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Abstract!

We investigate the improvement of theorem
provers by reusing previously computed proofs.
A proof of a conjecture is generalized by replac-
ing function symbols with funclion variables.
This vields a schematic proof of a schematic
conjecture which is instantiated subsequently
for obtaining proofs of new, similar conjectures.
Our reuse method requires solving so-called free
function variables, i.e. variables which cannot
be instantiated by matching the schematic con-
jecture with a new conjecture, 'We develop an
algorithm for solving free function variables by
combining the techniques of symbolic evalua-
tion aud second-order matching. Heuristies for
controlling the algorithm are presented, and
several examples demonstrate their usefulness.
We also show how our reuse proposal supports
the discovery of useful lemmata.

1 Introduction

We investigate the improvement of theorem provers
by reusing previously computed proofs, ¢f. {Kolbe and
Walther, 1894; 1995] Our work has similarities with
the machine learning methodologies of explenation-based
learning [Ellman, 1989], analogical reasoning [Hall, 1989),
and abstraction [Giunchiglia and Walsh, 1992}, An ab-
stract view of our approach for reusing proofs can be
sketched in the following way:

Assume that an automated theorem prover shall be
supplemented by a Jearning component. If the prover is
asked to prove a new conjecture 3 which is similar o &
praviously proven conjecture 2, it first tries to associate
each function symbol occurring in ¢ with a (syntacti-
cally) corresponding function symbol from 1. These as-
sociations are then propagated into the proof of p for
obtaining a proof of ¢. But generally, there are function
symbols in the proof of ¢ which do not occur in the con-
jecture @ and thus stifl have to be associated. If these
function symbols can be associated such that the axioms
used in the proof of ¢ are mapped to provable formu-
las, the proof of ¢ is successfully reused for proving 4.
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Hete we are concerned with providing the associations
for function symbals sulomatically such that verifiable
proof obligations for 3 are obtained.

We propose an indirect way of association by first
generalizing the function symbols from (the proof of)
i to funclion variables, i.e. we use a sccond-order lan-
guage. Then we tnstantiale the function varisbles occur-
ing in the generalization of ¢ — the so-called bound fune-
tion variables — with function symbals by second-order
matching with . For providing the remaining associa-
tions a furiher second-order substitution has to be found
which replaces the so-called free function variables, :.e.
function variables which occur in the generalization of
the proof of v, but not in the generalization of ., We
call such & second-order subsiitution a solution (for the
free function variables), if all formulas stemming from
axioms in the proof of i are true.

As the sotvabilily of free function variables is defined
w.r.1. a set of axioms, it is undecidabie in general whether
a solution exists, and in the positive case the solution is
not unique. Here we develop an efficient procedure for
computing solutions by second-order matching “modulo
evaluation”. Our algorithm incorporates the underly-
ing axioms by heuristically combining the second-order
matching aigerithm of [Huet and Lang, 1978] with the
technique of symbolic evaluation, cf. e.g. [Walther, 1994].

2 A Method for Reusing Proofs

We briefly illusirale our technique for reusing proofs, cf.
[Kolbe and Walther, 1994] for a more detailed account:
If the prover has computed a proof p for a conjecture ¢,
the proof is analyzed yielding a so-called proof caich c.
The catch is a set of axioms providing the feateres of p
which are relevant for reusing the proof in subsequent
verification tasks. Then ¢ and ¢ are generalized by re-
placing (different occurrences of) function symbols with
(different) function variables, yielding a schematic con-
jecture d and a schematic caich C. The latter is a set of
schematic formulas which logically implies the schematic
conjecture . Thus & |= ¢ is guaranteed by our analy-
sis and generalization method where = denotes (first-
order) semantical entailment. Sech a pair PS := (§,C}
is called a proof shell and scrves as a base for reusing
the proof p if the system has to prove a new conjecture
¥ which is similar to ¢:



