
Deadline Compliance, Predictability, and On-line Optimization in 
Real-Time Problem Solving 

Babak Hamidzadeh 
(hamidzad@cs.ust.hk) 

Department of Computer Science 
University of Science & Technology 

Clear Water Bay, Kowloon, Hong Kong 

Shashi Shekhar 
(shekhar@cs.umn.edu) 

Department of Computer Science 
University of Minnesota 
Minneapolis, MN 55455 

Abstract 
Real-time algorithms need to address the time constraints 
(e.g. deadlines) imposed by applications like process con­
trol and robot navigation. Furthermore, dependable real-
time algorithms need to be predictable about their ability 
to meet the time constraints of given tasks. A real-time 
algorithm is predictable, if it can decide the feasibility of 
meeting time constraints of a given task or an arbitrary 
task from a task set well ahead of the deadline. Lastly, a 
real-time algorithm should exhibit progressively optimiz­
ing behavior (i.e. the quality of the solution produced 
should improve as time constraints are relaxed). We pro­
pose a new algorithm, SARTS, that is based on a novel 
on-line technique to choose the proper values of parame­
ters which control the time allocated to planning based on 
the time constraints. SARTS also provides criteria to pre­
dict its ability to meet the time constraints of a given task. 
The paper provides theoretical and experimental charac­
terization of SARTS as a dependable real-time algorithm. 

1. Introduction 
Real-time systems are increasingly being used in 

important applications such as avionics, process control, 
robot and vision systems, and command and control. 
These applications are characterized by attributes, such as 
strict time constraints posed as deadlines on the time by 
which the system is expected to produce a solution to a 
given problem, or the time by which the system is 
expected to predict deadline violation, in order to avoid 
the catastrophic consequences of violating deadlines. 
Another attribute of most of the above applications is that 
they require dynamic problem solving due to the lack of 
complete a priori information at compile time. Many real-
time computing problems such as task scheduling on uni-
and multi-processor architectures [1] are hard optimiza­
tion problems for which finding solutions are computa­
tionally prohibitive, particularly if such problem solving is 
to take place on-line. Thus, dynamic problem solving in 
real-time is faced with the tradeoff between sub-optimal 
solutions and the time allocated to find such solutions. 
Techniques addressing dynamic problem solving in real-
time are often required to progressively optimize rather 
than to optimize, namely they are expected to find the best 
answer within the allotted time, and improve upon it if 
additional time is allocated. 

Many combinatorial optimization problems, includ­
ing those in real-time computing, can be formulated as the 
search for an answer in the space of all partial and com­
plete solutions, such that the answer minimizes (or maxi­

mizes) an objective function [2,3]. Most search-theoretic 
approaches to combinatorial optimization problems have 
addressed only the static version of the problem[3]. There 
has been a recent rise in research on search techniques for 
dynamic (on-line) optimization [4,5]. The problem with 
most of the dynamic optimization techniques is that they 
take an ad-hoc approach to handling the time allocated to 
optimization. In dynamic real-time computing, control­
ling the time to find a solution is as important as the time 
it takes to execute that solution. The total response time 
of a system to a problem instance, in such domains, is the 
sum of the time to search for the solution, and the time to 
execute that solution. Another major drawback of the 
existing algorithms is that presently they do not provide 
guarantees on meeting deadlines, as shown by the experi­
mental analysis in[6]. Such algorithms have not provided 
tests to predict the possibility of missing a given deadline. 
Furthermore, these algorithms do not provide a mecha­
nism to monitor the progress of the algorithm in meeting a 
deadline and to signal an alarm as soon as it is discovered 
that the deadline will not be met. Such mechanism is very 
useful in many applications where failure to meet a dead­
line is catastrophic. In such applications deadline viola­
tion should be signaled as soon as possible, in order for 
some contingency actions to be undertaken to prevent dis­
aster. One of the main reasons for these limitations is that 
the existing approaches [4,7] do not adequately address 
the allocation of time to plan in context of the remaining 
time to deadline. 

