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Abstract
ReakHime algorithms need to address the time constraints
(e.g. deadiines) imposed by applications like process con-
trol and robot navigation. Furthermore, dependable real
time algorithms need to be predictable about their ability
to meet the time constraints of given tasks. A realime
algorithm is predictable, if it can dedde the feasibility of
meeling time constraints of a given task or an arbitrary
task from a task set well aheed of the deadiine. Lastly, a
reaHime algorithm should exhibit progressively optimiz-
ing behavior (i.e. the quality of the solution produced
should improve as time constraints are relaxed). We pro-
pose a new algorithm, SARTS, that is besed on a novel
ordine technique to choose the proper values of parame-
ters which control the time allocated to planning based on
the time constraints. SARTS also provides criteria o pre-
dict its ability to meet the time constraints of a given task.
The paper provides theoretical and experimental charac-
terization of SARTS as a dependable rea-ime algorithm.

1. Introduction

ReaHime sysems are increasingly being used in
important applications such as avionics, process control,
robot and vision systems, and command and control.
These applications are characterized by attributes, such as
strict time constraints posed as deadlines on the time by
which the system is expected to produce a solution to a
given problem, or the time by which the system is
expected to predict deadine violation, in order to avoid
the ic consequences of violating deadiines.
Ancther attribute of most of the above applications is that
they require dynamic problem solving due to the lack of
complete a priori information at compile time. Many real-
time computing problems such as task scheduling on uni-
and mul architectures [1] are hard optimiza-
tion problems for which finding solutions are computa-
tionally prohibitive, particularty if such problem solving is
to take place on-line. Thus, dynamic problem solving in
reaHime is faced with the tradeoff between sub-optimal
solutions and the time allocated to find such solutions.
Techniques addressing dynamic problem solving in real-
time are often required to progressively optimize rather
than to optimize, namely they are expected to find the best
ansier within the allotted time, and improve upon it if
additional time is allocated.

Many combinatorial optimization problems, includ-
ing those in reaHime computing, can be formulated as the
search for an answer in the space of all partial and com-
plete solutions, such that the answer minimizes (or maxi-
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mizes) an objective function [2,3]. Most search-theoretic

approaches to combinatorial optimization problems have

addressed only the static version of the problem([3]. There

hes been a recent rise in research on search techniques for
dynamic (on-ine) optimization [4,5]. The problem with

most of the dynamic optimization techniques is that they

take an adhoc approach to handling the time allocated to

optimization. In dynamic reaHime computing, control-

ling the time to find a solution is as important as the time

it Bkes to exeaute that solution. The total response time

of a system to a problem instance, in such domains, is the
sum of the time to search for the solution, and the time to

exeaute that solution. Another major drawback of the

existing algorithms is that presently they do not provide

guaraniees on meeting deadiines, as shown by the experi-

mental analysis in[6]. Such algorithms have not provided

tests to predict the possibility of missing a given deadline.

Furthermore, these algorithms do not provide a mecha-

nism to monitor the progress of the algorithm in meeting a
deadiine and to signal an alamm as soon as it is discovered
that the deadline will not be met Such medhanism is very
useful in meny applications where failure to meet a dead-

line is catastrophic. In such applications deadine viola-

tion should be signaled as soon as possible, in order for

some contingency actions to be undertaken to prevent dis-
aster. Ore of the main reasons for these limitations is that

the existing approaches [4,7] do not adequately address

the allocation of ime to plan in context of the remaining

time to deadiine.

This paper examines an on-line parameter tuning
approach o addess the above problems. This approach
usss the information available for the cumrent problem
instance at various sages of the planning procedure o
control the time allocated to planning. Based on this tech-
nique we infroduce a new algorithm called Self-Adjusting
ReakTime Search algorithm (SARTS) and characterize its
effectiveness  theoretically. A major contribution of
SARTS is its ability to adapt the parameters of the search
(planning) process based on the remaining time to dead-
line (i.e. slack) and on the esiimated execution costs, in
order to improve deadine compliance. Feasibility tests
are provided that enable the algorithm to predict deadine
violation prior to the deadline. SARTS is able to continue
monitoring the progress of the problem solving effort
towards the goal during problem solving. This capability
engbles this algorithm to detect initially incondusive tasks
that tum out to be infeasible. SARTS is a progressively
optimizing algorithm in the serse that it will continue to
improve the solution quality as the time constraints are



relaxed. The algorithm finds the optimal solution if ade-
anleplannlnghmecan be allocated in presence of larger
slacks. The paper also methodologies for analyz-
ing the predictive power of reaHime search algorithms.
The remaining sections of this paper are organized
as follows. Section 2 contains a formal statement of the
problem addressed in this paper. Section 3 provides the
specification and theoretical analysis of SARTS. Section
4 provides experimental evaluation of SARTS. Finally,
section 5 provides a set of conduding remarks.