If ¥ is obtained from & by matching, ie. ¥ = n{®)
for a second-order substitution x {which means that ¢
i similar to @), then the proof shell PS applies for ¢
via the matcher x. Here = replaces the function vari-
ables in & - the so-called bound function variabies of
PS5 - by function symbols (resp. by functional terms,
ef. Section 5). Now we apply x to the schematic catch
C obtaining the partially instantialed schematic catch
x(C) which still may contain function variables, viz. the
free function variables of PS oceurring in €, but not
in ®. Now s further second-order substitution p has to
be found which replaces the free function variables of PS
such that all formulas in the instanticted schematic caich
p(x(C)) are provable. If successful then also ¥ is proved
becanse p{x(C)) | p(x(®)) and p(n({P)) = p(¥) = ¥,
which means that the proof p of v could be reused for
proving . Thus verifying the resufling proof obligations
p(x(C)) is sufficient for guaranteeing the provebility of
¥. This approach is sound because semantical entail-
ment is invariant w.r.t, (second-crder) instantiation, i.e.
C = ® implies 7(C) |= r(¥) for each second-order sub-
stitution 7, cf. [Kolbe and Walther, 1955].

8 Matching modulo Evaluation

We investigate our proposal within the field of aute-
mated mathematical induction, cf. e.g. [Walther, 1994].
Here proofs often are similar, and consequently auto-
mated induction provides the regularity required for sue-
cessful reuses. For proving a given conjecture, an indue-
tion theorem prover computes & set of induction formu-
las whose provability imply the truth of the conjecture.
Then the system tries to prove each induction formula
{rom a set of axiotns by first-order means, and the proofs
obtained thereby are candidates for subsequent reuses.

We define functions like the length function len for
linear lists by axioms like

(len-1) len{empty) = 0
{len-2} len(add{n, 2)} = s{len{z)}).

Given the conjecture ¢ := plus{len(2), len{y)} =
len(app(z,3)), the induction theorem prover computes
a base formula v, and a step formula ¥, as (plus denoles
addition of natural numbers, app denotes list concatena-
tion, sum denotes summation over a linear list):

¥ 2= plus(len(empty}, len (y)} = len(app(empty, 3))

W, = (Vu plus(len(z), len{u)) = len(app{z, u)]) —

plus(len{add{n, 2)), len(y)) = len(app(add(n, 2}, y))}
Assume that the following proof shell PS is provided
which was obtained by analyzing and generalizing the

roof of the step fermule ¢, for the conjecture ¢, of.
Kolbe and Walther, 1994], where
¢ = plus(sum(z),sum(y}) = sum{app(z,¥)).

#,:= (Yu FYG(z), GX(u)) = G}{H (2, v))) —
FYGY(D'(n,2)),G*(y)) = G*(H'(D'(n,2),y))

(1) GYD'(n,2}) = F{n,G'(z))

(2) H'(D'(n,z)p) = D'(n, H'(2,v)

(3) G¥D'(n,z})) = Fi(n,G¥z))

(4) F'(F¥z,y),2) = F¥e, Fi{n.2))

Figure 1. The proof shell PS5 for the proof of p,

C,:=

Here e.g. the function variables F!, F2, F® correspond
to different occurrences of the function symbol plus, i.e.
the schematic equation (4) stems from generalizing the
lemma plus{plus{z, ¥), z} = plus{z, plus{y, £)) which was
required for provin# ws. As PS applies for ¢, via the
matcher 7, := {F/plus, G133 /len, H! fapp, D' fadd},
the partially instantiated cateh C) := n,(C,) =

{5) len(add{n, z)) = F2(n,len(z))

(6) app(add{n,z),y} = D%(n,app(z,¥))

(M len(D%{n,z)} = F¥(n,len(z))

