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Abst rac t 
This paper rests on several contributions. First, 
we introduce the notion of a consequence, 
which is a boolean expression that character­
izes consistency-based diagnoses. Second, we 
introduce a basic algorithm for computing con­
sequences when the system description is struc­
tured using a causal network. We show that if 
the causal network has no undirected cycles, 
then a consequence has a linear size and can 
be computed in linear time. Finally, we show 
that diagnoses characterized by a consequence 
and meeting some preference criterion can be 
extracted from the consequence in time linear 
in its size. A dual set of results is provided for 
abductive diagnosis. 

1 I n t roduc t i on 
This paper presents an approach for computing diag­
noses [Reiter, 1987; de Kleer et a/., 1992] when the sys­
tem description is structured using a causal network — 
Figures 1 and 2 depict examples of structured system 
descriptions. 

The most common approach for computing diagnoses 
has been the use of Assumption-Based Truth Mainte­
nance Systems (ATMSs) [de Kleer, 1986; Reiter and de 
Kleer, 1987]. We will first explain the difficulties with 
such an approach and then describe the elements of our 
approach that address these difficulties. 

An ATMS assigns a "label" to each proposition. The 
label of proposition o characterizes all consistency-based 
diagnoses of the observation -o. Once the label of 
a proposition is computed, one can immediately check 
whether the proposition is logically true. Therefore, 
computing labels is no easier than deciding satisfiabil­
ity, which is one source of difficulty with this approach. 
What makes the ATMS approach especially difficult, 
however, is that labels can grow exponentially in size, 
even on very simple diagnostic problems. This difficulty 
has led to a body of research on "focusing" the ATMS, 
which attempts to control the size of ATMS labels. Fo­
cusing is based on the following intuition. The label of 
proposition o characterizes all diagnoses of observation 
-o. But one is rarely interested in all diagnoses, there­
fore, one rarely needs a "complete" label. Most often, 

one is interested in diagnoses that satisfy some prefer­
ence criterion (for example, most probable diagnoses). 
Therefore, one can use such a criterion to compute "fo­
cused" labels that are of reasonable size, yet are good 
enough to characterize the diagnoses of interest. 

Although a standard framework exists for computing 
ATMS labels [Forbus and de Kleer, 1993], no such frame-
work seems to exist for focusing. 

The approach we present in this paper is based on 
three main ideas: 

Characterizing diagnoses using consequences: 
We introduce the notion of a consequence for charac­
terizing all consistency-based diagnoses. The size of a 
consequence (which is a boolean expression) is always 
less than the size of a label. In fact, there are diagnostic 
problems that have exponential-size labels and linear-
size consequences. 

Utilizing system structure in computing conse­
quences: We introduce a basic algorithm for computing 
consequences, the complexity of which is parameterized 
by the topology of the system's causal structure. We 
show that for singly-connected structures (no undirected 
cycles), the consequence is always linear in size and can 
be computed in linear time. For some of these structures, 
a label can be exponential in size. 

A principled mechanism for focusing on pre­
ferred diagnoses: We show that if a consequence has 
a particular syntax (and-or tree where no symbols are 
shared between and-branches), then one can extract the 
diagnoses it characterizes and that meet a specific pref­
erence criterion in time linear in the size of the conse­
quence. Diagnoses with the highest order-of magnitude 
probability is an example of such a preference criterion. 

Therefore, we are providing a paradigm for diag­
nostic reasoning with causal structures, consequences, 
and preference criteria as the key components. By us-
ing this paradigm, one is guaranteed some complex­
ity results that are parameterized by the topology of 
the system's causal structure. As we shall see, this 
approach is based on the causal-network paradigm in 
the probabilistic and constraint satisfaction literatures 
[Dechter and Dechter, 1994; Geffner and Pearl, 1987; 
Dechter and Dechter, 1988]. In both cases, the system 
structure is the key aspect that decides the difficulty of a 
reasoning problem. This (conceptually meaningful) pa­
rameter is what diagnostic practitioners need to control 
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Figure 2: A structured system description (causal net­
work) of a digital circuit. 

in order to ensure an appropriate response time for their 
applications. The probabilistic literature contains many 
techniques for tweaking this parameter to ensure certain 
response times, most of which can be adopted by our 
proposed framework. 