2. Problem Statement

A state space can be represented by a graph G(VE)
that consists of a set of nodes V, and a set of edges E con-
necling some of the nodes in the graph. A node vieVin
the graph represents a certain configuration of the environ-
mert called a state. An edge (vi, vj)eE in the graph repre-
senfs a transformation function in the state space that
transforms a node Vi, at one end of the edge to the node Vj
at the other end of that edge. Based on the size of the
state space, availability of information and the nature of
the problem solving, the complete state space may not be
generated and stored prior to the start of problem solving.
Assodiated with each edge (vi, vj)eE is an exeoution cost
V)V, which is regarded as the cost of transforming Vi, to
Vj, or the cost of fraversing the edge (vi, Vj;).

Problem solving in many important applications can
be modeled as a problem of searching for and executing a
path P in G before deadiine D, that conneds (fransforms),
via edges in G, the start node "'s" to the goal node "g".
Associated with the search phase (also referred fo as plan-
ning) is a cost CPp thet signifies the time that wes taken
by the search algorithm to find path P. Associated with
the execution phase is a cost CEp that signifies the time
that wes taken by the system o exeaute path P. The total
response ime Tresp of performing a task is defined as the
sum of the costs of planning and execution phasss (i.e.
Tresp -CP + CE). The planning phese of a task consists
of generaing and evaluating a set of nodes in the stae
space, in order to find a solution path for a given problem
instance. Expansion of a node in G by the search algo-
rithm refers to the process of generating the successars of
that node in the graph. The sucoessars of a node vt are the
set of all the K nodes (v],...,vk) which are connected to vi
via direct edges (vi, vj),...,(v, vk). A heuristic function
h( ) is a function that prthes an estimate of the dis-

tance between node "n" and the goal node "g". Evaluation
of anode "n" in G by the search algorithm refers to the
process of examining certain characteristics of the node
such as its acual distance from "s" or its estmated dis-
tance from "g" via a heuristic function h(n,g), and possibly
ordering a set of nodes based on those characteristics.
The execution phase of a task consists of applying the
transformation functions assodated with each edge on a
solution path P, in order to reach the goal node "g" from
the start node "s". Using the above definitions, the under-
lying problem of performing a task in this model can be
specified formally as follows.

Given a graph G(V,E), a start node "s", a goal node
"g" and a deadiine D, a reaHime problem solver needs to

scach for ad eewte a pah P
[(sV,),(v, \/2)) ..... (vm g)) that conneds "s" and "g" to
maximize the following objectives in decreasing order of
priority: 1) Predict possible deadline violation as soon as
possible (i.e. well before the deadine D anives), 2) Maxi-
mize the probability of searching and executing the path P
before the deadiine D (i.e. Maximize ?T.(Tresp <D)), ad
3) If ime permits, continue to improve the solution.

In this paper, we concentrate on analyzing the effec-
tiveness of SARTS in accomplishing the first two objec-
tives. The discussion of the behavior of SARTS in terms
of the third objective has been covered elsewhere [8] and
is, thus, omitted from this paper. We show that the pre-
dictability of SARTS is related fo the accuracy of its
heuristic functions and that the expedied value of its pre-
dictability improves as the accuracy of the heuristic esti-
maes inceases. In our analysis of SARTS's ability to
comply with deadlines, we separaie different features of
SARTS in different algorithms, in order to observe the
effect of each feature in isolation.