This paper examines an on-line parameter tuning 
approach to address the above problems. This approach 
uses the information available for the current problem 
instance at various stages of the planning procedure to 
control the time allocated to planning. Based on this tech­
nique we introduce a new algorithm called Self-Adjusting 
Real-Time Search algorithm (SARTS) and characterize its 
effectiveness theoretically. A major contribution of 
SARTS is its ability to adapt the parameters of the search 
(planning) process based on the remaining time to dead­
line (i.e. slack) and on the estimated execution costs, in 
order to improve deadline compliance. Feasibility tests 
are provided that enable the algorithm to predict deadline 
violation prior to the deadline. SARTS is able to continue 
monitoring the progress of the problem solving effort 
towards the goal during problem solving. This capability 
enables this algorithm to detect initially inconclusive tasks 
that turn out to be infeasible. SARTS is a progressively 
optimizing algorithm in the sense that it will continue to 
improve the solution quality as the time constraints are 

220 AUTOMATED REASONING 



relaxed. The algorithm finds the optimal solution if ade­
quate planning time can be allocated in presence of larger 
slacks. The paper also provides methodologies for analyz­
ing the predictive power of real-time search algorithms. 

The remaining sections of this paper are organized 
as follows. Section 2 contains a formal statement of the 
problem addressed in this paper. Section 3 provides the 
specification and theoretical analysis of SARTS. Section 
4 provides experimental evaluation of SARTS. Finally, 
section 5 provides a set of concluding remarks. 

2. Problem Statement 
A state space can be represented by a graph G(V,E) 

that consists of a set of nodes V, and a set of edges E con­
necting some of the nodes in the graph. A node vieV in 
the graph represents a certain configuration of the environ­
ment called a state. An edge (vi, vj)eE in the graph repre­
sents a transformation function in the state space that 
transforms a node vi, at one end of the edge to the node Vj 
at the other end of that edge. Based on the size of the 
state space, availability of information and the nature of 
the problem solving, the complete state space may not be 
generated and stored prior to the start of problem solving. 
Associated with each edge (vi, vj)eE is an execution cost 
ceV|V, which is regarded as the cost of transforming vi, to 
Vj, or the cost of traversing the edge (vi, vj;). 

Problem solving in many important applications can 
be modeled as a problem of searching for and executing a 
path P in G before deadline D, that connects (transforms), 
via edges in G, the start node "s" to the goal node "g". 
Associated with the search phase (also referred to as plan­
ning) is a cost CPp that signifies the time that was taken 
by the search algorithm to find path P. Associated with 
the execution phase is a cost CEp that signifies the time 
that was taken by the system to execute path P. The total 
response time Tresp of performing a task is defined as the 
sum of the costs of planning and execution phases (i.e. 
Tresp -CP + CE). The planning phase of a task consists 
of generating and evaluating a set of nodes in the state 
space, in order to find a solution path for a given problem 
instance. Expansion of a node in G by the search algo­
rithm refers to the process of generating the successors of 
that node in the graph. The successors of a node vt are the 
set of all the K nodes (v|,...,vk) which are connected to vi 
via direct edges (vi, vj),...,(v, vk). A heuristic function 
h(n,g) is a function that provides an estimate of the dis­
tance between node "n" and the goal node "g". Evaluation 
of a node "n" in G by the search algorithm refers to the 
process of examining certain characteristics of the node 
such as its actual distance from "s'' or its estimated dis­
tance from "g'' via a heuristic function h(n,g), and possibly 
ordering a set of nodes based on those characteristics. 
The execution phase of a task consists of applying the 
transformation functions associated with each edge on a 
solution path P, in order to reach the goal node "g" from 
the start node "s". Using the above definitions, the under­
lying problem of performing a task in this model can be 
specified formally as follows. 

Given a graph G(V,E), a start node "s", a goal node 
"g" and a deadline D, a real-time problem solver needs to 

search for and execute a path P = 
[(s v,),(v, v2)) (vm g)) that connects "s" and "g''. to 
maximize the following objectives in decreasing order of 
priority: 1) Predict possible deadline violation as soon as 
possible (i.e. well before the deadline D arrives), 2) Maxi­
mize the probability of searching and executing the path P 
before the deadline D (i.e. Maximize ?T.(Tresp < D)), and 
3) If time permits, continue to improve the solution. 

In this paper, we concentrate on analyzing the effec­
tiveness of SARTS in accomplishing the first two objec­
tives. The discussion of the behavior of SARTS in terms 
of the third objective has been covered elsewhere [8] and 
is, thus, omitted from this paper. We show that the pre­
dictability of SARTS is related to the accuracy of its 
heuristic functions and that the expected value of its pre­
dictability improves as the accuracy of the heuristic esti­
mates increases. In our analysis of SARTS's ability to 
comply with deadlines, we separate different features of 
SARTS in different algorithms, in order to observe the 
effect of each feature in isolation. 