(8) plus{F¥(2,y),z} = Fi(a,plus(y, 2))

is computed for the step case, The free function vari-
ables F?, F? and IM stemming from (occurrences of}
the function symbols plus and add in the catch of the
original proof are not replaced by concrete function sym-
bals: Since these function variables do not occur in the
schematic conjecture &,, they cannot be in the domain of
the tnatcher 7#,. We therefore have to compute a sccond-
order substitution p, for these free function variables
which solves C), i.e. we are looking for some p, such that
the formulas p,(C}) are provable. The attempt of solving
F2? in (5} by (syntactical) second-order matching fails,
but we may evaluate the left hand side (lhs) of (5) by the
defining axiom (len-2) yielding s{len(z)} = F*(n,len(z)).
Now the Ihs matches the rhs via the unique matcher
p1 := {F3/s(w;)} which means that (5) is solved be-
cause py{(5)) = {len-2).2 We apply p; to the remaining
schematic formulas and obtain pi{C} \ {{5}}) 8s

(6} app(add{n,z),y) = D*(n,app(z, y))
(7 len(DY(n,2)) = F¥n,len(z}) .
(9) plus(s(y),z) = F(, plus(y, 2))

We continue with the next schematic equation whose
(sny) ihs does nol contain function variables, i.e. with ()
ot with {9). Here we choose {6) and evaluating its lhs
using & defining axiom for app yields add(n,app(z, )]
which matches the rhs via the unique matcher py =
{D*/add}. Now the lhs of p3((7}) is purely first-order
and can be evaluated, i.e. py := {F3/5{w3)} is obtained
by matching. Finally all free function variables are in-
sientiated and the remaining proof obligation pa({9))
cat be passed to the prover. As p3{(9)) is a defining
axiom for plus, the prover is successful, i.e. the proof
reuse is completed. Thus the eltzrnation of evaluation
and second-order matching allows us to compute the so-
lution p, = {F¥/s(ws), F*/s{w,), DV/add}.?

4 Symbolic Evaluation

Let & = | J;c gy Z; be a signature where I, contains {first-
order) funclion symbols of arity i. We let T(E, V) denote
the set of all ferms built with function symbols from E
and the set ¥ of variables. The set of equations t; = {;
with i, 43 € T(X,V) is denoted by £(Z, V), and formulas

*Here w; denotes the second argument of the binary fune-
Lion variable F?, i.e. p, replaces F° basically with the func-
tion symbel 5, but the first argument w; of F'* is ignored.

INote that the proposed method is more flexible than sim-
ply matching the schematic equations from (7 with the defin-
ing axioms.

KOLBE AND WALTHER 191



are defined as nsual* We denote the set of variables
oceutring in & (set of) term(s) resp. formula(s) ¢ by V().

We assume that each function symbol from I is either
a censtructor of some data structure or a defined function
symbol specified by some axioms, cf. [Walther, 1904}, For
instance the declaration

siruciure O s{number) : number

defines a data structure for natural numbers with the
constructors 0 and s. The arxioms [len-1.2) define
the function symbol len, ¢f. Section 3. A term ¢ €
T(E,¥) may be evaluated by applying the defining sx-
ioms for the function symbols contained in t. Thus e.g.
len{add(len(empty), z]) is evaluated via len{add(0, z})] to
s(len(z)) by applying the defining axioms for len. This
is called symbolic evaluation because the term may con-
tain vatiables (which are not evaluated). Note that only
defining axioms are considered for the evaluation, i.e. the
term s(plus(plus(z, y), z}) remains non-evaluable even if
¢.g. the associativity of plus is given as a lemma.,

We assume that the symbolic evaluator is implemented
by a terminating operation eval [Walther, 1994] which
computes the normal form of a term such that

(10)  eval(l) € T(E,V), AX 1= eval(l)

is satisfied for all € T(Z,V} and & set AX of axioms
and lemmata.

5 Second-Order Matching

Let £t = U‘.En £}; be a signature where {1; contains func-
tion variables of arity i. Then T(Z UG, V) denotes the
set of all schematic terms and £{Z U R, V) denctes the
set of all schematic equations built with function sym-
bols from £, function variables from $1, and varisbles
from V. Schematic formulas are built as usual® and
{1(¢) denotes the set of all function variables occurring
in & (set of) schematic term(s) resp. formula(s) ¢. Fune-
tion variables are treated like function symbols except
for the application of second-order substitutions.