3. Self-Adjusting Real-Time Search (SARTS)

To perform reaHime tasks by their deadlines,
SARTS plans partial solutions for a task and execuies
those partial solutions in interleaved planning and execu-
tion phases. The plan-execute phases are repeated until a
goal is reached, or until deadiine violation is predicted.
SARTS uses a novel onHine parameter tuning and predic-
tion technique to determine the time of a planning phase,
and to predict deadine violation ahead of ime. The allo-
cated time to planning in this search algoritm is self-
adjusted based on what is known on-line about the nature
of the problem and the problem instance. The algorithm
continually seffadjusts its parameters based on the
remaining time to deadiine. To determine the maximum
time allowable for planning, SARTS esimates the slack
(i.e. the difference of remaining time to deadine and the
esimated execution time o reach the goal). The larger
the slack, the greater is the allocated time to planning.
Slack can aso be used fo detect infeasible problem
instances based on the predicted maximum time allowed
for planning (e.g. negative values). Siackbased determi-
nation of planning tme is useful for improving the
dependability via prediction of deadline violation. It also
makes the algorithm progressively optimizing for many
application domains where solution quality can improve
monotonically with addiional planning effort. In tese
domains, larger slacks lead to larger planning times which,
in tum, result in improved solution quality.

During the plan phase of cycle i, a partial path from
the start node s(i) fowards the goal is planned. The plan
phese of a cydle is terminated when allocated time to plan
runs out, i.e. CP(i) > aCE(i) (1). This stopping crite-
rion controls the planning cost incurred in the cument
cyde (CP(j)) as a fraction (a) of the execution cost
(CE(i) to be incured in the cument cycle. Parameler a
can change the behavior of SARTS in interesting ways.
Large value of a may allow adequate planning time in the
very first cycle to plan the optimal path obviating the
need of additional cycles. Small values of a may restrict
the planning time to a minimal in each cycle, reducing
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SARTS to a greedy algorithm. Besides controlling plan-
ning cost, criterion (1) is also effective in achieving near
optimal response time in sequential plan and execute
paradigmsd]

CP(i) may represent elapsed time and may depend
on the number of nodes expanded during the ith cycle.
The expanded nodes are those, whose descendants were
generaied and were added, in the cormrect order, to the apen
list during cyde i. CE(i) the execution cost of
a path(s(), s(i+l)), where s(i+l) is the most promising
frontier node found by the planning in cyde i. The most
promising node refers to a node that hes the best potential
to be on the shortest path fo goal. The most promising
node found in a cyde becomes the start node of the next
cycle. CE(i) in SARTS is calculated by adding the
of the edges on the cument partial path(s(i),s(i+)) =
{600 1), ..o (mosCi+1D}).

At the end of planning in cycle i, SARTS leaves a
spedal number at the s(i). This number represents the
second best choice at each node on the traversed path. As
the node with the best heuristic esiimate is traversed, the
heuristic value of the second best node at that decision
point is left as the new heuristic esimate of the traversed
node. A later cycdle may utilize the result of a prior cycle
via this special number to avoid looping in cydes indefi-
nitely[4).

During the execution phase, the partial path planned
in the plan phase of the cumrent cycle is executed. The
pamal path may consist of one or more edges in the graph.

The execution phase of a cycle in SARTS may consist of
traversing the entire partial path. Planning canied out in
each cyde oonsists of several iterations. An iteration of
the SARTS algorithm is similar to an iteration of A* [10].
Each iteration removes the most promising node from a
list of unexplored nodes (i.e. the open list), generates the
immediate children of that node (expanding a node), adds
those children to the apen list, and sorts the new list with
the most promising node first The fterations of SARTS
are freated as atomic, i.e. each iteration will carry out ail
of the above mentioned tasks.

We note that CE(i) is undefined before the first iter-
ation in cycle i. After an iteration in cycle i, CE(i) repre-
sents the execution cost of path(s(i),n), where n is the
most promising node at the end of the iteration. The stop-
ping criteria for cycle i is examined after each iteration.
The minimal planning in a cycdle is an iteration, which
makes SARTS behave like a greedy local gradient desoent

algorithm. Such a cydle is called greedy cycle. During the

plan phase, greedy cycle only expands the cumrent node
s(i). The set of s(i)'s descendanis make up the open list.
The most promising descendant is thus chosen at the end
of planning. The exeaute phase consists of traversal of a
single e (s(i)s(i+1)).

