥ [4]] A (8

— 3D |3V. (B, V)AF (N V. DYAR(C, D)
LIt i)

i+
B O

}
N
)

Applying the CR property {13} gives:

1
I AV (N V. CY ARV, V) Ar(B, V)
™ A E B @ &

3DV (B.V) A+~ (N.V. D) ArC. D)
E & N (B (B (B

and weak fertilization is now possible, which gives:
3V, 3V 3D ¢ (N, V', DY Ar(C, DY A r(B. V')
— 3D, 3V, #(B. V) A {N.V, D) A R(C, D)

which should be readily provable by symbolic evaluation.

7 Related Work

Alternative versions of relational ripplini have been pro-
posed by Lombart & Deville and by Ahs & Wiggins.
Only the first proposal has been fully implemented.

7.1 Lombart & Deville

In [Lombart and Deville, 1994], Lombart and Deville
propose a version of relational rippling developed by
analogy with functional rippling. Initiaily, they limited
themselves to relational reasoning which was a direct
translation of functional reasoning — what we will call
the pseudo-functional case. This led them to make a
number of simplifying assumptions. For instance, they
assume a uniqueness property of the step predicate in or-
der to initialise rippling-past, and they limit themselves
to formulae which are existentially quantified conjunc-
tions.

Several improvements have been subsequently made
to their proposal, which make it more robust and more
powerful. New annotations have been added to ensure

180 AUTOMATED REASONING

skeleton preservation. The directionality annotations
they had developed are now dynamically added. The
rippling-past process on which they focus has be embed-
ded between an initialization phase and a final rippling-
out. A termination measure has been defined.

The annotations used in [Lombart and Deville, 1994]
are slightly different from those proposed here: the wave-
fronts do not include the existential quantifiers, and the
directionalities are implicit (because they are statically
fixed), but this is only syntactic sugar. On the other
hand, they do not have skeleton preservation annota-
tions.

7.2 Ahs & Wiggins

Ahs and Wiggins were the first to propose a version of
relational rippling in [Ahs and Wiggins, 1994]. Although
they also motivate their work by analogy to functional
rippling, they do not make the simplifying assumptions
of Lombart and Deville, so their proposal is more general.
In [Ahs, 1995] Ahs gives details of a wave-rule parser
and illustrates it on some examples. However, he gives
no formal definitions or theoretical account. This means
that his parser is inherently ad hoc; there is no basis to
judge whether it is correctly implemented. His wave an-
notation puts wave-fronts and wave-holes around some
distinguished variables. It is not clear how these an-
notations guide the rippling process. For instance, what
we call the transport problem is not addressed, nor is
the problem of skeleton preservation or termination. It
is not clear how the wave annotations could help solve
these problems.

8 Conclusion

In this paper we have proposed a new version of rip-
pling which can reason about representations which used
shared existential variables instead of function nesting to
pass values. Relational rippling consists of two phases:
initialisation and rippling-past and it must sometimes
be combined with functional rippling. Initialisation is
fairly straightforward, so most of our attention has been
directed to rippling-past.

We have defined some meta-level annotation to be ad-
ded to object-level formulae. This annotation is used
to restrict the application of rewrite rules and hence re-
duce search and ensure termination. Wave-rules must be
both skeleton preserving and measure decreasing. These

XY +{X\VAYIAHXY, 2 XYZ2 = 3YZ. +(Y,Z,YZ)A+(X,YZ,XY2Z)
3Z. app(X. Y, Z)Aler(Z, K}~ 31, J len(X, N Alen(Y, J} A +(1,J, K)
even(X)Aeven(YIA +(X, Y, Z) ~ even(Z)
aney (X, Y) = anez (X, Y)
aney ((Hd, Mtd) A aney [Mid, Young) — anc (0ld, Young)
PN X YIAPSM X Z) =3V (MY, V)AL (N, Z,V)

ancy ard ancy ere two alternotive predicaies for the ancestor relation. The ancestor proofs and the CR
properiy preservation have no functional equivalent. Delails of some of these proofs can be found in [Bundy

and Lombart, 1995/,

Figure 6: Example Theorems Provable using Relational Rippling

properties are inherited by the expressions being rewrit-
ten.