3. Self-Adjusting Real-Time Search (SARTS) 
To perform real-time tasks by their deadlines, 

SARTS plans partial solutions for a task and executes 
those partial solutions in interleaved planning and execu­
tion phases. The plan-execute phases are repeated until a 
goal is reached, or until deadline violation is predicted. 
SARTS uses a novel on-line parameter tuning and predic­
tion technique to determine the time of a planning phase, 
and to predict deadline violation ahead of time. The allo­
cated time to planning in this search algorithm is self-
adjusted based on what is known on-line about the nature 
of the problem and the problem instance. The algorithm 
continually self-adjusts its parameters based on the 
remaining time to deadline. To determine the maximum 
time allowable for planning, SARTS estimates the slack 
(i.e. the difference of remaining time to deadline and the 
estimated execution time to reach the goal). The larger 
the slack, the greater is the allocated time to planning. 
Slack can also be used to detect infeasible problem 
instances based on the predicted maximum time allowed 
for planning (e.g. negative values). Slack-based determi­
nation of planning time is useful for improving the 
dependability via prediction of deadline violation. It also 
makes the algorithm progressively optimizing for many 
application domains where solution quality can improve 
monotonically with additional planning effort. In these 
domains, larger slacks lead to larger planning times which, 
in turn, result in improved solution quality. 

During the plan phase of cycle i, a partial path from 
the start node s(i) towards the goal is planned. The plan 
phase of a cycle is terminated when allocated time to plan 
runs out, i.e. CP(i) > aCE(i) (1). This stopping crite­
rion controls the planning cost incurred in the current 
cycle (CP(i)) as a fraction (a) of the execution cost 
(CE(i) to be incurred in the current cycle. Parameter a 
can change the behavior of SARTS in interesting ways. 
Large value of a may allow adequate planning time in the 
very first cycle to plan the optimal path obviating the 
need of additional cycles. Small values of a may restrict 
the planning time to a minimal in each cycle, reducing 

HAMIDZADEH AND SHEKHAR 221 



SARTS to a greedy algorithm. Besides controlling plan­
ning cost, criterion (1) is also effective in achieving near 
optimal response time in sequential plan and execute 
paradigms[9]. 

CP(i) may represent elapsed time and may depend 
on the number of nodes expanded during the ith cycle. 
The expanded nodes are those, whose descendants were 
generated and were added, in the correct order, to the open 
list during cycle i. CE(i) represents the execution cost of 
a path(s(i), s(i+l)), where s(i+l) is the most promising 
frontier node found by the planning in cycle i. The most 
promising node refers to a node that has the best potential 
to be on the shortest path to goal. The most promising 
node found in a cycle becomes the start node of the next 
cycle. CE(i) in SARTS is calculated by adding the length 
of the edges on the current partial path(s(i),s(i+l)) = 

At the end of planning in cycle i, SARTS leaves a 
special number at the s(i). This number represents the 
second best choice at each node on the traversed path. As 
the node with the best heuristic estimate is traversed, the 
heuristic value of the second best node at that decision 
point is left as the new heuristic estimate of the traversed 
node. A later cycle may utilize the result of a prior cycle 
via this special number to avoid looping in cycles indefi-
nitely[4). 

During the execution phase, the partial path planned 
in the plan phase of the current cycle is executed. The 
partial path may consist of one or more edges in the graph. 
The execution phase of a cycle in SARTS may consist of 
traversing the entire partial path. Planning carried out in 
each cycle consists of several iterations. An iteration of 
the SARTS algorithm is similar to an iteration of A* [10]. 
Each iteration removes the most promising node from a 
list of unexplored nodes (i.e. the open list), generates the 
immediate children of that node (expanding a node), adds 
those children to the open list, and sorts the new list with 
the most promising node first. The iterations of SARTS 
are treated as atomic, i.e. each iteration will carry out ail 
of the above mentioned tasks. 