For defining second-order substitutions we represent
functionz by terms with special argument variables from
the set W := {wn,w;,...} where WN VY = ¢ Thus
T(E,W) is the set of functional terms and we define
a family (Wi)ien of subsets of W by Wy = § and
Wi = {wy, ..., w}. A [restricled) second-order substi-
tution x := {..., F/s,..} is a finite set of pairs such that
the domain dom{x} := {..., F, ...} C  contains (distinct)
function variables and F € {i; entails » € T(Z, W,), i.e.
a function variable F' of arity { is replaced by & fune-
tional term s with at most i argument variables. The
application of a restricted second-order substitution » to
a schematic term is inductively defined by

=(z} =g
1r(‘X(-Pll sy P'I)} = x{'{PI }! e 7(P'l)}
®(F(Py, ..., Pn)) 1= alw fn(P1), ..., wo/x(Pn)]

*Qur logic is many-sorted in general, but for the sake of
readability we usually omit all sort information.
®Note that only first-order variables may be quantified.
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where z € ¥, X € E,U(, \dom(x)), F € 1, Nndom(7),
#(F) = s and P,..., P, € T(ZURA,V). E.g. the ap-
plication of x := {F/len{w,), G/plus{w;,s(w,))} to the
schematic term P := G{F(app(z, ¢}, z), v) yields x(P) =
plus{len(z),s{len(z))}. For f € E, and F € {1, we use
#(F} = f as an abbreviation of #{F) = flwy, ... wn).
Restricted second-order substitutions are applied to sets
of terms or (sets of) formulas as usual. Note that
V(x(t)) C V(1) and (=(t)} C 1) for t € T(ZL G, V),
ie. no first-order variables or function variables are in-
troduced by restricted second-order substitutions. Fur-
thermote dom(x) C (1, ie. no (fizst-order) varisbles
are replaced. These restrictions (compared to general
second-order subsiitutions, cf. [Goldfarb, 1981]) are nec-
essary to ensure the soundness of our method for reusing
proofs, cf. Section 3. As a consequence the subsumption
quasi-ordering < on general second-order substitutions
from [Huet and Leng, 1978] corresponds to the subset
relation C in our coniext: — is defined by » < »' iff
Jp ' = pox where o denotes the composition of gen-
eral sccond-ordet substitutions, But as F € dom{x) im-
plies p{x{F}) = wx(F) for restricted second-order sub-
stilutions p, 7 we have < = C here. Subsequently we
simply say “second-order substitution” insiead of “re-
stricted second-order substitution™.

A target term L € T(E,V) malches s pattern P €
T(ZTUR,V) iff there is a second-order subsiitution =
with ¢ = n(P). E.g. the target { = s(sum(z)) matches the
pattern P = F(z,sum(z)) because the required matcher
exists, viz. ¥ = {F/s{wia)} or # = {F/s(sum{w})}.
Second-order matching is decidable and we can adapt
the algorithm from [Huet and Lang, 1478] for comput-
ing a finite sct Il := maich(t, P) of matchers satisfying
the following conditions:

consistence r &Il =1 =nx(P) {11)
completeness {=x'(P)=3rell. x Cx' (12)
minimality wmrell,xfZna =2 ¢nx {13

6 Solving a Proof Catch

We present the algorithm solve_caich which implements
the second-order matching “module evaluation” illus-
trated in Section 3. We assume a fixed set of (implic-
itly universally quantified) axioms AX C £(E,V) in the
remainder of this section. The algorithm solve_caich
has two input arguments, viz. a partially instantiated
schematic catch ¢/ € E£(Z U, V) and an suxiliery
set of schematic equations X C E{E U, V) which ini-
tially is empty. The call solve_catch(C', 8) fails if no
matcher solving €' has been found. Otherwise it yields
a pair {p, E} where p is a second-order substitution and
E C £{%,V) is a set of {first-order] equations such that

ECpC)CEEY) and AXUE Ep(CY).  (14)