In an extended version of this paper, [Bundy and Lom-
bart, 1995], we give formal definitions of the various con-
cepts introduced informally here: well annotated term;
skeleton; erasure; well-founded measures for attraction
rules and relational wave-rules; the wave-rule types; pre-
conditions of the various methods; etc. These definitions
have been used to show that each phase of rippling ter-
minates, as does the process as a whole. They can also
be used to give a formal specification of a program to
parse rewrite rules as wave-rules and attraction rules and
automatically annotate them. Finally, they can be used
to specify the methods and tactics which will be needed
to implement relational rippling in a proof planning con-
text. Such formal definitions are badly needed and their
absence has hampered previous attempts to implement
relational rippling. As a result of this formal analysis
the proposals given here are quite improved from previ-
ous proposals.

The proposals here have been hand tested on a range
of examples, both abstract and concrete, drawn from
the step cases of inductive proofs of relational theorems.
So far, they have been very successful in guiding these
proofs. These tests have confirmed that relational rip-
pling dramatically reduces the search for a proof most
of the time there is no branching despite a highly ex-
plosive search space. This reduction in the search space
seems not to exclude the required proofs. Even when
relational rippling fails, an analysis of the failure can
suggest how to patch the proof.

It remains to complete the implementation of the pro-
posals made here and to test them more extensively.

References

[Ahs and Wiggins, 1994] T. Ahs and G. A. Wiggins.
Relational rippling for logic program synthesis and
transformation, 1994. Presented at the Fourth In-
ternational Workshop on Logic Program Synthesis
and Transformation; available as DAI research paper,
forthcoming.

[Ahs, 1995] T. Ahs. Relational rippling (working title),
1995. Ph.L. Thesis, Computing Science Department,
Uppsala University, Sweden.

[Basin and Walsh, 1993] D. Basin and T. Walsh. Differ-
ence unification. In Proceedings of the 13th IJCAI. In-

ternational Joint Conference on Atrtificial Intelligence,
1993. Also available as Technical Report MPI-|-92-
247, Max-Planck-Institute fur Informatik.

[Basin and Walsh, 1994] D.A. Basin and T. Walsh. An-
notated rewriting in inductive theorem proving. Tech-
nical report, MPI, 1994. Submitted to JAR.

[Bundy and Lombart, 1995 A. Bundy and V. Lombart.
Relational rippling: a general approach. Research Pa-
per forthcoming, Dept. of Artificial Intelligence, Edin-
burgh, 1995. Shortened version submitted to IJCAI-
95.

[Bundy and Welham, 198I] A. Bundy and B. Welham.
Using meta-level inference for selective application of
multiple rewrite rules in algebraic manipulation. Arti-
ficial Intelligence, 16(2):189-212, 1981. Also available
from Edinburgh as DAI Research Paper 121.

[Bundy et a/., 1990] A. Bundy, F. van Harmelen,
C. Horn, and A. Smaill. The Oyster-Clam system.
In M.E. Stickel, editor, 10th International Conference
on Automated Deduction, pages 647-648. Springer-
Verlag, 1990. Lecture Notes in Artificial Intelligence
No. 449. Also available from Edinburgh as DAI Re-
search Paper 507.

[Bundy et a/., 1993] A. Bundy, A. Stevens, F. van
Harmelen, A. Ireland, and A. Smaill. Rippling: A
heuristic for guiding inductive proofs. Artificial Intel-
ligence, 62:185-253, 1993. Also available from Edin-
burgh as DAI Research Paper No. 567.

[Bundy, 1988] A. Bundy. The use of explicit plans to
guide inductive proofs. In R. Lusk and R. Over-
beek, editors, 9th Conference on Automated Deduc-
tion, pages 111-120. Springer-Verlag, 1988. Longer
version available from Edinburgh as DAl Research Pa-
per No. 349.

[Lombart and Deville, 1994] V. Lombart and Y. Deville.
Rippling on relational structures. Research report,
November 1994. Available as research report RR94-
16, Departement d'ingenierie informatique, Universite
catholique de Louvain, Belgium.

BUNDY AND LOMBART 181

