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Abstract

In this paper we present a semantic theory of
abstractions based on viewing abstractions as
model level mappings. This theory captures
important aspects of abstractions not captured
in the syntactic theory of abstractions pre-
sented by Giunchiglia and Walsh [1992]. In-
stead of viewing abstractions as syntactic map-
pings, we view abstraction as a two step pro-
oess: first, the intended domain model is ab-
stracted and then a set of (abstract) formulas
is constructed to capture the abstracted do-
main model. Viewing and justifying abstrac-
tions as model level mappings is both natural
and insightful. This basic theory yields abstrac-
tions that are weaker than the base theory. We
show that abstractions that are stronger than
the base theory are model level mappings under
certain simplifying assumptions. We provide a
precise characterization of the abstract theory
that exactly implements an intended abstrac-
tion, and show that this theory, while being
axiomatizable, is not always finitely axiomati-
zable. We present an algorithm that automat-
ically constructs the strongest abstract theory
that implements the intended abstraction.

1 Introduction

Abstractions and approximations are pervasive in hu-
man common-sense reasoning and problem-solving. Ab-
stractions have been used in a variety of problem-
solving settings including planning [Sacerdoti, 1974],
theorem proving [Plaisted, 1981], diagnosis [Davis, 1984;
Genesereth, 1984; Struss, 1992], compositional model-
ing [Falkenhainer and Forbus, 1991], constraint satisfac-
tion [Ellman, 1993], and automatic programming [Lowry,
1989]. Until recently there has been no unifying account
of these disparate forms of abstractions. However, in the
last few years, there has been an explosion of interest
in understanding the underlying principles of abstrac-
tions and approximations [Ellman, 1992; Lowry, 1992;
van Baalen, 1994].

A comprehensive theory of the principles underlying
abstractions is useful for a number of reasons. Such a
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theory can provide the means for clearly understanding
the different types of abstractions and approximations
used in past work. It can provide semantic and com-
putational justifications for using abstractions and ap-
proximations. Furthermore, such justifications can be
used to automatically construct useful abstractions and
approximations. Finally, an understanding of different
abstractions within a common framework can allow the
transfer of techniques between disparate domains.

Recently, Giunchiglia and Walsh have presented an el-
egant theory of abstractions that unifies past work and
provides a vocabulary to discuss different types of ab-
stractions [Giunchiglia and Walsh, 1992]. Their the-
ory characterizes abstractions as syntactic mappings be-
tween formulas of formal systems. They classify abstrac-
tions according to whether the set of theorems of the
abstract theory are a subset, superset, or equal to the
set of theorems of the base theory (TD, TI, and TC
abstractions, respectively). Their theory is very good
at capturing an important aspect of many abstractions,
viz., many abstractions result directly from syntactically
manipulating formulas. Moreover, problem solvers ulti-
mately reason by applying inference rules to formulas,
and hence understanding the properties of abstractions
as mappings between formulas is essential.

However, viewing abstractions as syntactic mappings
captures only one aspect of abstractions. Consider the
following example.

Example 1 Predicate abstractions [Plaisted, 1981;
Tenenberg, 1990] are a dass of abstractions based on
the observation that the distinctions between a set of
predicates P4,...,P, in a theory are often irrelevant.
An abstract theory can be constructed by replacing all
occurrences of the Pj's in the base theory by a single ab-
stract predicate P. For example, consider the following
base theory:

JapaneseCar(x) => Car(x)
EuropeanCar(x) =>  Car(x) (1)
Toyota(x) => JapaneseCar(x)

BMW(x) => EuropeanCar(x)

The distinction between  JapaneseCar and
EuropeanCar is often irelevant (e.g., when trying to
answer a query Car(A)), and therefore these predicates
can be replaced by ForeignCar, yielding the following



simpler abstract theory:

ForeignCar(x) =a Car(x)
Toyota(x) => ForeignCar(x) 2)
BMW(x) =» ForeignCar(x)

However, suppose the base theory also includes the fol-
lowing:
EuropeanCar(x) => Fast(x) (3)
JapaneseCar(x) => Reliable(x)
Applying the same mapping to axioms 3 would result in
the following:
ForeignCar(x) =>
ForeignCar(x) =>

Fast(x) 4)
Reliable(x) (4)

However, adding these axioms to the axioms in (2) leads
to false proofs [Plaisted, 1981], which may be undesir-
able. For example, one can infer that Toyotas are fast,
and BMWs are reliable—inferences not sanctioned by
the base theory.