This means that the schematic catch ' is solved by
the matcher p, if the call solve_catch(C", ) yields & pair
{p, E} such that the remaining proof obligations in £ can
be verified. We start with the algotithm for solve_catch
and then discuss the used auxiliary functions:*

*The special value A indicates that it has been tried to
select 8 member from an empty set, see below,



function solve_cateh (C', X)
I = R := choose_eq(C")
ifl # A then
I := maich(eval(l), R}
if (1r := choose_matcher(Il)) = A then
return solve_catch(C'\ {I= R}, XU {l= R})
else
{p, E} 1= solve_catch{x(C'\ {{ = R}}, n(X))
return (v Up E) &
else
if Q{C' U X) =8 then return {{},C' U X)
else fail fi i

The function choose.eg selects some equation | = R
from €', whase (say) ths ! does nof contain function vari-
ables, but whose ths R does contain function variables.”
We demand that for all 4 C £(Z2UR, V)

(15) M,=49 iff chacae.eg(A) = A= A
(16) M4 #® implies chaose eq(A} e My

where My := {I= R € A4 | Q) = 8 OQ(R) # #}.
The heuristic used by chocse_eq for selecting the equa-
tion I = R € My is discussed in the next section. The
term [ is evaluaied by applying one or more defining ax-
ioms from AX until & term I ;= eval(l) is obtained, of.
(10). Then the second-order matching algorithm match
is called for ¥ and R, and all computed matchers are
collected in a set II. Of course we require that this set of
matchers II := match(¥, R)is consistent, cf. (11), but we
do not demand compleleness as we later select only one
matcher from it anyway. Instead of (13), however, we
now request a stronger form of minimality which takes
the lack of completeness into acconnt:

(IT) melal=x"{Rjaxzr ~gr
Frem the computed set of matchers II, choose_maicher
selects one matcher (if 11 is non-empty) doe 1o some
heuristic, ¢f. the next section.

If II = 8, no solution for the free function variables
in R was found by matching modulo evaluation. Then
=R is inserted into the so-called remainder set X
{which initially is empty) and we continue by solving the
remaining part of the catch &'\ {i = R}. We will not try
to solve the equations collected in X by matching again
{as this must fsil), but we hope that the function vari-
ables occurring in X are instantiated while solving the
remaining catch such that a set of first-order proof oblig-
ations is obtained from X. Then the desired matcher p
and the set of first-order proof obligations F is returned,
cf. {14). Otherwise the recursive call (and thus the whole
procedure) fails.

If some x € I is selecied, we apply » to the remaining
part of the catch €'\ {I = R} as well as to the remainder
set X and recursively call solve_catch. If the recursive
call does not fail, we obtain a matcher g and a set of fizst-
order proof obligations E. Then m U p is the resulting
matcher for solving the catch &' {note that dom{x} ™
dom(p] = @ as « is applicd before the recursive call)
which is returned together with E.

implies

"Without loss of generality we assune that the equations
arc oriented such that there is no equation L = r with {}{L} #
# and fi(r)=8.

If o recursive call of solve_catch is reached where '
choose_eg yields A, i.c. all equations in '\ E(L, V) (il
any] contain function variables on both sides, cf. (15},
then the alternating process of matching modulo evai-
nation and instantiating the catch terminates. Now if
(C'U X) = @ then the catch is solved by the identity
substitution {}, and C' U X is returned as the set of
first-order proof obligations. In this case also the initial
call of solve_catch is successful by cellecting the match-
ers which have been computed in the respective recur-
sive calls. Otherwise there is an equation in €' with
function variables on both sides {which has not yet been
ptocessed) or there is an equation in X with function
variables on one side (where the matching failed), We
regerd the catch as unsolvable then and solve_catch fails,
although one can think of several alternative heuristi-
cally motivated attempts (cf. Section 7) of solving the
remaining function variabies. We summarize these con-
siderations with the following theorem:

Theorem 6.1 (soundness of solve_catch) Let AX C
E(L, V) be s set of axioms. If the conditions (10), {11},
(15) and (16) are satisfied, then for all schematic catches
C' and X C E{(EUR, V) the call solve_caich(C', X} e-
ther fails or jt tezminates with resulf {p, E} such that

ECp(C'UX}CE(E,V) and AXUE | p(C’' UX).