We note that CE(i) is undefined before the first iter­
ation in cycle i. After an iteration in cycle i, CE(i) repre­
sents the execution cost of path(s(i),n), where n is the 
most promising node at the end of the iteration. The stop­
ping criteria for cycle i is examined after each iteration. 
The minimal planning in a cycle is an iteration, which 
makes SARTS behave like a greedy local gradient descent 
algorithm. Such a cycle is called greedy cycle. During the 
plan phase, greedy cycle only expands the current node 
s(i). The set of s(i)'s descendants make up the open list. 
The most promising descendant is thus chosen at the end 
of planning. The execute phase consists of traversal of a 
single edge 

3.1. Self-Adjustment 
Planning time is controlled as a fraction of total 

execution time via the parameter in SARTS. The value 
of may be determined at compile time to remain con­
stant from cycle to cycle. However, in many applications, 
it is desirable to adjust a from cycle to cycle, as additional 

222 AUTOMATED REASONING 

information becomes available. Self-adaptation of a is 
useful in order to respond to a wide variety of deadlines in 
an progressively optimizing fashion or to respond to 
changes in the world at run-time. We define a set of basic 
concepts and explain how SARTS self-adjusts the parame­
ter to control planning lime based on slack. 

Let be the remaining time to deadline at the 
beginning of the ith cycle. can be expressed as 

where D is the absolute deadline by which time 
SARTS is required to plan and execute path(s,g), and 
Ts(i) is the starting time of cycle i. Let be the true 
execution time of executing a path from s(i) to the goal 
node. is estimated at the beginning of cycle i with 
help from a heuristic function . Note that 
can be expressed as the sum of CE(i) over forthcoming 
cycles i, i+1, ..., k where goal is reached in cycle k. Let 

I denote the time that SARTS will allocate to plan 
the complete path(s(i),g). ) can be expressed as a sum 
of CP(i) over forthcoming cycles In general, 
estimating planning time is a non-trivial problem, and can 
be as difficult as finding path(s(i),g). SARTS does not 
attempt to estimate the value of . Instead SARTS 
controls the maximum values for planning times CP(i) and 

on the basis of available slack. 
Lemma 1: If all cycles of SARTS are non-trivial (i.e. 
CP(i) and CE(i) are large with respect to the cost of a sin­
gle SARTS iteration), the stoDDing criterion of SARTS 
allocates approximately time for planning, i.e. 

For a proof see [11]. 
Let slack, represent the remaining time to 

deadline after a path from s(i) to g is executed. Slack pro­
vides an upper bound on the time that can be allocated to 

tions are interesting since they provide upper bounds on 
the possible time to plan. Equations 2a and 2b show that 
the upper bound on the value of alpha{i) is directly pro­
portional to slack and that shorter slack causes a reduction 
in the value of a(i). Intuitively, small slack means that 
there is little time for planning and that the planning pro­
cess of SARTS approaches a greedy local gradient descent 
search. We also note that the atomicity of SARTS itera­
tions imposes lower bounds on the values of a(i)» since 
the smallest amount of planning carried out by SARTS in 
any cycle is equal to that in an iteration of A*. Self-
adjustment of parameter a(i) must observe these bounds. 
It has been shown [11] that SARTS reduces to A* for 
large deadlines, and that SARTS reduces to a greedy local 
gradient descent search, if deadlines are tight leading to 
small slacks. 

3.2. Prediction of Deadline Violation 
A unique aspect of SARTS relates to the tests that it 

provides to classify tasks into feasible, and infeasible 
tasks, based on the knowledge about the nature of the 
heuristic function. SARTS may not accept a task, if the 



infcasibility tests show that the deadline cannot be met. 
Since infeasibility tests cannot discriminate between feasi­
ble tasks and inconclusive tasks, SARTS continues to 
monitor a task from cycle to cycle to guard against the 
danger of an inconclusive tasks becoming an infeasible 
task as time goes by. Using the tests, SARTS is able to 
predict the possibility of deadline violation ahead of time. 
Given an application domain, feasibility tests may be 
designed based on the domain knowledge. 
Infeasibility Test: Given an admissible heuristic function 
h0(s,g), SARTS considers a task to reach the goal node g 
from a start node s(i) at the beginning of cycle i to be 
infeasible A negative value 
for shows that SARTS may not be able to meet the 
deadline, since the slack is negative. Negative slack times 
are indicative of the fact that the estimated total execution 
time is larger than the remaining time to deadline, making 
the task infeasible. 
Feasibility Test: Given a perfect heuristic function 
h (s,g), SARTS considers a task to reach goal node g 
from a start node s(i) at the beginning of cycle i to be fea­
sible i f w h e r e a i s the 
cost of one iteration of A* and n is an estimate of the 
number of edges (decision points) to goal. The number of 
decision points to goal, n, depends on the distribution of 
execution cost per edge. For example, in a graph with the 
same execution costs for all edges, n can be estimated by 
the heuristic function, h. In general, an interval or an 
upper bound estimate for n can be derived from the distri­
bution of edge execution costs for a given confidence 
level. We note that estimation of n does not need any 
assumptions about the planning cost. 
Lemma 2: Given h*, SARTS will find and execute a solu­
tion to a problem instance within the problem's given 
deadline, if the problem is classified as feasible. For a 
proof see [11]. 