The syntactic theory of abstractions does distinguish
between abstractions that yield false proofs (TI) and
those that don't (TD). However, it gives no guidance in
comparing TD abstractions to determine which is more
natural. For example, the axioms in (2) and (4), when
used independently, will not yield false proofs, but the
former is more natural, considering the intended inter-
pretation of ForeignCar.1 Nor does the syntactic the-
ory tell us how to construct the strongest such abstrac-
tion. For example, we will see that adding the axiom

ForeignCar(x) => (Fast{x) V Reliable(x)) (5)

to (2) yields the strongest theory that removes predicates
JapaneseCar and EuropeanCar and still does not ad-
mit false proofs. D

The fundamental shortcoming of the syntactic theory
is that while it captures the final result of an abstrac-
tion, it does not capture the underlying justification that
leads to the abstraction. In this paper we present a se-
mantic theory of abstractions that addresses this short-
coming. Our theory is based on the idea that knowledge
representation involves using formulas to capture an in-
tended domain model. From this perspective, we argue
that an abstraction should be performed in two steps:
first, the intended domain model is abstracted and then
a set of (abstract) formulas is constructed to capture
the abstracted domain model. Hence, we argue that
the decision of what to abstract is made at the model
level (using knowledge about relevant aspects of the do-
main), with the syntactic transformation being justified
by this decision. In our example, the intended abstrac-
tion to the domain model is to replace the relations de-
noted by JapaneseCar and EuropeanCar by one rela-
tion representing their union, denoted by ForeignCar.
As mentioned earlier, the strongest theory that imple-
ments this intended abstraction consists of the axioms
in (2) and (5).

INote that, since the axioms in (1) and (3) are mutually
disjoint, the preorder C defined in [Giunchiglia and Walsh,
1992] provides no help in selecting between the two options.

We introduce a dass of model increasing (MI) abstrac-
tions, a strict subset of TD abstractions. Like TD ab-
stractions, MI abstractions yield no false proofs. How-
ever, they have additional natural properties such as
compositionality. We show that the abstract theory that
precisely implements the intended model level abstrac-
tion, is exactly the strongest MI abstraction of a base
theory. We show that if the base theory is axiomatizable,
then so is its strongest MI abstraction. We present a pro-
cedure to automatically construct the strongest MI ab-
straction. Our work generalizes Tenenberg's treatment
of predicate abstractions [Tenenberg, 1990], and we dis-
prove his conjecture that the predicate abstraction of a
finite theory is always finitely axiomatizable.

Abstractions that admit false proofs are commonly
used to speed up problem solving by guiding search,
e.g., ABSTRIPS [Sacerdoti, 1974]. We show that all
such abstractions can be viewed as Ml abstractions in
conjunction with a set of simplifying assumptions. For
example, in ABSTRIPS, we first make the simplifying
assumption that a predicate of lower criticality can al-
ways be achieved without affecting predicates of higher
criticality, and then we construct an MI abstraction by
dropping the appropriate preconditions. This formaliza-
tion is insightful because it shows that an abstraction
will yield false proofs only when the simplifying assump-
tion is violated. This enables us to evaluate the utility
of an abstraction depending on the reliability of the sim-
plifying assumption.

2 Abstractions as model mappings

Our theory of abstractions applies to any language with
a declarative semantics, e.g., propositional logic, con-
straint languages, first-order logic, modal logic. The
declarative semantics of such languages is provided by
interpretations of the language and the the notion of
satisfaction. An interpretation, /, is a model of a set of
sentences, E, (denoted / I= E) if and only if / satisfies
each sentence in the set. A set of sentences T1 entails
another set of sentences T2 (denoted T1 |= T2) if and
only if every model of T1 is a model of T2.