3.1. Sef-Adjustment

Planning time is controlled as a fraction of total
execution time via the paramel & in SARTS. The value
of @ mey be determined at compile time to remain con-
stant from cycle to cycle. However, in meny applications,
it is desirable to adjust a from cycle to cycle, as additional
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information becomes available. Self-adaptation of a is
useful in order to respond to a wide variety of deadines in
an progressively optimizing fashion or to respond to
changes in the world at run-ime. We define a set of basic

and explain how SARTS selfadjusts the parame-
ter & 1o control planning lime based on slack.

Let T'{) be the remaining ime to deadiine at the
beqmnlng of the ith cycdle. T'(i) can be expressed as
p-T (:). where D is the absolute deadline by which hme
SARTS is required to plan and execute path(s,g), ad
T°(i) is the starting time of cydle i. Let T,y be the true
execution time of executing a path from S(I) to the goal
node. T,"(i} is estimated at the beginning of cycle i with
help from a heuristic function A{x{#), g}. Note that T,"(i}
can be expressed as the sum of CE(j) over forthcoming
wdal i+1, ..., k where goal is reached in cydle k. Let

Tl dencke the time that SARTS will alocate to plan
te complete  path(s(i)T,"(i?) can be expressed as a sum
of CP(i) over forthcoming cydles i, i+1, ..., k. In general,
estimating planning time is a non-trivial problem, and can
be as difficult as findng path(s(i),g). SARTS does not
amatoeshmatethevalue of Tp'(f). Instead SARTS
oonirols the maximum values for plannlng times CP(j) and

T,"{f) on the basis of available slack.

Lemma 1: If all cydes of SARTS are non-trivial (i.e.
CP(i) and CE(j) are large with respect to the cost of a sin-
ge SARTS iteration), the stoDDing criterion of SARTS
allocates approximately aT,’{f} tme for planning, ie.
T, /(i) =a¥,’(i). Foraproofsee[11].

Let slack, Tyl represent the remaining time to
deadine after a path from s(i) to g is executed. Slack pro-
vkj&sanumerbwrdmtheﬁmehatmbealbcatedto
planning. We note that: Typeli) =TT () ~ T,"(D 2 T,(),

or T/(Na@STyaldy o afi)s Tt ()

a(i} S 0] -1(m), or o= —-L(:)—-—

T/ o C o Bgs(ig)
where A" is an admissible heuristic. The above calcula-
tions are interesting since they provide upper bounds on
the possible time to plan. Equations 2a and 2b show that
the upper bound on the value of alphafi) is directly pro-
portional to slack and that shorter slack causes a reduction
in the value of a(i). Intuitively, small slack mears that
there is little ime for planning and that the planning pro-
cess of SARTS a greedy local gradient descent
search. We also note that the atomicity of SARTS itera-
tions imposes lower bounds on the values of a(i)» since
the smallest amount of planning camied out by SARTS in
ay cyce is equal to that in an iteration of A*. Self-
adjustment of parameter a(i) must observe these bounds.
It hes been shown [11] that SARTS reduces to A* for
large deadlines, and that SARTS reduces to a greedy local
gradient descent search, if deadines are tight leading to
small slacks.

3.2. Prediction of Deadline Violation

A unique aspect of SARTS relates to the tests that it
provides to classify tasks into feasible, and infeasible
tasks, based on the knowledge about the nature of the
heuristic function. SARTS may not acoept a task, if the



infcasibility tests show that the deadline cannot be met
Since infeasibility tests cannot discriminate befween feasi-
ble tasks and inconclusive tasks, SARTS oontinues to
monitor a task from cycle to cyde to guard against the
danger of an inconclusive tasks becoming an infeasible
task as time goes by. Using the tests, SARTS is able to
predict the possibility of deadiine violation ahead of time.
Given an application domain, feasibility tests may be
designed based on the domain knowledge.

InfeaS|b|I|ty Test Given an admissible heuristic function
h%s,g), SARTS considers a task to reach the goal node g
from a start node s(i) at the beglnnlng of cycle i to be
T

infeasble if a(f) = <0. A negative value
ho(s(i), 8}

for a{iy shows that SARTén'aymtbeatjeandthe

deadine, since the slack is slack times

are indicative of the fact that the estimated total execution
time is larger than the remaining time to deadiine, making
the task infeasible.