2 Character iz ing Diagnoses 
In the diagnostic literature [de Kleer et a/., 1992], a 

system is typically characterized by a tuple i 
where is a database constructed from atomic propo­
sitions is a sentence constructed from P. 
The atoms in A are called assumables and those in P 
are called non-assumables. The intention is that the 
database describes the system behavior, the assumables 
represent the modes of system components and the sen­
tence represents the observed system behavior. 

A diagnosis is defined as a conjunction of literals that 
is consistent with and that includes one literal 
for each assumable. Therefore, a diagnosis is an assign­
ment of modes to components that is consistent with 
the system description and its observed behavior. In 

I An ultimate goal of diagnostic reasoning is to com­
pute the most preferred diagnoses (according to some 

I criterion) for a given system The approach 
we propose in this paper achieves this objective in two 
steps. First, we compute "the consequence" of observa-
tion , which is a boolean expression that characterizes 
all the diagnoses of Second, we extract the most pre-

I ferred diagnoses from the computed consequence. 
The consequence of an observation is defined formally 

below:1 

Definition 1 The consequence of observation , written 
I Cons(), is the logically strongest sentence constructed 

from atoms A such that 
In Figure 2, for example, the consequence of observa­
tion because it is the logically 
strongest sentence (constructed from assumables) that 
can be concluded from the given observation and system 
description. 

A consequence characterizes all diagnoses in the fol­
lowing way: 
Theorem 1 d is a diagnosis for system iff 

The consequence characterizes three diag­
noses: . Us­
ing ''the most probable diagnosis" as the preference crite­
rion, the most preferred diagnoses would be 
and We are assuming here that components 
are unlikely to break, they break independently and their 
probabilities of failures are equal. 

3 The Role of System St ruc ture 
We will refer to the triple as a system descrip­
tion and keep it implicit whenever possible. We will also 
assume that any satisfiable sentence constructed from 
assumables is consistent with database , This means 
that the system description does not fix the mode of any 
component. 

Given some observation and some preference crite­
rion, our ultimate goal is to compute all preferred diag­
noses of according to this criterion. We will do this 
in two steps. First, we will compute the consequence of 

which characterizes all its diagnoses. Second, we will 
extract from Cons \ the preferred diagnoses. The sec­
ond step will be addressed in Section 5. In this and the 
following section, we focus on the first step. 

We start with the following properties of conse­
quences: 

1We use a capital letter (such as Y) to denote an atomic 
proposition, a small letter (such as y) to denote a literal, and 
a boldface letter such as Y or y to denote a set of atomic 
propositions or a set of literals, respectively. 

2The consequence of a sentence is unique up to logical 
equivalence. 
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I 
Consider the system in Figure 2 for an example. The 
consequence of C is true, the consequence of D is true, 
but the consequence of 

If Property C5 were true, then computing conse­
quences would be very easy. To compute the conse­
quence of , we keep rewriting the expression Cons ) 
using until we reach a boolean expression that 
involves only the connectives and and consequences 
Cons(n)), where n is an observation that is local to an 
individual component. Such consequences, called local 
consequences, can be computed easily since they can be 
inferred from the component description. 

Property C5 does not hold, however, and this makes 
the computation of consequences more subtle. Prop­
erty C5 may hold in certain cases. When it does, we 
say that is "independent" of . For example, C and D 
are not independent in Figure 2 because Cons 

More generally: 

Definition 2 Let I, 3, and K be disjoint subsets of P. 
The sets I and 3 are conditionally independent given K 
precisely when 

for all conjunctive clauses and over I, J, and K, 
respectively.3 
When K is empty, we say that I and J are marginally 
independent. Note that Property C5 is a special case 
of Property C6 when K is empty since true is the only 
conjunctive clause over the empty set of atoms. 

i 

Therefore, the key to computing consequences is the 
ability to detect system independences, which would be 
used to invoke Property C6. As we shall see next, the 
causal structure of a system is a very rich source of sys­
tem independences. Explicating such a structure when 
describing systems, and detecting system independences 
from such a structure, is the topic of the next section. 

3.1 Structured System Descriptions 
When a system is described as in Figures 1 and 2, the 
result is called a structured system description. 

A structured system description has two components: 
A causal structure and a set of component descriptions. 
The causal structure depicts the interconnections be­
tween system components, and component descriptions 

3A conjunctive clause over atoms X is a conjunction of 
literals that includes one literal for each atom in X. 

describe the functionality of system components.4 For­
mally, a causal structure is a directed acyclic graph, the 
nodes of which are the non-assumables P. A compo­
nent description is a set of material implications. There 
is one component description (possibly empty) for each 
node in the causal structure. The component descrip­
tion associated with node N contains only two types of 
material implications: 
where (1) are constructed from the parents of 
N in the causal structure; (2) and are constructed 
from assumable atoms A; and must 
be inconsistent. These conditions hold iff a component 
description is local to a single component (1 and 2) and 
does not constrain the inputs of that component (3). 

