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Abst rac t 

In this paper we present a semantic theory of 
abstractions based on viewing abstractions as 
model level mappings. This theory captures 
important aspects of abstractions not captured 
in the syntactic theory of abstractions pre­
sented by Giunchiglia and Walsh [1992]. In­
stead of viewing abstractions as syntactic map­
pings, we view abstraction as a two step pro­
cess: first, the intended domain model is ab-
stracted and then a set of (abstract) formulas 
is constructed to capture the abstracted do­
main model. Viewing and justifying abstrac­
tions as model level mappings is both natural 
and insightful. This basic theory yields abstrac­
tions that are weaker than the base theory. We 
show that abstractions that are stronger than 
the base theory are model level mappings under 
certain simplifying assumptions. We provide a 
precise characterization of the abstract theory 
that exactly implements an intended abstrac­
tion, and show that this theory, while being 
axiomatizable, is not always finitely axiomati-
zable. We present an algorithm that automat­
ically constructs the strongest abstract theory 
that implements the intended abstraction. 

1 In t roduc t ion 
Abstractions and approximations are pervasive in hu­
man common-sense reasoning and problem-solving. Ab-
stractions have been used in a variety of problem-
solving settings including planning [Sacerdoti, 1974], 
theorem proving [Plaisted, 1981], diagnosis [Davis, 1984; 
Genesereth, 1984; Struss, 1992], compositional model­
ing [Falkenhainer and Forbus, 1991], constraint satisfac­
tion [Ellman, 1993], and automatic programming [Lowry, 
1989]. Until recently there has been no unifying account 
of these disparate forms of abstractions. However, in the 
last few years, there has been an explosion of interest 
in understanding the underlying principles of abstrac­
tions and approximations [Ellman, 1992; Lowry, 1992; 
van Baalen, 1994]. 

A comprehensive theory of the principles underlying 
abstractions is useful for a number of reasons. Such a 

theory can provide the means for clearly understanding 
the different types of abstractions and approximations 
used in past work. It can provide semantic and com­
putational justifications for using abstractions and ap­
proximations. Furthermore, such justifications can be 
used to automatically construct useful abstractions and 
approximations. Finally, an understanding of different 
abstractions within a common framework can allow the 
transfer of techniques between disparate domains. 

Recently, Giunchiglia and Walsh have presented an el­
egant theory of abstractions that unifies past work and 
provides a vocabulary to discuss different types of ab­
stractions [Giunchiglia and Walsh, 1992]. Their the­
ory characterizes abstractions as syntactic mappings be­
tween formulas of formal systems. They classify abstrac­
tions according to whether the set of theorems of the 
abstract theory are a subset, superset, or equal to the 
set of theorems of the base theory (TD, TI, and TC 
abstractions, respectively). Their theory is very good 
at capturing an important aspect of many abstractions, 
viz., many abstractions result directly from syntactically 
manipulating formulas. Moreover, problem solvers ulti­
mately reason by applying inference rules to formulas, 
and hence understanding the properties of abstractions 
as mappings between formulas is essential. 

However, viewing abstractions as syntactic mappings 
captures only one aspect of abstractions. Consider the 
following example. 

Example 1 Predicate abstractions [Plaisted, 1981; 
Tenenberg, 1990] are a class of abstractions based on 
the observation that the distinctions between a set of 
predicates P1,...,Pn in a theory are often irrelevant. 
An abstract theory can be constructed by replacing all 
occurrences of the Pi's in the base theory by a single ab­
stract predicate P. For example, consider the following 
base theory: 

JapaneseCar(x) => Car(x) 
EuropeanCar(x) => Car(x) (1) 
Toyota(x) => JapaneseCar(x) 
BMW(x) => EuropeanCar(x) 

The distinction between JapaneseCar and 
EuropeanCar is often irrelevant (e.g., when trying to 
answer a query Car(A)), and therefore these predicates 
can be replaced by ForeignCar, yielding the following 
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simpler abstract theory: 
ForeignCar(x) =>■ Car(x) 
Toyota(x) => ForeignCar(x) (2) 
BMW(x) =» ForeignCar(x) 

However, suppose the base theory also includes the fol­
lowing: 

EuropeanCar(x) => Fast(x) (3) 
JapaneseCar(x) => Reliable(x) 

Applying the same mapping to axioms 3 would result in 
the following: 

ForeignCar(x) => Fast(x) (4) 
ForeignCar(x) => Reliable(x) (4) 

However, adding these axioms to the axioms in (2) leads 
to false proofs [Plaisted, 1981], which may be undesir­
able. For example, one can infer that Toyotas are fast, 
and BMWs are reliable—inferences not sanctioned by 
the base theory. 