2.1 Model increasing abstractions

Let Thase and Tabs, be sets of sentences in languages Lbase
and Labt > respectively. What does it mean for Tabs to be
an abstraction of T base? If Lbase and Labs are the same
language, natural definitions are possible (e.g., Thase |=
Tabs is one such option). However, if Lbata and Labs
ate different, such a direct comparison is not possible
since L bese and Labs have no common interpretations. A
comparison is possible only if there is a way of translating
between the interpretations of the two languages. Such
a translation can be specified by an abstraction mapping
(Section 3.1 shows how to formally specify n):

IT : Interpretations(Lba$e) -> Interpretations Labs) (6)

The idea is that TT is a model level specification of how
the interpretations of L base are to be abstracted to in-
terpretations of Labs * Recall that we view abstractions
as consisting of two steps: first, the intended domain
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model in sbsiracted and then the abstract theory is con-
structed to capture the abstracted domain model. Given
only Tyare, any of its models could be its intended model.
Hence, Ty, is an abstraction of Tyu,y, given the abatrac-
tion mapping =, if and only if T, captures all the ab-
stracted models of Tyg,,. This motivates the following
definition of model increasing (MI) abstractions:

Definition 1 {Model increasing abstractions) Let
Tiase ond Tos, be sets of sentences in languages L,,.,
ond Ly, respectively. Let w : Interpretations{Tia,) —
Interpretations(Lay,) be an cbatraction mapping, Ty, 1
a model increasing abstraction of Tia,., with respect to
., §f for every model Myg,, of Thgse, T(Migsa) 18 a model
of Tu. .

Example 2 Connider the predicate abstraciion in Ex-
ample 1. Let the axioms in {1) and (3} be the base the-
ory. Given any model of the base theory, the abatzaction
mapping 7 defines the exiension of the abstract predi-
cate ForeignCor to be the union of the extensions of
JapaneseCar and FuropeanCar. One can verify that
the axioms ir {2) and (5} form an MI abstraction of the
base theory, i.e., the image of every mode] of the base
theory is a mode] of {2) and (5). However, the axioms
in {4) are not part of any MI abstraction of the base the-
ory, &.g., the image of a model of the base theory which
has an unreliable European car is not & model of these
axioms, O

A variety of commonly used abstractions are MI ab-
stractions. For example, sign algebras [Williams, 1691]
and quantity spacea {Kuipers, 1986) are M1 abatractions
of the real algebra. Structural and behavioral abatrac-
tions used in model-based diagnoais [Genesereth, 1984;
Hamacher, 1991] are M1 abatractions. Ground abstrac-
tiona, where a clause is replaced by {some of) its ground
instances, used in theorem proving [Plaisted, 1981] are
MI abstractions. These applications exploit the follow-
ing important property of MI abstractions:

Proposition 1 Let T,y, be an M] absiraction of Tya,,.
If Tera is inconsistent, then Th,,, 14 tnconsistent,

Proof: If Ti.,. were consiatent, it would have 8 model,
and the image of this model would be a model of T,
meking Ty, consistent. O

In other words, to prove the inconsistency of a base
theory, it suffices to prove the inconsistency of a (po-
tentially simpler) MI abstraction. Another important
property of MI abstractions is compositionality:
Proposition 2 Let Ty, and S,y, be MI abatractions of
Thasa ond Sipsa, reapectively, with respect to w. Then
Tabs U Saps 19 on MI asbatraction of Tyaye U Shaes, with
reapect to «.

Proof: Let My,,, be any mode] of Tha,r U Siaie- Hence,
Mygee 8 8 model of both Ty,,, and Spe,., and hence
( Myase) is & model of hoth T, and S.,, and hence a
model of Toy, U Sgp,. O

Compositionality is exploited in disgnosis with multi-

ple theories [Nayak, 1994b], and in compositional mod-
eling [Falkenbainer and Forbus, 1991; Nayak, 1994s;
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Noyak and Joskowice, 1996; Iwasaki and Levy, 1994]
where theories are built by composing knowledge from
different sources. Moreover, one may argue that inde-
pendent of these applications, theory compositionality
ia intrinsic to the very notion of abstractions.