We will use to denote a structured system 
description, where G is the causal structure, is the 
union of component descriptions, P are the atoms in G, 
and A are the atoms appearing in but not in G. 

3.2 System Independences from System 
Structure 

A most important property of a structured system de­
scription is that its topology explicates many system in­
dependences: 

Theorem 2 ([Darwiche, 1993]) be a 
structured system description and let I, J, and K be dis­
joint sets of atoms in G. If I and J are d-separated by K 
in G, then I and 3 are conditionally independent given 
K wrt to ( ,P,A). 

d-separation is a topological test that can be performed 
in polynomial time and is discussed in detail elsewhere 
[Pearl, 1988]. 

In Figure 2, a n d a r e not d-separated by the 
empty set, which means that and may not be 
marginally independent (this was confirmed in the pre­
vious section). But and are d-separated by 

, which means that they are conditionally indepen­
dent given 

This independence is useful for computing the conse­
quence of observation _ . ._ . We first use 

) 

Therefore, 
The technique of applying Property C3 to generate 

consequences that can be decomposed using Property C6 
is very powerful. In fact, the algorithm to be given in the 
following section for computing consequences is based on 
making (optimal) use of this technique. 

4 A structured system description is a special case of a 
symbolic causal network [Darwiche and Pearl, 1994]. 
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4 Compu t i ng Consequences 
Before we discuss the algorithm, we will consider a more 
elaborate example to provide more intuition on the com­
putational value of system independences. 

Consider Figure 3, an example from [Freitag and 
Friedrich, 1992], which depicts part of an audio switch­
ing matrix typically used in broadcasting stations for 
the flexible connection of studios, recording devices, etc. 
The given system consists of one input amplifier, 1000 
output amplifiers and 1000 switches. For the sake of sim­
plicity, an audio matrix is represented by and-gates and 
buffers which logically produce the same behavior. The 
following is observed about the system: the input sig­
nal is ON, the first and-gate gets an OFF signal and all 
other and-gates get ON signals. The output of buffer C5 
is OFF, while outputs of all other buffers are ON. We 
would like to compute the consequence of this system 
behavior, therefore, characterizing all diagnoses. 

As it turns out, diagnosing this system is easy because 
its causal structure (shown in Figure 3) explicates inde­
pendences that can be used to decompose the global con­
sequence into local consequences that can be evaluated 
locally. The systems independences are: 
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To compute , the algorithm applies Prop­
erty C3: 

where u is a conjunctive clause over U (the parents of 

To compute , the algorithm parti­
tions the observation into a number of observations 

each about the nodes connected to X through its 
parent U; see Figure 5. This allows the application of 
Property C6: 

which can also be justified using d-separation and The­
orem 2. A detailed derivation of this algorithm can be 
found in [Darwiche, 1992]. 

The complexity of the algorithm is similar to its prob­
abilistic counterpart: linear in the number of arcs but 
exponential in the number of parents per node. We can 
verify this by counting the number of conjoin and disjoin 
operations. 

5 Ex t rac t i ng Preferred Diagnoses 
The algorithm presented in the previous section com-
putes consequences that have the form of an and-or tree. 
If component descriptions do not share assumables, then 
no assumables will be shared by the branches of any 
and-node in the tree. In this section, we show that if a 
consequence satisfies the previous two properties, then 
one can extract from it the most preferred diagnosis in 
time linear in the size of the consequence, as long as the 
preference criterion meets some conditions. 

The preference criterion is specified by a triple 
is a set of costs, is some cost addi­

tion operation and is a cost total ordering.7 The cost 
function should be such that each literal or its negation 
has a zero cost and the cost of a diagnosis is obtained 
by adding the costs of its individual literals. An exam­
ple of such a preference criterion is 
where the cost of a literal is the order-of-magmtude of 
its probability.8 

Given a preference criterion and given an 
and-or tree r (with no assumables shared by branches of 
and-nodes), one can extract its most preferred diagnoses 

using the following recursive procedure:9 

is commutative, associative and has a zero element; 

the cost of a literal is 
its probability does not satisfy the above conditions since 

literals l! 
which have to 

be completed using zero cost literals. 
10 Properties of the cost function ensure that 

It is clear that the above procedure involves only a linear 
number of recursive calls, one for each node in the tree. 
What remains to be shown is some guarantee on the size 
of pd(Ti) during these recursive calls. As it turns out, 
each subtree on which a recursive call may apply repre­
sents the answer to a diagnostic problem that involves 
part of the observation o and some local observations 
involving a single component. In particular, each 

bitrary node in the network, Y is one of its children, U 
is one of its parents, and u is a conjunctive clause over 
these parents. 