The function solve_caich is designed for an efficient
computation of a solution for a partially instantiated
schematic cateh #(C). If there is no such solution, i.e.
the reuse attempt fails, this might lead to backtracking
in the calling procedure, e.g. for choosing a different «
or C. Hence we are interested in an early faslure recog-
nition within solve_catch. This can be achieved if we
try to disprove those equations ¢ ¢ €' U X which do
not contain function variables by searching for & coun-
terexample, ¢f. [Protzen, 1992), vielding one of the re-
sults disproved, proved or unknown. I e is disproved,
then solve_caich fails as the malcher computed so far
yields unprovable proof obligations, i.e. we can save any
effort for solving the remaining function variables. If e is
proved, it can be removed {this might happen for some
“simple” equations e}, and otherwise e has to be verified
after all Tunction variables are solved.

7 Heuristics

The function sofve_catch has two indeterministic branch-
ing points, viz. the calls of the functions choose_eg and
choose_matcher, and some heuristic guidance is required
for making a good choice. We have developed heuristics
with empirical data obtained from several experiments.
Although the branching points define an entry for back-
tracking whenever a failure in some recursive call occurs,
we avoid backiracking as we belicve thai only & non-
expensive solution procednre leads to useful proof reuses.
Hence the success of our proposal depends on the quality
of the developed heuristics.

The heuristic for choose.eq selects a schematic equa-
tion { = R € Mg, which has probably the least num-
ber of matchers x solving eval(f) = x{R}, ie. the most
“difficult” of the equations (without function variables
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on the lhs) iz chosen. This choice has two advan-
tages: (i} the possibility for selecting & “wrong” matcher
by choose_maicher is decreased because a point of the
search space with a small branching rate is reached where
it is more likely to find a good path, and {ii) the solvabil-
ity of the “difficult” equation might be lost if another,
“sasier” equation is chosen where il is harder to distin-
guish a successful matcher from an unsuccessful one.

As a measure for the difficulty of {solving) an equation
we consider the number of function symbels and func-
tion variables occurting in it: A high number of (occur-
rences of ) function symbols limits the number of possible
matchers in the same way as a low number of (differ-
ent) function variables. Hence we define iwo mappings
#p : T(EZUR,V)—N and #4 : T(ELO, V)N
where #x(t} counts the number of occurrences of func-
tion symbols and #p(1) counts the number of different
funciion variables in & schematic term t € T(E U2, V).

When rating the difficulty of an equation { = R we
mainly have to consider the rhs R, as the lhs { is already
first-order and will be evaluated yet before the matching
such that it does not influence the number of solutions
strongly. For the moment, we use the following heuris-
tic for choose_eq(C'}): Among the candidate equations
I = R € Mg, the one with the minimal value

hi(l=R) := 2#q(R} - #(R)

is selected. The factor 2 serves for weighting the num-
ber of function varisbles higher than the number of
function symbols as the former has a stronger influence
on the success of the maiching. For instance, given
i = len{add(n,2)), By := F(len{G(2))) and R; :=
F(G(z)), we prefer the equation I = B; to ! = R; be-
cause by (1 = Ry) = 3 < 4 = by{l = R,). A more sophis-
ticated tating might also consider the structure of i or R,
the first-order variables in ! = R, or even the rematning
equations, but we found this not necessary so far.

The heutistic for choose_maicher atiempts to select
the “simplest” matcher r € match(eval{l}, R) solving
the chosen equation ! = R. We consider 7 as “sim-
ple™ if it is “close” to replacing function variables by
function symbols, e.g. #(F) = flun,..., wa}, while e.g.
n 1= {F/pius{w;, times(ws, wa)), ...} would be consid-
ered as s more complex matcher. The underlying moti-
vation s to select & matcher which preserves the given
structure of the proof being rensed, because it is more
likely to find a valid instance of the schematic proof in
this case.