Note /that the discussions on a perfect heuristic are 
included here to argue that the correctness and predictabil­
ity of the feasibility tests are correlated with the power of 
heuristics available for the particular domain, and that the 
expected utility of the tests increases with the accuracy of 
the heuristics. 

4. Experimental Evaluation 
In our experiments we have compared different ver­

sions of SARTS with each other and with RTA*(n)[12,13]. 
The problem instances of the experiments consist of 
graphs that represent the state space of all partial and com­
plete solutions. Each version of SARTS focuses on a sin­
gle characteristic of SARTS, in order to test the effect of 
that particular characteristic on the performance of 
SARTS, in isolation. 

We will review the basic steps of RTA*(n) to facili­
tate interpretation of our observations. At each cycle, 
RTA*(n) first creates the successor nodes of the current 
state. The current state is the actual position of the sys­
tem. As each successor node is created, its estimated dis­
tance from the goal (i.e. h), the cost from the current node 

(i.e. g), and the sum of h and g (i.e. f are calculated. The 
euclidean distance formula is used to calculate the heuris­
tic values. This heuristic formula is monotonic [12] and is 
guaranteed to produce optimal solutions in A*. In the 
case of RTA*. this heuristic formula allows substantial 
pruning of frontier nodes without loss of valuable infor­
mation in reaching a partial solution. Notice that, unlike 
A* in which g is the value of the total cost so far, namely 
from the start node to the current successor node, in 
RTA*, g is the value of the cost from the current node to 
each of its successor nodes. The h values are calculated 
via look-ahead search. The general rule of thumb is that 
the larger the number of look-aheads (i.e. the larger the n), 
the better the estimated f value (i.e. g+h) will be. How­
ever, we encountered cases in which the greater look-
aheads led the algorithm to more costly solutions. Also, 
one must note that while greater look-aheads are generally 
helpful in finding shorter paths to the goal (i.e. lower 
execution cost), they require more processing and plan­
ning (i.e. higher planning cost). Once all the successor 
nodes and their f values are determined, the algorithm 
sorts these nodes with respect to their f values. The suc­
cessor node with the smallest f value is chosen as the next 
physical move for the RTA* algorithm. This process is 
repeated until a solution is reached. While this algorithm 
can not guarantee termination in the case of graphs with 
no solutions, it does guarantee that it will not get stuck in 
local minima and graph cycles. This is done by penalizing 
cyclic and dead-end paths, and by leaving the h value of 
the second best path at each decision point [12]. The 
greedy algorithm is a special version of RTA*(n) in which 
the search algorithm examines only the immediate neigh­
bors of the current node, without any look-ahead search, 
to make a decision about its next move. 

The different versions of SARTS that are tested in 
the experiments of this section are as follows. The FL(n) 
algorithm performs a fixed number of iterations during 
each scheduling cycle, starting from the current node of 
the cycle as the start state. During the execution cycle, 
this algorithm traverses the whole partial path that was 
planned during the scheduling cycle (i.e. FL(n) may tra­
verse more than one edge at each execution cycle). Note 
that this algorithm is not capable of controlling the 
scheduling effort at run time. FL(n) is also not sensitive to 
the remaining time to deadline. FL(n) differs from 
RTA*(n) in that it performs the look-ahead search starting 
from the current node rather than having a separate look-
ahead search for each neighbor of the current node. The 
FA algorithm differs from FL(n) in that it uses a stop­
ping criterion similar to that of SARTS (inequality 1 of 
section 3) to terminate a scheduling cycle. The parameter 
a in the stopping criterion of FA , however, is fixed 
from one cycle to the next. This algorithm does not adjust 
the scheduling effort based on the remaining time to dead­
line. During an execution cycle, FA traverses all edges 
in the partially planned path of the previous scheduling 
cycle. The SS algorithm is that version of SARTS which 
traverses a single edge during each execution cycle. Its 
scheduling phase differs from FA 's in that the parame­
ter of SS's stopping criterion is adjusted at each cycle, 
based on the remaining time to deadline. Table 1 summa­
rizes different algorithms' characteristics in terms of their 

HAM1DZADEH AND SHEKHAR 223 



execution effort per cycle and their planning effort alloca­
tion per cycle. 