Feasibility Test Given a perfect heurstic function
h (s,g), SARTS considers a task to reach goal node g
frpm a d’nlﬂ’ rvvhrc'ﬁ: at tha l’w‘llnnlnma nfr;yde |t0 be fea-
sble ia(f)= -1 — e ais te
h(s(D), 82 h*(s(i). 2}

cost of one tteration of A* and n is an estmate of the
number of edges (decision points) to goal. The number of
dedision points to goal, n, depends on the distribution of
execution cost per edge. For example, in a graph with the
sare execution oosts for all edges, n can be estimated by
the heuristic function, h. In general, an interval or an
upper bound estimate for n can be derived from the distri-
bution of edge execution ocosts for a given confidence
level. We note that estimation of n does not need any
assumptions about the planning cost.

Lemma 2: Given h*, SARTS will find and execute a solu-
tion to a problem instance within the problem's given
deadiine, if the problem is classified as feasible. For a
proof see [11].

Note that the discussions on a perfect heuristic are
induded here to argue that the comedness and predictabil-
ity of the feasibility tests are comelated with the power of
heuristics available for the particular domain, and that the
expeded utility of the tests inareases with the accuracy of
the heuristics.

4. Experimental Evaluation

In our experiments we have different ver-
sions of SARTS with each other and with RTA*(n)[12, 13]
The problem instances of the experiments consist of
gaphs that represent the state space of all partial and com-
plete solutions. Each version of SARTS focuses on a sin-
gle characteristic of SARTS, in order to test the effect of
that particular characteristic on the peformance of
SARTS, in isolation.

We will review the basic sieps of RTA*(n) fo facili-
tate interpretation of our observations. At each cycle,
RTA"(n) first creates the suooessor nodes of the cumrent
state. The current state is the actual position of the sys-
tem. As each suooessor node s created, its estimated dis-
tance from the goal (i.e. h), the cost from the current node

(i.e. g), ad the sum of h and g (i.e. f are calculated. The
eudidean distance formula is used fo calculate the heuris-
tic values. This heuristic formula is monotonic [12] and is
guaranieed to produce optimal solutions in A*. In the
e of RTA*. this heunstic formula allows substantial
pruning of frontier nodes without loss of valuable infor-
mation in reaching a partial solution. Notice that, unlike
A in which g is the value of the total cost so far, namely
from the start node to the cument sucocessor node, in
RTA*, g is the value of the cost from the cumrent node to
each of its suooessor nodes. The h values are calculated
via look-ahead search. The general rule of thumb is that
the larger the number of look-aheads (i.e. the larger the n),
the better the estimated f value (i.e. g+h) will be. How-
ever, we enoountered cases in which the greater look-
aheas led the algorithm to more costly solutions. Also,
one must note that while greater look-aheads are generally
helpful in finding shorter paths to the goal (i.e. lower
exeaution cost), they require more processing and plan-
ning (i.e. higher planning cost). Once all the sucoessor
nodes and their f values are determined, the algorithm
sorts these nodes with respedt to their f values. The suc-
cessor node with the smallest f value is chosen as the next
physical move for the RTA* algorithm. This process is
repeated until a solution is reached. While this algorithm
can not guarantee termination in the case of graphs with
no solutions, it does guarantee that it will not get stuck in
local minima and graph cycles. This is done by penalizing
cyclic and deadend paths, and by leaving the h value of
the second best path at each dedision point [12]. The
greedy algorithm is a spedial version of RTA*(n) in which
the search algorithm examines only the immediate neigh-
bors of the curent node, without any look-ahead search,
to meke a dedision about its next move.

The different versions of SARTS that are tested in
the experiments of this section are as follows. The FL(n)
algorithm performs a fixed number of iteraions during
each scheduiing cycle, starting from the cumrent node of
the cycle as the start state. During the execution cycle,
this algorithm traverses the whole partial path that wes
panned during the scheduling cyde (i.e. FL(n) may tra-
verse more than one edge at each exeaution cycle). Note
that this algorithm is not capable of controling the
scheduling effort at run time. FL(n) is also not sensitive to
the remaining time to deadine. FL(n) differs from
RTA*(n) in that it performs the look-ahead search starting
from the cumrent node rather than having a separate look-
ahead search for each neighbor of the cument node. The
FA{er) algorithm differs from FL(n) in that it uses a stop-
ping criterion similar to that of SARTS (inequality 1 of
seciion 3) to terminate a scheduling cycle. The parameter
a in the stopping criterion of FA{a), however, is fixed
from ore cycle to the next. This algorithm does not adjust
the scheduiing effort based on the remaining time to dead-
line. During an execution cycle, {a) raverses all edges
in the partially planned path of the previous scheduling
cycle. The SS algorithm is that version of SARTS which
traverses a single edge during each execution cycle. Its
scheduling phese differs from Kex)'s in that the parame-
ter e of SSs stopping criterion is adjusted at each cycle,
basaed on the remaining time to deadline. Table 1 summa-
rizes different algorithms' characteristics in terms of their
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exeaution effort per cyde and their planning effort alloca-

tion per cycle.