The syntactic theory of abstractions does distinguish 
between abstractions that yield false proofs (TI) and 
those that don't (TD). However, it gives no guidance in 
comparing TD abstractions to determine which is more 
natural. For example, the axioms in (2) and (4), when 
used independently, will not yield false proofs, but the 
former is more natural, considering the intended inter­
pretation of ForeignCar.1 Nor does the syntactic the­
ory tell us how to construct the strongest such abstrac­
tion. For example, we will see that adding the axiom 

ForeignCar(x) => (Fast{x) V Reliable(x)) (5) 
to (2) yields the strongest theory that removes predicates 
JapaneseCar and EuropeanCar and still does not ad­
mit false proofs. D 

The fundamental shortcoming of the syntactic theory 
is that while it captures the final result of an abstrac­
tion, it does not capture the underlying justification that 
leads to the abstraction. In this paper we present a se­
mantic theory of abstractions that addresses this short­
coming. Our theory is based on the idea that knowledge 
representation involves using formulas to capture an in­
tended domain model. From this perspective, we argue 
that an abstraction should be performed in two steps: 
first, the intended domain model is abstracted and then 
a set of (abstract) formulas is constructed to capture 
the abstracted domain model. Hence, we argue that 
the decision of what to abstract is made at the model 
level (using knowledge about relevant aspects of the do­
main), with the syntactic transformation being justified 
by this decision. In our example, the intended abstrac­
tion to the domain model is to replace the relations de­
noted by JapaneseCar and EuropeanCar by one rela­
tion representing their union, denoted by ForeignCar. 
As mentioned earlier, the strongest theory that imple­
ments this intended abstraction consists of the axioms 
in (2) and (5). 

lNote that, since the axioms in (1) and (3) are mutually 
disjoint, the preorder C defined in [Giunchiglia and Walsh, 
1992] provides no help in selecting between the two options. 

We introduce a class of model increasing (MI) abstrac­
tions, a strict subset of TD abstractions. Like TD ab-
stractions, MI abstractions yield no false proofs. How­
ever, they have additional natural properties such as 
compositionality. We show that the abstract theory that 
precisely implements the intended model level abstrac­
tion, is exactly the strongest MI abstraction of a base 
theory. We show that if the base theory is axiomatizable, 
then so is its strongest MI abstraction. We present a pro-
cedure to automatically construct the strongest MI ab-
straction. Our work generalizes Tenenberg's treatment 
of predicate abstractions [Tenenberg, 1990], and we dis­
prove his conjecture that the predicate abstraction of a 
finite theory is always finitely axiomatizable. 

Abstractions that admit false proofs are commonly 
used to speed up problem solving by guiding search, 
e.g., ABSTRIPS [Sacerdoti, 1974]. We show that all 
such abstractions can be viewed as MI abstractions in 
conjunction with a set of simplifying assumptions. For 
example, in ABSTRIPS, we first make the simplifying 
assumption that a predicate of lower criticality can al-
ways be achieved without affecting predicates of higher 
criticality, and then we construct an MI abstraction by 
dropping the appropriate preconditions. This formaliza­
tion is insightful because it shows that an abstraction 
will yield false proofs only when the simplifying assump­
tion is violated. This enables us to evaluate the utility 
of an abstraction depending on the reliability of the sim­
plifying assumption. 

2 Abstract ions as model mappings 
Our theory of abstractions applies to any language with 
a declarative semantics, e.g., propositional logic, con­
straint languages, first-order logic, modal logic. The 
declarative semantics of such languages is provided by 
interpretations of the language and the the notion of 
satisfaction. An interpretation, /, is a model of a set of 
sentences, E, (denoted / I= E) if and only if / satisfies 
each sentence in the set. A set of sentences T1 entails 
another set of sentences T2 (denoted T1 I= T2) if and 
only if every model of T1 is a model of T2. 

2.1 Model increasing abstractions 
Let Tbase and Tabs, be sets of sentences in languages Lbase 
and Labt > respectively. What does it mean for Tabs to be 
an abstraction of T base? If Lbase and Labs are the same 
language, natural definitions are possible (e.g., Tbase |= 
Tabs is one such option). However, if Lbata and Labs 
ate different, such a direct comparison is not possible 
since L base and Labs have no common interpretations. A 
comparison is possible only if there is a way of translating 
between the interpretations of the two languages. Such 
a translation can be specified by an abstraction mapping 

(Section 3.1 shows how to formally specify n): 

IT : Interpretations(Lba$e) -> Interpretations Labs) (6) 

The idea is that TT is a model level specification of how 
the interpretations of L base are to be abstracted to in­
terpretations of Labs • Recall that we view abstractions 
as consisting of two steps: first, the intended domain 
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to use an MI abstraction of the base theory, under the 
simplifying assumption that different literals in a clause 
share no common variables, e.g., a clause P(x) V Q(x) 
is revised to the stronger clause P(y) V Q(z). An MI 
abstraction of the revised theory is constructed using a 
ground abstraction that preserves all possible unifica­
tions. 