When T,i, is an M] abstraction of These, Tuts con have
models that are not the image of any model of Tygy,.
Therefore, an MI abstraction can be weaker than the in-
tended model-level abstraction. This motivates the def-
inition of the strongest MI abstzaction, which exactly
implemnents the intended rmodel-level abstraction:

Definition 2 (Strongest M1 abstraction) Ty, is
the strongest M1 abstraction of Tiy,, under « if

Tare = {0 : for all models Myo,s of Toase, 7 Miase) F 0}

2.2 MI Abstractions with simplifying
assnmptions

‘While many commeoen abstractions are MI abatractiona, a
iarge class of abstractione deacribed in the literature are
not. In particular, abatractions that admit false proofs
are commonly used to speed up problem solving hy
guiding the search (e.g., [Ellman, 1993; Imielinaki, 1087;
Sacerdoti, 1974]). In this section we argue that such ab-
stractions can be, and are best viewed as MI abstractions
in conjunction with a set of simplifyying assumptions.

Example 3 Consider Imielinski's domain obstractions
[1687]. Given a base theory and an equivalence relation
over the set of constants of the base language, he con-
atrucis an abatract theory by replacing each occutrence
of each constant in the base theory by a representative
of the constant’s equivalence class. This is not, in gen-
eral, an MI abstraction of the base theory. For exam-
ple, let {P(a,}), " P(c,d)} be the base theory, and let @
and ¢ be equivalent (with representative a} and & and
d be equivalent {with representative 4). Hence, the do-
main abstraction of this theory is the inconasistent theory
{P{a,b), ~P(s,5)}. Since the base theory is consistent,
Proposition 1 is violated, and hence it can't be an Ml
abatraction. However, suppoae that the equivalence rela-
tion was a congruence, i.e., for every n-ary relation P and
terms &, £/, 1 <14 < n, such that #; and #] are equivalent,
the base theory entails P(iy,... . ta) & P(t],...,4,). In
this case, one can see that the domain abstraction is, in-
deed, an MI abstraction. To put it another way, domain
abatractions ale MI abstractions under the simplifying
assurmnption that the equivelence relation is a congruence.
1f the domain abstraction admits false proofs (as in the
sbove cage where the abstraction was inconsistent), it ia
precisely because the simplifying assumption ia violated:
the equivalence relation is not a congruence. O

A number of other commonly used abstractions can be
viewed in this fashion, As mentioned earlier, the simpli-
fying assumnption made in ABSTRIPS [Sacerdoti, 1974] ia
that the literal dropped from preconditions of actions can
always be achieved without affecting the truth value of
literals with higher criticality. Davis's work on diagnosis
uses an abstract theory that is an MI abstraction of the
base theory under the simplifying assumption that there
are no bridge foults [Davis, 1084]. The heuristic under-
lying the use of Connection graphs in [Chang, 1979) is



to use an MI abstraction of the base theory, under the
simplifying assumption that different literals in a clause
share no common variables, e.g., a dause P(x) V Q(x)
is revised to the stronger clause P(y) V Q(z). An Ml
abstraction of the revised theory is constructed using a
ground abstraction that preserves all possible unifica-
tions.

In the above examples, the simplifying assumption
is added to the base theory by simply adding in addi-
tional axioms. However, there are common situations
in which the simplifying assumption is inconsistent with
the base theory, so that merely adding in the simplify-
ing assumption makes the theory inconsistent. In such
cases, adding a simplifying assumption to a base theory
is better viewed as a belief revision operation: the base
theory is revised to make sure that the simplifying as-
sumption holds, while ensuring that the revised theory
is consistent. The revised theory is then abstracted.

Example 4 Most approximations in engineering in-
volve simplifying assumptions that contradict the base
theory. For example, consider two railroad cars con-
nected by a linkage. Say that the base theory describing
the linkage models it as a spring with a very large spring
constant (i.e., as a very stiff spring). It is common to
assume that such linkages are rigid, i.e., the spring con-
stant is infinite. Clearly, the simplifying assumption that
the spring constant is infinite is inconsistent with the
base theory; the base theory must be revised by retract-
ing the axiom specifying the large spring constant of the
linkage, and then adding in the simplifying assumption.
The revised theory can now be abstracted by combining
the two railroad cars into a single, composite rigid body.
The fitting approximations in [Weld, 1992] are all of this
form. o

Viewing abstractions as a combination of a set of
simplifying assumptions and an MI abstraction has two
key advantages. First, the simplifying assumptions un-
derlying the abstraction are made explicit, and there-
fore can be used in reasoning, as has been done in
compositional modeling [Falkenhainer and Forbus, 1991;
Iwasaki and Levy, 1994] and diagnosis [Davis, 1984;
Nayak, 1994b; Struss, 1992]. Second, we can show that
an abstraction will yield false proofs only if the simpli-
fying assumptions are inappropriate. In particular, a
simple corollary of Proposition 1 is that if an abstrac-
tion of a consistent base theory is inconsistent then it
is because the simplifying assumptions are inconsistent
with the base theory. This enables us to evaluate the
utility of an abstraction depending on the reliability of
the simplifying assumption.