Table 1: Algorithms and their distinguishing characteristics 

4.1. Real-Time Tasks & Deadline Compliance 
The ability of an algorithm to meet deadlines of a 

high percentage of tasks measures its capability to comply 
with the time constraints of tasks, its capability to predict 
deadline violation, and its capability to guarantee compli­
ance with the time constraints of those tasks whose dead­
lines were predicted to be met. In this section, we com­
pare different versions of SARTS with RTA*(n), via 
experiments that evaluate the deadline compliance ability 
of each of the algorithms. The parameters of the experi­
ment are the graph size in terms of number of nodes k, its 
degree of connectivity , different values of the look-
ahead parameter n, different values of the parameter of 
the stopping criterion of SARTS, and the deadlines. We 
chose the value of 4/k for the degree of connectivity of the 
graphs generated for our experiments. The problem 
instances consist of 870 distinct (start, goal) pairs on a 
randomly generated graph of 30 nodes. Each problem 
instance is run under a set of deadlines (i.e. 10, 20, ..., 
1000). For this experiment, values n = 0, 1, 2, 3, and 4 
were chosen for the look-ahead parameter in RTA*(n), 
and values a = 0.1,1,3, and 10 were chosen for the param­
eter in different versions of SARTS. 

Figures 1, 2, and 3 demonstrate the results of the 
experiments on SARTS, SS, FA(a), FL(n), and RTA*(n), 
where n is the fixed look-ahead depth. Figure 1 compares 
the FL(n) with RTA*(n). This comparison was performed 
to evaluate the effect of a uniform-breadth look-ahead 
search for every neighbor of a current node versus that of 
an overall partial A* search which explores, more in 
depth, the more promising frontier nodes. RTA*(n) may 
lead to shorter paths in terms of execution costs. This 
algorithm, however, incurs larger planning costs than 
FL(n). As is shown in the figure, FL(n) (n=0,1,2,3,4) per­

forms as well as or better than RTA*(n) (n=0,1,2,3,4) for 
most n. The performance of FL(n) is improved over 
RTA*(n), due to the fact that FL(n) expands fewer nodes 
by performing a top-level search starting from the current 
node at each cycle. Figure 2 compares FL(n) and FA 
Comparison of and F A ) was performed to evalu­
ate the effect of a constant look-ahead bound versus that 
of a look-ahead bound that is a function of the execution 
costs. Using a look-ahead bound as a function of the 
execution costs aims at controlling the planning effort 
based on its tradeoff with execution cost to address mini­
mized total response times. As is shown in the figure, 

performs the same as FL(n) for =0.1 and 1. 
shows much improved performance, however, for 
and 10. The improved performance is due to the 

fact that FA uses a stopping criterion that accounts for 
scheduling effort as well as the execution cost. 

Comparison of SARTS and FA would reveal the 
effect of self-adjusting parameter a based on the remain­
ing time to deadline versus a fixed a that is insensitive to 
the progress of the algorithm towards meeting its deadline. 
In comparing the SARTS and the SS algorithm we count 
the ratio of tasks whose deadlines were met over all 870 
possible problem instances. This formula concentrates on 
finding the fraction of complied deadlines over all tasks. 
This comparison was mainly done to evaluate the effect of 
partial path traversal versus single-edge traversal during 
each execution phase. One of the consequences of single-
edge traversal is that there will be more plan-execute 
cycles which allow the algorithm to monitor progress 
towards the goal. The drawback of single-edge traversal, 
however, is that it does not take full advantage of the plan­
ning effort in a cycle. This approach thus leads to 
increased overall planning for each problem instance. 
Figure 3 demonstrates the results of the experiment com-

224 AUTOMATED REASONING 



paring the SARTS algorithm with SS, FL(4) and FA(O.l). 
As is shown in the figure, SARTS performs as well as the 
best FA by self-adjusting based on slack. The SS 
algorithm was found to predict many more deadline viola-
lions and incurred a larger number of false alarms than 
SARTS. The large number of false alarm predictions in 
SARTS caused a poorer overall deadline compliance over 
all problem instances. 