In the above examples, the simplifying assumption 
is added to the base theory by simply adding in addi­
tional axioms. However, there are common situations 
in which the simplifying assumption is inconsistent with 
the base theory, so that merely adding in the simplify­
ing assumption makes the theory inconsistent. In such 
cases, adding a simplifying assumption to a base theory 
is better viewed as a belief revision operation: the base 
theory is revised to make sure that the simplifying as­
sumption holds, while ensuring that the revised theory 
is consistent. The revised theory is then abstracted. 
Example 4 Most approximations in engineering in­
volve simplifying assumptions that contradict the base 
theory. For example, consider two railroad cars con­
nected by a linkage. Say that the base theory describing 
the linkage models it as a spring with a very large spring 
constant (i.e., as a very stiff spring). It is common to 
assume that such linkages are rigid, i.e., the spring con­
stant is infinite. Clearly, the simplifying assumption that 
the spring constant is infinite is inconsistent with the 
base theory; the base theory must be revised by retract­
ing the axiom specifying the large spring constant of the 
linkage, and then adding in the simplifying assumption. 
The revised theory can now be abstracted by combining 
the two railroad cars into a single, composite rigid body. 
The fitting approximations in [Weld, 1992] are all of this 
form. □ 

Viewing abstractions as a combination of a set of 
simplifying assumptions and an MI abstraction has two 
key advantages. First, the simplifying assumptions un­
derlying the abstraction are made explicit, and there­
fore can be used in reasoning, as has been done in 
compositional modeling [Falkenhainer and Forbus, 1991; 
Iwasaki and Levy, 1994] and diagnosis [Davis, 1984; 
Nayak, 1994b; Struss, 1992]. Second, we can show that 
an abstraction will yield false proofs only if the simpli­
fying assumptions are inappropriate. In particular, a 
simple corollary of Proposition 1 is that if an abstrac­
tion of a consistent base theory is inconsistent then it 
is because the simplifying assumptions are inconsistent 
with the base theory. This enables us to evaluate the 
utility of an abstraction depending on the reliability of 
the simplifying assumption. 

3 Abs t rac t ing first-order theories 
The semantic account of abstractions developed thus far 
applies to arbitrary languages with a declarative seman­
tics, and to arbitrary model level abstraction mappings 
7r. In this section we restrict our attention to first-
order languages, and show how abstraction mappings 
can be specified using interpretation mappings [Ender-
ton, 1972]. We use this development to precisely charac­
terize the strongest MI abstraction of a base theory. We 

NAYAK AND LEVY 199 



4 Au tomat i ca l l y const ruct ing 
abstractions 

While model-level mappings and simpl i fy ing assump­
tions are usually very natural and easy to specify, it is 
not always easy to construct the abstract theories that 
best implement them. In this section we describe a pro­
cedure that automatical ly creates the strongest MI ab­
straction for a given model-level mapping. This proce­
dure can be complemented w i th techniques f rom [Eiter 
and Got t lob, 1992] when incorporating the simpl i fy ing 
assumptions requires belief revision. We consider the 
case where L abs results f rom adding a set of new predi­
cates and dropping some old predicates f rom L base, i.e., 
the object and function constants are unchanged. This 
covers various common model level abstractions includ­
ing dropping predicate arguments, taking the union or 
intersection of a set of predicates, and selecting a subset 

3 A theory T is axiomatizable iff there is a, possibly infi­
nite, decidable set whose deductive closure is T. 
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that an abstraction is a model level mapping of the origi­
nal theory in conjunction with a simplifying assumption. 
This difference is made clearer by the following compar­
ison of TD abstractions to MI abstractions. 

Since for every theorem of an MI abstraction, , 
is in the base theory, all MI abstractions are TD ab­
stractions. However, MI abstractions are a strict subset 
of TD abstractions. To see this, consider a base lan­
guage with propositions p and q, and an abstract lan­
guage with proposition r. Consider a syntactic mapping 
that maps p to r and q to the base theories 
and B2 = and the abstract theories and 

. Clearly, A1 and A2 are TD abstractions of 
B1 and B2, respectively. However, is inconsis­
tent, while is not. Hence, it follows that this 
TD abstraction is not compositional, and hence not an 
MI abstraction. 

It is worth noting that the strongest MI abstraction 
of T base is not, in general, a TC abstraction. It is TC 
abstraction only if there is also an abstraction mapping 
p in the opposite direction, e.g., the mappings between 
polar coordinates and rectilinear coordinates. In this 
latter case, the base and abstract theories are equivalent, 
and there is really no model level abstraction going on. 
However, a switch from one theory to another may still 
be motivated by computational considerations. 

Levy [1994] has outlined another method for con­
structing MI abstractions. His method is based on iden­
tifying sentences in T base that are independent of the 
abstraction, and hence can be syntactically abstracted. 
Intuitively, sentences of the form , or sentences that 
entail sentences of the form , are independent, and 
such sentences can be abstracted to a. Identifying inde­
pendent sentences can often be done easily, resulting in 
an efficient algorithm for constructing abstract theories. 

Our theory of abstractions raises several directions for 
future work. First, it raises the question of finding re­
stricted, but useful, settings within which the strongest 
MI abstraction is finitely axiomatizable and can be con­
structed efficiently. When the strongest MI abstrac­
tion cannot be constructed efficiently, an important is­
sue is finding methods for constructing weaker, though 
still useful, MI abstractions. Second, our theory of ab­
stractions is only a logical account of the process, and 
does not address the issue of the computational benefits 
of using abstractions. A better understanding of when 
model level abstractions lead to computational savings is 
needed. Third, we are developing probabilistic methods 
for reasoning about how likely it is that a simplifying 
assumption holds. 
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