Tatk 1: Agaihms ad therr dsinguishing dreraderisics
Alg, execule/cyrle planfoyele
RTA*{n) 1edge baounded look-ahead depth n

for exch neighbor of current node

n A* ilerations slarting from current node

Fl(n} partit] path

FAla) partial path {eonstant o) *(exscution cost of panial path}

113 1edge (adjusiable o)*(execution cost of partial path}

SARTS partind path | (adjustable a)*(execution cost of partial puh)

4.1. Reak-Time Tasks & Deadline Compliance

The ability of an algorithm to meet deadines of a
high percentage of tasks measures its capability to comply
with the time constraints of tasks, its capability to predict
deadine violation, and its capability to guarantee compli-
ance with the time constraints of those tasks whose dead-
lines were predicted to be met. In this section, we com-
pare different versions of SARTS with RTA*(n), via

i that evaluate the deadine compliance ability
of each of the algorithms. The parameters of the exper-
ment are the graph size in terms of number of nodes k, its
degree of connectivity # , different values of the look-
ahead parameter n, different values of the parameter & of
the stopping criterion of SARTS, and the deadines. We
chose the value of 4/ for the degree of conneclivity of the
gephs generated for our experiments. The problem
instances consist of 870 distinct (start, goal) pairs on a
randomly generated graph of 30 nodes. Each
instance is run under a set of deadines (i.e. 10, 20, ...,
1000). For this experiment, values n =0, 1, 2, 3, and 4
were chosen for the look-ahead parameter in RTA*(n),
and values a =0.1,1,3, and 10 were chosen for the param-
efer & in different versions of SARTS.

——
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Figures 1, 2, and 3 demonstrate the results of the
experiments on SARTS, SS, FA(a), FL(n), and RTA*(n),
where n is the fixed look-ahead depth. Figure 1 compares
Ihe FL(n) with RTA*(n). This comparison wes performed

to evauate the effect of a uniform-breadth look-ahead
search for every neighbor of a current node versus that of
an overal partial A* search which explores, more in
depth, the more promising frontier nodes. RTA*(n) may
lead to shorter paths in terms of execution costs. This
algorithm, however, incurs larger planning oosts than
FL(n). As is shown in the figure, FL(n) (n=0,1,2,34) per-
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foms as well as or better than RTA*(n) (n=0,1,2,34) for
most n. The of FL(n) is improved over
RTA*(n), due to the fact that FL(n) expands fewer nodes

by performing a top-level search starting from the curmrent
node at each cycle. Figure 2 compares FL(n) and FA(a).

Comparison of FL{n) and F {a) wes performed to evalu-
ate the effect of a constant look-ahead bound versus that
of a look-ahead bound that is a function of the execution

costs. Using a look-ahead bound as a function of the
exeaution costs ams at controlling the planning effort
besad on its tradeoff with execution cost to address mini-

mized total response times. As is shown in the figure,

FA{a) perfforms the same as FL(n) for « =0.1 and 1.

FA(a) shons much improved performance, however, for
@ = 3 and 10. The improved performance is due to the
fact that He) uses a stopping criterion that acoounts for
scheduling effort as well as the execution cost.

Comparison of SARTS and {&) would reveal the
effect of self-adjusting parameter a based on the remain-
ing ime to deadline versus a fixed a that is insensitive to
the progress of the algorithm towards meeting its deadiine.
In comparing the SARTS and the SS algorithm we count
the ratio of tasks whose deadines were met over all 870
possible problem instances. This formula concentrates on
finding the fraction of complied deadines over all tasks.
This comparison was mainly done to evauate the effect of
partial path traversal versus single-edge traversal during
each execution phase. Ore of the conseguences of single-
edge traversal is that there will be more planexecute
cydes which allow the algorithm to monitor progress
towards the goal. The drawback of single-edge traversal,
however, is that it does not take full advantage of the plan-
ning effort in a cycle. This approach thus leads to
inceased overall planning for each problem instance.
Figure 3 demonstrates the resullts of the experiment com-



paring the SARTS algorithm with SS, FL(4) and FA(OLl).