4.2. Deadline Violation Prediction 
We examine the use of negative a in the infeasibil-

ity test of SARTS as an indicator of possible deadline vio­
lation in this sub-section. We also examine the effect of 
different heuristics on predictability of SARTS. We use 
true-negative (TN), false-negative (FN), false-positive(FP) 
and true-positive (TP) categories, in order to evaluate the 
test. The prediction accuracy of the test is measured as 

We note that the two measures of 
accuracy and true positivity together signify the depend­
ability of an algorithm. The accuracy measures the pre­
dictive power of an algorithm. True-positivity, on the 
other hand, measures the deadline-compliance ability of 
an algorithm, since it represents the number of accepted 
problem instances which met their deadlines. 

To explore the effect of different heuristics in pre­
dicting deadline violation, we ran a set of experiments on 
a grid world. In a grid, the nodes are arranged to form a 
rectangular grid in which each inner node with coordi­
nates (i,j) is connected to all its neighboring nodes (ij+1), 

via an edge, where w is the 
width of the grid. An inner node is defined to be a node 
that is not on the periphery of the grid. For these experi­
ments, a 10 x 20 grid was generated. 572 (start, goal) pairs 
were examined, where each start and goal node was 
selected to be an inner node. 
Table 2: Deadline Compliance of SARTS with Euclidean-Distance 

Function for 572 problem instances. 

Four different heuristics were examined in these 
experiments. Manhattan distance was used as an exact 
estimator of the remaining distance to goal in the grid 
world. As an over-estimator of the distance, we used 
twice the manhattan distance as one of our inadmissible 
heuristics. Euclidean distance was used as the underesti-
mator of the distance. The fourth heuristic is also an inad­
missible estimator based on the manhattan distance with 
introduced error that is randomly added to or subtracted 
from the exact estimate each time. In the figures, the plots 
corresponding to different heuristics are labeled as fol­
lows. "Perfect" denotes Manhattan Distance Heuristic, 
"Admissible" denotes Euclidean Distance, "Inadmissible" 
denotes Double Manhattan Distance (Over-estimate), and 
"Noisy" denotes Error Distance. 

We expect the underestimating heuristic to have no 
false-positive instances over all deadlines. This is due to 
the fact that the true planning and execution costs incurred 
by the algorithm are expected to exceed the estimated 
value provided by the underestimator. In using the exact 
estimator of the remaining distance, we expect to see high 
degrees of predictability. The overestimator is expected to 
provide an upper bound on the true planning and execu­
tion costs incurred by the algorithm. Thus, a problem 
instance that is predicted to meet a deadline, using this 
heuristic, is expected to do so. The expected behavior of 
the algorithm with a noisy heuristic estimator is lower pre­
diction accuracy. 
Table 3: Deadline Compliance of SARTS with Double-Manhatlan-

Distance Function for 572 problem instances. 

Tables 2 through 5 show the results of these experi­
ments. The row heading D, in the tables, denotes deadline 
values, and the row heading Ace. denotes the accuracy. 
Table 2 provides the data for SARTS with a euclidean-
distance heuristic. As expected, this heuristic provides a 
good infeasibility test (i.e. a problem instance that was 
predicted to be infeasible, did in fact miss its deadline). 
Table 3 provides the data for SARTS with double-
manhattan-distance heuristic. This estimate due to its pes­
simistic nature, provides 100% accuracy for all problem 
instances over all deadlines. This kind of heuristic is use­
ful when missing deadlines can have highly undesirable 
effects. Note that all problem instances that were pre­
dicted to miss their deadlines, in this experiment, did in 
fact do so (i.e. 0% TN's). Table 4 provides the data for 
SARTS with a manhattan-distance heuristic. This esti­
mate provides very high prediction accuracies for all prob­
lem instances, over all deadlines. We note that the few 
number of deviations in predicting deadline violations are 
due to the cost of a single iteration (i.e. ) that can be 
incurred in a SARTS cycle when the stopping criterion is 
met. Examining the problem instances that were not cor­
rectly predicted by SARTS, using a manhattan distance 
heuristic, revealed that the deadlines were missed by one 
time unit (i.e. in this experiment) in all cases. As is 
shown in the tables, the manhattan-distance heuristic pro­
duced the highest percentage of true-positive cases, which 
signifies the higher degree of deadline compliance for this 
heuristic. Finally, table 5 provides the data for SARTS 
with a noisy-manhattan-distance heuristic. As expected, 
this heuristic produced predictions with lower accuracy 
and lower deadline compliance even for larger deadlines. 
Figures 4 and 5 demonstrate the effect of different heuris­
tics on the dependability of the SARTS algorithm. As is 
shown in figure 4, the perfect heuristic outperforms the 
other heuristics in its effect on deadline compliance of 
SARTS. Figure 5 demonstrates the effect of different 
heuristics on the predictability of SARTS. According to 