As 8 measure for simplicity we consider two features
of & matcher: (i} a small domain and (i) a small num-
ber of introduced function symbols. Concerning (i}, we
demand thai the function maich satisfies requirement
{17), i.e. no function variables are replaced unnecessar-
ily (though this is not demanded in Theorem 6.1}. The
introduced function symbols (ii) are those occurring in
the functions] terms of x counted by

#p(x):= Y. #x(x(F))
Fedomir)

where we prefer matchers x such that #g{x) is min-
imal. For instance, given I’ = sum{z) and R =
F(z,sum(z)), we prefer the matcher 1, := {F/fuy} to
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the matcher xy := {F/sum(w;)} because #gp(m) =
0 < 1 = #3(x2). So among the candidate matchers
x € mateh{eval(l), R), choose_matcher selects the one
with the minimal value #g{x). For obtaining an ef-
ficient implementation we incorporate the selection of
the matcher into the matching algorithm such that only
matchers x with minimal measure #yg(r) are computed.

Finally we skeich another heuristical extension for
solve_calch, viz. how to proceed if choose eq(C’) = A
bul {C' U X} # 0. In this case there is an equation
in C' with function variables on both sides {which has
not yet been processed) or there is an equation in X
with function variables or one side (whete the matching
failed). Now instead of failing we might try to solve the
remaining function variables in the following way: If e.g.
Fiand FJ are free function variables from £ stemming
from generalizing different occurrences of the same func-
tion symbol f in the original proof, then we instantiate
F¥ and F? with the same functional term. Hence we stip-
ulate p(F#) := p(F') if F* € dom(p) but F? ¢ dom{p)
for the matcher p computed so far. If several different
instantiations p(Fit), ..., p(F) are available we prefer
the simplest one, ¢f. the heuristic for choose_matcher.
An example for the usefulness of this heuristic is given
in the next{ section.

8 Lemma Speculation by Reuse

Using the heuristics proposed in the previous section we
can reuse the proof shell PS = {¥,,C,) from Fig. 1 for
proving the step formulas ¥;, of the conjectures v;:°

sum(app(z.y)! | e
G H'(2,3)
Ten{app(z, y)) -
prod(app{z,.¥)) | Vs
dbl{plus{z, y)) -
rev(app(z, y)) ¥r
s(plus(z,) | -
x(plus{z, y)vx) ¢’8
exp(z, plus{z, y)) | ¥u

¢ | plus{sum(z}, sum(y})
¢ FHG'(x),G%(y))
¥ plus{len{z}, len{y])
Yo | x(prod(e), prod(y))
¥1|  plus{dbl(z}, dbl{y))
¥2{  app(rev(y), rev(x))
Pa plus(z,s{y)}
ﬂ"-‘ plus[x(z,x], X(yvz])
¥5 | x[exp(z,2), exp(z, ¥))
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Yo|  puszplus(yz)) = plus(plus(z,y).2)

V7 app(z,opp(y,z)) = applapp(z.y),2) | -

¥y x(2, %{y,2)) = x{x{2,y),2) ¥

Ya | plus{x{z, 2}, x{y z}) x{z,plus{z,9)) | e
Table 1.

For each i s matcher x; for v;, and the schematic
step formula &, is selected, ic. m{¥P,) = #i,. Then
solve_caich is calied with the partially instantisted
schematic catch C'; 1= %;(C, }, yielding some proof oblig-
ations E; and a solution p; for the free function variables.

Like =, from Section 3, the matcher zy replaces only
function variables with function symbols, e.g. mg(F') =
x and wo(D') = add, whereas m; with m, (D) = s(w:)
makes use of functional terms. This allows to reuse the
proof of ¢, involving the data structure list for a con-
jecture concerning the data structure number. Similatly

* » multiplies two numbers, prod multiplies the numbers in
a list, dbl{x) computes 2 x x, rev reverses a list, and exp{z,y)
computes z¥.



x3{F1) = app(ws, ;) swaps the arguments of F! and
#2(G') = w; uses a projection to match the schematic
step formula.