3 Abstracting first-order theories

The semantic account of abstractions developed thus far
applies to arbitrary languages with a declarative seman-
tics, and to arbitrary model level abstraction mappings
7r. In this section we restrict our attention to first-
order languages, and show how abstraction mappings
can be specified using interpretation mappings [Ender-
ton, 1972). We use this development to precisely charac-
terize the strongest Ml abstraction of a base theory. We

show that if the base theory is axiomatisabie, then the
strongeat MI abatraction is also axiomatizable, though
not always finitely axiomatizable.

3.1 Interpretation mappings

Let Tiyys be & bese theory in language Lpq,,, and let
Lape be an abstract language. A first-order interpreta-
tion consista of a universe of discourse and denotations of
the object, function, and relation constants within this
universe. Hence, apecifying the abstraction mapping =
amounts to specifying how the abatract universe and de-
notations for the abstract object, function, and relation
constants are constructed using a base model. Thia is
done using interpretation mappings. A key notion used
in specifying interpretation mappings ia the relation de-
fined by a well-formed formula (wff) in an interpretation.

Definition 3 (Defined relation) Let ¢ be a uff in
language L with n free vartables vy, vy,..., vy, and let
I be an interpretation of L. The n-ory relation defined
by ¢ in I is:

{{a1.02,...yan}: T |= glarfvr, ... an/on]}

i.c., the tuple {61,03,...,0n) it in the defined relation iff
I is a model of ¢ with a variable assignment that assigns
aibov;, 1<i1<n.

The above notion is used in specifying interpretation
mappings by finding appropriate formulas in Ly,,, that
define, in & base model, the abstract universe, and de-
potations for the abatrart object, function, and relation
constants. More formally, an interpretation mapping 7
that maps a mode} My,,s Of Tiase to an interpretation
7( Mygas) of Lopa consists of the following (if ¢ has free
variables vy, ..., vy, and 21,.. ., T, are any variables, we
denote by ${z1,...,zn) the result of replacing all free
occurrences of v; by 2, 1 <1< n,in ¢):

1. a wif my with one free variable, v;, that defines
the abstract universe. The idea is that, given any
model, Myaiq, of Those, v defines the universe of
7{ Mya1a) to be the set defined by my in Myg,s.

2. for each n-ary relation R in La,, a wif mgp with n
free variables, v1,..., vn, that defines R. The idea
ia that, given a model My.,, of Thase, wg defines
an n-ary relation in My,,,. The denotation of & in
7{ Myasa) i3 this relation restricted to the universe
of w( Mpase)-

In addition, similar wifs are used to specify the deno-
tations of abstract object and function constants (see
[Enderton, 1072] for details).

Example § Consider Example 1 again. The abatrac-
tion mapping # preserves the universe of discourse.
Hence, #y ia the wif (v; = wv{), which is satin-
fied by all elements. The extension of the predi-
cate ForeignCor is the union of the extensions of
JapaneseCar and EuropeanCar. Hence TrorgignCar 18
the wif JapaneseCar(v,) v EuropeanCar(v;). The ex-
tension of the other predicates (except JapaneseCar and
FuropeanCar, which are not in the abstract language)
is unchanged. Hence, mz,, is just the wit Car(v;), ete.
m]
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3.2 Strongest MI abstraction

Given the above apecification of abstraction mappings
as interpretation mappings, we now give a precige char-
acterigation of the strongest MI abstraction of a base
theory (defined in Definition 2). The characterization of
this theory is based on a natural mapping f, that maps
an arbittary wif ¢ in Lay, to & wif fr(#) in Laasy.? In-
tuitively, in a sense to be made precise, fy($) says the
aame thing as ¢.