HAMIDZADEH AND SHEKHAR 225 



the figure, the overestimating heuristic enables SARTS to 
provide 100% predictability. The perfect and the admissi­
ble heuristics perform similarly. The perfect heuristic, 
however, reaches 100% predictability sooner (at smaller 
deadlines) than the admissible heuristic. 
Table 4: Deadline Compliance of SARTS with Manhattan-Distance 

Function for 572 problem instances. 

5. Conclusion 
Dependable real-time algorithms should strive to 

meet the time-constraints of a given set of tasks. These 
algorithms should also provide tests to detect possible 
deadline violations ahead of time. Finally, a real-time 
algorithm should account for its own planning time as 
well as the execution cost of the solution it produces, in 
order to meet deadlines. SARTS is a new real-time search 
algorithm. It allocates time for planning based on the 
strictness of deadline and estimated slack. The self-
adjustment and monitoring of planning time is a unique 

feature of SARTS. For very loose deadlines and large 
slack, it behaves like A* and finds high quality solutions. 
For tight deadlines and small slack, it behaves like a 
greedy algorithm in the hope of reducing the planning 
time. SARTS also provides an infeasibility predicate, 
which is monitored continuously to predict possible dead­
line violation ahead of time. Experiments show that 
SARTS provides higher deadline compliance than a well-
known real-time search algorithm. The infeasibility test is 
found to be reasonably accurate in the experiments for 
various deadlines and its effectiveness is related to the 
accuracy of the heuristic functions used. 

References 
1. M. R. Garey and D. S. Johnson, "Complexity 

Results for Multiprocessor Scheduling Under 
Resource Constraints," SIAM Journal of Comput­
ing, pp. 397-411,1975. 

2. W. Zhao, K. Ramamritham, and J. A. Stankovic, 
"Preemptive Scheduling Under Time and Resource 
Constraints," IEEE Transactions on Computers, 
August 1987. 

3. J. Gu, Constraint-Based Search, Cambridge Univer­
sity Press, New York, 1993. 

4. R. E. Korf, "Real-Time Heuristic Search," Artifi­
cial Intelligence Journal, vol. 42, no. 2-3, pp. 
197-221,1990. 

5. L. C. Chu and B. W. Wah, "Optimization in Real 
Time," IEEE Real-Time Systems Symposium, 1991. 

6. B. Hamidzadeh and S. Shekhar, "Can Real-Time 
Search Algorithms Meet Deadlines?," Proc. of the 
Tenth National Conference on Artificial Intelli­
gence, AAAI, 1992. 

7. B. Hamidzadeh and S. Shekhar, "Specification and 
Analysis of Real-Time Problem Solvers," IEEE 
Transactions on Software Engineering, vol. 19, no. 
8, August, 1993. 

8. S. Shekhar and B. Hamidzadeh, "Self-Adjusting 
Real-Time Search: A Summary of Results," Proc. 
of IEEE Conference on Tools for Artificial Intelli­
gence, 1993. 

9. S. Shekhar and S. Dutta, "Minimizing Response 
Times In Real Time Planning And Search," Pro­
ceedings of 11th International Joint Conference on 
Artificial Intelligence, pp. 238-242, IJCAI, 1989. 

10. D. Gelperin, "On the Optimality of A*," Artificial 
Intelligence, vol. 8, pp. 69-76, Elsevier, 1977. 

11. S. Shekhar and B. Hamidzadeh, "SARTS: A 
Dependable Real-Time Search Algorithm," UMN 
Tech. Report CSci TR 93-23, University of Min­
nesota, 1993. 

12. R.E. Korf, "Real-Time Heuristic Search: First 
Results," Proc. AAAI Conference, 1987. 

13. R.E. Korf, "Real-Time Heuristic Search: New 
Results," Proc. AAAI Conference, 1988. 

226 AUTOMATED REASONING 