The applicability of a proof shell can be increased if we
“freese variables to constants”, i.c. a (universally quan-
tified) variable z € V is regarded as a new constant
2 € To. Thus e.g. conjecture ¢y, i.e. the distributiv-
ity law for x and plus, matches the schematic conjectare
& because now mo(G1¥?) = x(w,2) € T(E, W) can be
used for the matcher.® This yields the partially instan-
tiated schematic cateh C = my(C,} =

x(s(2),2) F*(n, x(z,1))
plus(s(z), ¥} D(n, plus(z, y))
x{DYn,2},2) F¥n, x(2,2))
pus(F3(z,y),2) = F(z, plus(y,2))
and solve_caich computes the solution
= {F*/plus{z, wy), D*fs{wz), F?/plus(z, wa)}-

In the same way the reuse is enabled for the remain-
ing conjectures 5,....3%5, where the reuse for ¢p (the
assocmtl\rlty of x) succeeds only when freezing y and
z using the matcher xg = {Fl{ (w1, x(y,2)}, G /w1,
G¥/ x (wy,z), B/ x [wn ), D fs(wzg} For solving the
catch € the heuristic “instantiate J*° like F2" given at
the end of the previous section is required.

Often one of the proof obh'gations in E; is a lemma,
indicated by the last column in the table above (“=" de-
notes that all members of E; can be symbolically evalu-
ated to tautologies of the form ¢ = t). Thus e.g. the as-
sociativity of plus, i.e. yg, is computed as a proof oblig-
ation when proving ¥4, by reuse, cf. the last equalion
of C above.!® If such a lemma is not already known
in advance, it is speculaled by instantiating a schematic
equation with the matcher p; obtained by sclving the
remaining part of the catch. In a direct proof of the step
formnla 4;, such a useful lemma hes to be generated
explicitly, ef. e.g. (Walsh, 1994] for examples.

Moreover, a lemma speculated by reuse is often a gen-
eralization of a lemma which is generated in a direct
proof. Thus e.g. a direct proof of 4, would generate the
lemma (e} = plus(z, plus{ x{=, z}, x{y, z)}) =

Plus(plus(z, x (=, z}), X (¥, 2))
(where o = {2/z, yf x (2, 2), z/ x {y, 2)}) if we proceed
by using axioms for modifying the induction conclusion
until the induction hypothesis is applicable. For obtain-
ing & proof of y,,, this lemma is usually generalized by
the inverse substitution rule, of, [Walther, 1994], yielding
. This generalization effort is saved by our approach
as Yy is the lemme which is speculated for 44, by reuse.

e e

@ Conclusion and Future Work

We have developed an heuristically controlled algorithm
for solving the {ree variables of o partially instantiated

“This kind of skol d becruse for s skolem
constant 2 and a formuls t[z] with a free variable z holds:
Vz.4p{z] is valid ifl ¥[z] is valid.

1®The proof obligation ohtained for the conjecture ¥, is
an instance of the associativity of app, vit. the lemma a3(3yr )
where o3 = {z/add(z, empty)}.
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schematic proof catch. This algorithm, which is im-
plemented in our prototype of a learing prover, the
PLAGIATOR-system [Brauburger, 1994], has proved suc-
cessful for many examples, including those from Table
1. Hence we are able to verify these conjectures by auto-
matically reusing the proofs of previously proved, similar
conjectures. As a side effect useful lemmata are specu-
lated by our method.

Table 1 also suggests a recursive organization of the
reuse procedure as the proof obligations retumed by our
solution algorithm may also be proved by reuse. The
(heuristic) control of this recursion for avoiding non-
termination by cyclic reuses is subject to future work.

Another future topic is concemed with the manage-
ment of leamed schematic proofs for an efficient se-
lection of the proof shell which is to be reused for a
given, new conjecture. For the subtask of choosing a
matcher between the schematic and the new conjecture
we may adapt the above heuristics for rating second-
order matchers.
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