For any wif ¢ in Las,, fu{$) is defined recursively
as follows. If 4 is an atom P(zi,...,z,) that con-
tains no function or constant symbols, then fo(¢) is
tp(21,...,2s). When ¢ containa object or function
conatants, the trapslation is more complex and we refer
the reader to [Enderton, 1972) for details. Non-atomic
sentences are mapped in the natural way: fo(-¢) =
fe(@), feld A Y} = fu(d) A fx(¥). Finally, fw(va¢) =
Yezmy(z) = fe(#), ie., the translation of quantifiers is
restricted to just the elements that satisfy my.

Example 8 Continuing Example 5, the translation of
the abstract sentencte Yz ForeignCar(z) in Vz(z
z) = [JapaneseCar(z) V EuropeanCar(z)). O

The following lemma, taken from [Enderton, 1972), is
the key property of f,. It formalizes the sense in which
¢ and f,(¢) say the same thing:

Lemma 1 Let My,,, be ony model of Thasy and o be o
sentence in Lgp,. Then

Myase = ft("') iff "(Mh") Ee

i'cu Mbnu ir ¢ model °f f,(ﬂ') lfﬂﬂd Oﬂ‘y ‘}w(Mbnu) ¥
a model of o

The above lemma associates with every sentence ¢ in
Lgg, a2 equivalent sentence fe{o) it Lyg,,. However,
not every sentence in Ly.,. has an equivalent sentence
in Lqp,. Thia in not surprising since, intuitively, Lz, 18 a
more abatract language and there is no reason to believe
that every base level sentence in Ly,., has an equivalent
sentence in Lgy,.

Theorem 1 Let Ty, be the strongest MI absiraction of
o base theory Tiy,., with respect o 7, gnd let T' be a
theory in Lgs, such that

T' = {U H Tbnu t= fy(ﬂ)}
Then Top, =T,
Proofi

el ¢ T & fxlo) by definition of T*
<> For all models Myuse of Thasa
Myaie = fsr{o')
& For all models M,,.,, of Thase
(Myass) 2 o by Lemma 1
& o€ Ty, by Definition 2
]
*Note that while the model mapping x goes from the base

theory to the sbatract theory, the sentence mapping fv goes
the other way.
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Tenenberg's construction of the abstract theory for
predicate abstractions in a special case of the above con-
struction. An immediate corollary of the above theorem
ie that if Tya,e ia axiomatisable, #0 is its strongest MI
abstraction:?

Carollary 1 Let T,y, be the strongest MI abstraction of
Toass: If Thase 3¢ assomatizable, then 2o is Ty, .

Proof: A theory is axiomatisable iff it is effectively enu-
merable [Enderton, 1972]. Since Thess is axiomatizable,
we can enumerate the theorems of Ty;,,. Whenever we
encounter a theorem of the form fr{¢), where o is a sen-
tence of Ly, we add o a8 & theorem of T,3,- Theorem 1
ensures that this will enumerate all the thecrems of Ty,
and hence T, is axiomatisable. O

This corollary raises the following natural question. If
Thare 18 finitely axiomatizable, i.e., Th,,, is the deductive
closure of & finite knowledge base, is T, alao finitely
axiomatizable?

Theorem 2 There erist finitely ariomatizable Ty,..
such that ite strongest MI cbatraction is not finilely az-
somatizable.

Proof sketeh: The proof is based on showing that while
the theory of the structure (N, 0, 5, <, >), where N is
the set of natural pumbers, &, <, and > have their ordi-
nary meaning, and S is the successor function, is finitely
axiomatizabie, the theory resulting from the predicate
abstraction of < and >, i.e., #, ia pot. O

Note that, in particular, the counterexample in the
proof disproves Tenenberg's conjecture that the pred-
icate abstraction of a finitely axiomatizable theory is
finitely axiomatizable. A major consequence of Theo-
rem 2 is that, in practice, it is not always possible to
construct the strongest MI abstraction, since its axiom-
atisation may be infinite. Hence, we must often settle
for axiomatizations that yield weaker M1 abstractions.