We can summarize the guarantees for computing most-
preferred diagnoses as follows. First, computing the con­
sequence is linear in the number of nodes and exponential 
in the number of parents per node in a causal structure: 
The computed consequence has the same size. Second, 
extracting the most preferred diagnoses from the conse­
quence involves a number of minimization and conjunc­
tion operations that is linear in the size of the conse­
quence. Finally, each one of these operations is applied 
to a pair of sets, each containing the preferred diagnoses 
of an asymptotically simpler diagnostic problem. 

6 Dua l Results for Abduc t i on 
There is a dual to consequence calculus, called argument 
calculus, which associates arguments with sentences in­
stead of consequences. The role that arguments play 
in abductive reasoning is similar to the role that con­
sequences play in diagnostic reasoning. Following is 
the definition of an argument wrt a system description 

and observation 
Definition 3 The argument for written , is 
the logically weakest sentence a constructed from atoms 
A such that 
The duality between arguments and consequences is 
given below: 
Theorem 3 |. 
Intuitively, the most general argument supporting is 
that the most specific outcome of does not hold. 

Argument calculus can be viewed as a semantical 
ATMS since the prime implicants of constitute 
the ATMS label of . [Darwiche, 1993]. This result, to­
gether with Theorem 3, explains the influential role that 
ATMSs have been playing in diagnostic reasoning. 

The following properties hold for arguments [Dar­
wiche, 1993]: Arg(false)= false 

in Figure 1 for an example. The argument for A is false, 

assumables. 
Properties of the and-or tree ensure that = 
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the argument for D is false, but the argument for A V D 
is okX. 
Theorem 4 The sets I and J are independent given K 
(according to Definition 2) precisely when 

In Figure 1, {B,C, E] are independent of (d-separated 
from) {A,D}. Thus, 

Given a system description (A, P, A) and an observa­
tion o), let us define an abductive diagnosis as a diagnosis 
a that (together with the system description) logically 
entails the observation, Then: 
Theorem 5 d is an abductwe diagnosis of system 

That is, the argument for observation 0 characterizes all 
its abductive diagnoses. Therefore, Theorem 3 is the 
basis for a dual set of results for computing abductive 
diagnoses. 

7 Conclusion and Related Work 
We have presented an approach for computing the most 
preferred diagnoses. We formally defined the class of 
system descriptions and the class of preference criteria to 
which the approach is applicable. We also characterized 
the computational guarantees it offers, which we believe 
are among the sharpest guarantees provided so far. 

What is most important about our approach is that 
it ties the computational complexity of diagnostic rea­
soning to a very meaningful parameter: the topology of 
a system structure. Thus, it provides diagnostic practi­
tioners with more flexibility in engineering the response 
time of their applications. This emphasis on structure 
has been the central theme in probabilistic reasoning 
lately [Pearl, 1988]. There have been some several at­
tempts to import this theme into model-based diagno­
sis [Dechter and Dechter, 1994; Geffner and Pearl, 1987; 
Dechter and Dechter, 1988]. A number of structure-
based algorithms have been provided for computing the 
most likely diagnoses, which seem to have similar compu­
tational complexity and appeal to the same underlying 
principles. Previous algorithms, however, have rested 
on the language of constraints among multivalued vari­
ables. A major contribution of this paper is (the sym­
bolic) consequence calculus, which allows computation 
directly on boolean syntax. This not only simplifies 

12A disjunctive clause over atoms X is a disjunction of 
literals that includes one literal for each atom in X. 

13 An abductive diagnosis of observation is also called an 
explanation of 

structured-based algorithms significantly, but also pro­
vides a method for humans to compute diagnoses of non-
trivial problems (as illustrated in Section 4). 

Another important feature of the presented approach 
is the very simple and general mechanism for focusing 
on preferred diagnoses, which comes with useful guaran­
tees. We are unaware of similar guarantees on the com­
putational complexity of focusing using a mechanism as 
general as the one we have proposed. 
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