As is shoan in the figure, SARTS performs as well as the
best He} by seff-adjusting &« besed on slack. The SS

algorithm wes found to predict many more deadine viola-
lions and incured a larger number of false alams than

SARTS. The large number of false alam predictions in

SARTS caused a poorer overall deadiine compliance over
all problem instances.

4.2. Deadine Violation Prediction
We examine the use of negative a in the infeasibil-
ity test of SARTS as an indicator of possible deadine vio-
lation in this sub-section. We also examine the effect of
different heuristics on predictability of SARTS. We use
(TN), false-negative (FN), false—posruve(FP)
and 1rue~posnwe (TP) categories, in order to eval
TP I&redlchon acouracy of the test is measued as
+

—————— % 100. We note that the two measures of
# of instances

acauracy and frue positivity together signify the depend-
ability of an algorithm. The accuracy measures the pre-
dictive power of an algorithm. True-positivity, on the
other hand, measures the deadine-compliance ability of

an algorithm, since it the number of acoepted
problem instances which met their deadlines.

To explore the effect of different heuristics in pre-
dicting deadline violation, we ran a set of experiments on
agrid world. In a grid, the nodes are arranged to form a
redangular grid in which each inner node with coordi-

reies (i) is connedied to all its neighboring nodes (ij+1),
(ij-1), G+wj), and (i-wj) via an edge, where w is the
width of the grid. An inner node is defined to be a node
that is not on the periphery of the grid. For these experi-
ments, a 10 x 20 grid was generated. 572 (start, goal) pairs
were examined, where each start and goal node wes
selected to be an inner node.

Tabe 2 Deadre Carpbnee of SARTS wih EuddeenDisenee
Fundon for 572 padem insances.

D 0] 30|50 )7 | %]|2X
™ 0 3o 8 1B 17 6 0
M 544 | 404 327 (262 | 2151 N9
FP 0 0 0 ] 0 0
TP 28 [ 128 | 227 | 293 | 351 | 483
Acg, | 100 ] 95 F 97 | 97 | 99 | IO

Four different heuristics were examined in these
experiments. Manhattan distance wes used as an exact
esiimator of the remaining distance to goal in the grid
world. As an overestimator of the distance, we used
twice the manhattan distance as one of our inadmissible
heuristics. Eudlidean distance was used as the underesti-
mator of the distance. The fourth heuristic is also an inad-
missible estimator based on the manhattan distance with
introduced emor that is randomly added to or subtracted
from the exact estimate each time. In the figures, the plots
comesponding to different heuristics are labeled as fol-
lows. "Perfect’ denoles Manhattan Distance Heuristic,
"Admissible" denotes Eudidean Distance, "Inadmissible™
denotes Double Manhattan Distance (Over-estimate), ad
"Noisy" denoies Error Distance.

We expect the underestimating heuristic to have no
instances over all deadines. This is due to
the fact that the frue planning and execution costs incurred
by the algorithm are expected to exoeed the estimated
value provided by the underestimator. In using the exact
estimator of the remaining distance, we expect to see high
degress of predictability. The overestimator is expected to
provide an upper bound on the true planning and execu-
tion costs incured by the algorithm. Thus, a problem
instance that is predicted to meet a deadiine, using this
heuristic, is expeced to do so. The expeded behavior of
the algorithm with a noisy heuristic estimator is lower pre-
diction accuracy.
Tae 3 Deadre Carpce of SARIS wih DobelVarten
Deanee Fundion for 572 padem insanaes.