4 Automatically constructing
abstractions

While model-level mappings and simplifying assump-
tions are usually very natural and easy to specify, it is
not always easy to construct the abstract theories that
best implement them. In this section we describe a pro-
cedure that automatically creates the strongest MI ab-
straction for a given model-level mapping. This proce-
dure can be complemented with techniques from [Eiter
and Gottlob, 1992] when incorporating the simplifying
assumptions requires belief revision. We consider the
case where L abs results from adding a set of new predi-
cates and dropping some old predicates from L base, i.e.,
the object and function constants are unchanged. This
covers various common model level abstractions includ-
ing dropping predicate arguments, taking the union or
intersection of a set of predicates, and selecting a subset

°A theory T is axiomatizable iff there is a, possibly infi-
nite, decidable set & whose deductive closure is T.



procedure Construct-abstraction(Tig,., N, P)
Let T be the set Thape UA
Let Top, be the aet of clavses in Ty,
that contain no predicates in P
Use any complete resolution strategy on T
to generate new clauses by resolving
only on literals of predicates in 7
Whenever & generated clause does not contain
a predicate in P, add the clanse to Ty,
return Top,
end Construct-abstraction

Figure 1: Conatructing MI abstractiona of a base theory,
Thase; A 18 the et of clauses defining the new predicates;
‘P is the set of predicates to be dropped.

of & predicate's extension. For simplicity, we also as-
sume that the abstract language does not include equal-
ity. This procedure iz meant for ofi-line construction of
abstractions that are Jater used at run-time.

Assume that the base theory, Tya,., 18 specified as a
set of clauses. Let the new predicates in L_,, be de-
fined by the clauses in the set A: if P is a new n-ary
predicate, A contains the clauses resulting from the sen-
tence Vuy, ..., tnP(v1,..., 85} & 7mp(v1,...,05). Let P
be the set of predicates of Lya,, that are dropped in Lgp,.
Figure 1 shows the procedure to construct the resulting
strongest MI abstraction. The idea is to first add in the
clauses in N to Tyu,,, and then to use any refutation
complete resolution strategy, e.g., linear resolution, to
generate ciauses. Only resolutionse on the predicates in
P are considered. A generated clause that contains none
of the predicates in P is added to Tgy,. The following
theorem tells us that this procedure is correct:

Theorem 3 Procedure Construct-abetraction con-
structs the strongest MT abstraction of Ty, ,.

Proof sketch: Since the ¢lauses in T;, are a conse-
quence of Tya.e U N, it 18 casy to show that Ty, is an
MI abstraction of Thase- To show that it is the strongest
MI-abstraction of Thaee, we define the class of Herbrand.
like models, and show that every Herbrand-like model
of T,p, 18 an image of a model of Tha,,. Then, we show
that every model of 73,, is elementarily equivalent to
& Herbrand-like model. (Two models are elementarily
equivalent iff the same set of first-order sentences are
true in both of them.) O

Clearly, procedure Construct-abstraction will not
terminate if an infinite number of resolutions are poasi-
ble, leading to an infinite Typ,. In such cases, the pro-
cedure can be terminated at any time to yield a weaker
MI abstraction.

Exemple 7 Censider constructing the strongest MI ab-
atraction of the axioms in (1) and (3). The axiom defin-
ing ForeignCar ia

ForeignCar(z) & JapaneseCar(z) v EuropeanCar(z)
Adding this axiom to (1) and (3) and resolving on predi-
cates JapaneseCar and FuropeanCar yields the axioms
in (2) and (5). Thia is the atrongest MI abstraction, O

We conclude this section with an application of the
procedure in an analysia of ABSTRIPS. This analysia
shows how the aimplifying assumption and the model-
level mappings justify the commeonly used syntactic map-
ping, implementing the abatraction.

Example 8 ABSTRIPS scives planning problems by
first solving abstract problems using abstract opera-
tors, and then uaing the absiract solution to guide the
aearch in the base level problem. FEach predicate is
assigned & criticalily level. Operators are abstracted
at level i by dropping preconditions whose criticality
is less than i. We now discuss the precise seman-
tic stepa involved in constructing this abstraction. We
use Green’s formulation of planning problema [Green,
1969): actions are represented by axioms of the form
qi{s) A ... A ga{s) = r{do{A,a)), where g; are literals
representing preconditions and r the postcondition of op-
erator A, and do{ A, #) ia the atate resulting from execut-
ing A ir state a.

Let gi(s) A ga{a) A p(s) = r(do(A, #)) be an opera-
tor, and suppose that the criticality of p is lesa than the
current abstraction level. Intuitively, this means that p
can be achieved in any state without affecting the truth
values of predicates at a higher level of criticality. We
formalize this simplifying assumption using the axiom

Ysda(p(do{a, s)) A ¢) (7

where ¢ denotes the frame axioma expressing the fact
that the action a does not affect the truth value of any
other predicate, e.g., q1{#) & q1(do(a, 8}).

Next, we add in this simplifying assumption {o the
base theory. One of the clauses resulting from the sim-
plifying assumption is p{do{f(4), £)), where f in a skolem
function. Note that, because of the frame axioms, the
only possible difference between a state s and a state
do{f(#), 8) ie ip the truth value of p.

Now we use procedure Construct-abatraction to
drop the predicate p, by resolving on g in all possible
waya. For example, resolving the simplifying assump-
tion with the above operator leads to the operator

g1(do(f(0), 8)) A qa(do(f(s), 8)) => r(do(4, do(f(s), s)))

Since now the language does not contain the predicate
p, it follows that the same set of facts are true at the
states s and do{f(2), #), i.e., they are congruent. Hence,
the simplifying assumption underlying a domain abstrac-
tion which makes s and do(f(s), #) equivalent is satis-
fied (see Example 3). Hence, we can replace all oc-
currences of do( f(s),s) with s resulting in the axiom
qi(#) A ga(2) = r(do{A, 5}). This is exactly the abastract
operator used by ABSTRIPS. O

5 Discussion

Giunchiglia and Walsh [1992] characterize abstractions
as syntactic mappings between theories. While it is true
that ultimately abstractions are syntactic mappings be-
tween theories, they are an overgeneral characterization
of abstractions. Hence, this view of abstractions pro-
vides little constraint on what abatractions actually are.
On the other hand, our theory provides & more meaning-
ful characterization of abstractions. 1t captures the fact
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that an abstraction is a model level mapping of the origi-
nal theory in conjunction with a simplifying assumption.
This difference is made clearer by the following compar-
ison of TD abstractions to Ml abstractions.

Since for every theorem of an MI abstraction, f{z}
is in the base theory, all Ml abstractions are TD ab-
stractions. However, M| abstractions are a strict subset
of TD abstractions. To see this, consider a base lan-
guage with propositions p and g, and an abstract lan-
guage with proposition r. Consider a syntactic mapping
that maps p to r and q to —r, the base theories By = {p}
and B, = {g}, and the abstract theories 4; = {r} and

= {-+}. Clearly, A; and A, are TD abstractions of
B1 and By, respectively. However, 4, U Az is inconsis-
tent, while B; U B; is not. Hence, it follows that this
TD abstraction is not compositional, and hence not an
MI abstraction.

It is worth noting that the strongest Ml abstraction
of T base is not, in general, a TC abstraction. It is TC
abstraction only if there is also an abstraction mapping
p in the opposite direction, e.g., the mappings between
polar coordinates and rectilinear coordinates. In this
latter case, the base and abstract theories are equivalent,
and there is really no model level abstraction going on.
However, a switch from one theory to another may still
be motivated by computational considerations.

Levy [19%4] has outlined another method for con-
structing Ml abstractions. His method is based on iden-
tifying sentences in T base that are independent of the
abstraction, and hence can be syntactically abstracted.
Intuitively, sentences of the form fa{e), or sentences that
entail sentences of the form fy ()., are independent, and
such sentences can be abstracted to a. Identifying inde-
pendent sentences can often be done easily, resulting in
an efficient algorithm for constructing abstract theories.

Our theory of abstractions raises several directions for
future work. First, it raises the question of finding re-
stricted, but useful, settings within which the strongest
MI abstraction is finitely axiomatizable and can be con-
structed efficiently. When the strongest Ml abstrac-
tion cannot be constructed efficiently, an important is-
sue is finding methods for constructing weaker, though
still useful, Ml abstractions. Second, our theory of ab-
stractions is only a logical account of the process, and
does not address the issue of the computational benefits
of using abstractions. A better understanding of when
model level abstractions lead to computational savings is
needed. Third, we are developing probabilistic methods
for reasoning about how likely it is that a simplifying
assumption holds.
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