10| 3 | s50]| 72| 9% 20
0
0
0

0 0 0 0 0
561 | 467 | 30B } 130 | 56
0 Q 0 0 a
11 | 105 | 264 { 352 | 516 | 572
100 | 100 | 100 ]| 100} 100 | 100

Tables 2 through 5 show the results of these experi-
ments. The row heading D, in the tables, dendies deadiine
values, and the row heading Ace. dendtes the accuracy.
Table 2 provides the data for SARTS with a eudlidean-
distance heuristic. As expected, this heuristic provides a
goad infeasibility test (i.e. a problem instance that wes
predicted to be infeasible, did in fact miss its deadline).
Tabe 3 provides the data for SARTS with double-
manhattan-distance heuristic. This estimate due fo its pes-
simistic nature, provides 100% acouracy for all problem
instances over all deadlines. This kind of heuristic is use-
ful when missing deadines can have highly undesirable
effects. Note that all problem instances that were pre-
dicted to miss their deadiines, in this experiment, did in
fact do so (i.e. 0% TN's). Table 4 provides the data for
SARTS with a manhattandistance heuristic. This esti-
mete provides very high prediction acourades for all prob-
lem instances, over all deadiines. We note that the few
number of deviations in predicting deadiine violations are
due to the cost of a single iteration (i.e. &) that can be
incured in a SARTS cycle when the stopping criterion is
met. Examining the problem instances that were not cor-
recﬂypredlctedbySARTS using a manhatian distance
heuristic, revealed that the deadines were missed by one
time unit (i.e. ¢ in this experiment) in all cases. As is
shown in the tables, the manhatian-distance heuristic pro-
duced the highest percentage of true-positive cases, which
signifies the higher degree of deadiine compliance for this
heuristic. Finally, table 5 provides the data for SARTS
with a noisy-manhattan-distance heuristic. As expected,
this heuristic produced predictions with lower accuracy
and lower deadine compliance even for larger deadiines.
Figures 4 and 5 demonstrate the effect of different heuris-
tics on the dependability of the SARTS algorithm. As is
shoan in figure 4, the perfect heuristic ouperforms the
other heuristics in its effect on deadine compliance of
SARTS. Figure 5 demonstrates the effect of different
heuristics on the predictability of SARTS. According fo
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the figure, the overestimating heuristic enables SARTS to

provide 100% predictability. The perfect and the admissi-

ble heuristics perform similarly. The perfect heuristic,

however, reaches 100% predictability sooner (at smaller

deadines) than the admissible heuristic.

Tatke 4 Deadre Conpbnee of SARIS with MertetenDsenee
Fundon for 572 pddem insanass.

D 10 0 50 Fl] 9 | 200
TN 1] H 1t n 0 0
4
i]

N 544 | 404 | 244 | B4 0
FP 0 Q a 0 Q
T 28 [ 154 | 317 | 477 | 568 | 572
Ace, | 100y 58 | 98- | 9B | 100 | 100

ey .
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Pipery 4. - Dusilline: Complloncy Bokavior of SARTE lor Dffrwn Hurisies,
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Parfect
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“aBmaARAy &

'Dk
WX NO RGN R 00D N IR N IR
Tundiivs:

Pugwr 5. Prolicvr Satwrrice of FARTE for Tillarwss; Haprisd s,

Table 5: Desdline Compliznce ¢f SARTS with Error-Distance Function
for 572 problem ingtances,

10 | 30 | soj 70| % | 200
6 | 54 105|141 | 146 | ©
540 | 430 ) 282 | 158 | &9 4
0 0 0 0 0 0
16 | 88 | 185 | 293 | 357 | 568
Ace. 1 97 | 91 | 2] 14 {1

332147

5. Conclusion

realime algorithms should strive to
meet the time-constraints of a given set of tasks. These
algorithms should also provide tests to detect possible
deadine violations ahead of time. Finally, a realime
algorithm should acoount for its own planning time as
well as the execution cost of the solution it produces, in
order to meet deadiines. SARTS is a new reaHime search
algorithm. It allocates time for planning based on the
sticiness of deadline and esimated slack. The self-
adiustment and monitoring of planning time is a unique

226  AUTOMATED REASONING

feature of SARTS. For very loose deadines and large
slack, it behaves like A* and finds high quality solutions.
For tight deadines and small slack, it behaves like a
geedy algorithm in the hope of reducing the planning
ime. SARTS aso provides an infeasibility predicate,
which is monitored continuously to predict possible dead-
line violation ahead of time. Experiments show that
SARTS provides higher deadiine compliance than a well-
known reaHime search algorithm. The infeasibility test is
found to be reasonably accurate in the experiments for
various deadines and its effeciveness is related to the
accuracy of the heuristic functions used.
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