
K - b e s t : A N e w M e t h o d f o r R e a l - T i m e D e c i s i o n M a k i n g 

Joseph C. Pemberton 
pemberto@cs.uoregon.edu 

Computational Intelligence Research Laboratory 
1269 University of Oregon 
Eugene, OR 97403-1269 

U. S. A. 

Abst rac t 

Many real-world problems, such as air-traffic 
control and factory scheduling, require that a 
sequence of decisions be made in real time. The 
real-time constraint means that we typically do 
not have sufficient time to find a complete solu­
tion to the problem using traditional methods 
before we must commit to a decision. We pro­
pose an incremental search approach to mak­
ing real-time, sequential decisions, and then 
present a new decision method called k-best, 
which is both an extension of an existing real-
time decision method (MINIMIN) and an ap-
proximation to a decision-theoretic approach 
to the real-time decision problem. We next 
provide an analytical bound on the worst-case 
expected error when k-best is used instead of 
the optimal decision method. The average-
case performance of k-best is then compared 
to MINIMIN on a set of randomly generated 
problems. Our results show that k-best is an 
improvement over MINIMIN, although MIN­
IMIN performs quite well. Given that MIN­
IMIN is very efficient and easy to implement, 
we conclude that it should be the algorithm of 
choice for many real-time decision problems. 

1 In t roduc t i on 
One example of real-time decision making is factory 
scheduling when the objective is to keep a bottleneck 
resource busy. In this case, the amount of time available 
to decide which job should be processed next is limited 
by the time required for the bottleneck resource to pro-
cess the current job. Once a new job is scheduled, the 
time until the new job finishes processing can be used to 
decide on the next job. In general, this class of problems 
requires the problem solver to incrementally generate a 
sequence of time-limited decisions. This consists of three 
sub-parts: gathering information (e.g., what jobs need 
to be processed), deciding when to stop gathering infor­
mation (i.e., what the decision deadline is), and making 
a decision based on the available information (e.g., what 
job to process next). For this paper, we have focussed on 
the last question, namely how to make decisions based 

on a partially explored problem space. We first summa­
rize the incremental search approach to real-time deci­
sion making based on searching a random decision tree 
with limited computation time. We next define the last 
incremental decision problem and develop the necessary 
steps for making an optimal incremental decision. We 
then argue that this approach is impractical due to the 
size and complexity of the equations needed to express 
the expected value. Next, we present and analyze k-best, 
which is both an approximation to the optimal decision 
method and also an extension of MINIMIN. We present 
experimental results that compare the performance of 
MINIMIN and k-best on randomly generated problems. 
Finally, we discuss related work and conclusions. 

2 A Real-Time Decision Prob lem 
Real-time decision making can be modeled as searching a 
problem-space tree with a finite amount of computation. 
In this model, each node of the tree corresponds to a 
decision point, and the edges emanating from a node 
correspond to the choices (operators or actions) available 
for the decision at that node. Each edge has a cost or 
penalty that the problem solver will incur if it chooses 
to execute the action associated with that edge. The 
node cost(x) is the sum of the edge costs along the path 
from the root to node x. An example random tree is 
shown in Figure 1. The objective is to reach a lowest-cost 
leaf node given the computational constraints. The more 
general problem of finding the minimum-cost leaf node 
in a random-tree has been studied in depth (see [Zhang 
and Korf, 1995] for a summary). In general, the task 
of finding a minimum-cost leaf node typically requires 
computation that is exponential in the tree depth. For 
real-time search, there is not sufficient time to find an 
optimal solution, so we must consider search methods 
that satisfy the real-time constraint. 

We model the real-time constraint as a constant num­
ber of node generations allowed per decision. This is 
equivalent to having a deadline for each decision. We 
assume that the problem solver gathers information by 
expanding nodes (exploration) until the time available 
runs out, after which it chooses one of the children of 
the current root node as the new root node (decision 
making). This process is repeated, incrementally gener­
ating a complete solution. 

PEMBERTON 227 



Figure 1: Example of a random tree problem. 

3 The Incrementa l Decision Prob lem 
We begin by describing the last incremental decision 
problem, which is a simplified version of the general in­
cremental decision problem. An example of a last incre­
mental decision problem is shown in Figure 2. In this fig­
ure, the black edge costs are known, 
and the grey edge costs (z1,..., z8) are independently cho­
sen at random from a known distribution. The decision 
task is to choose a child of the current root node so that 
the expected cost of a complete root-to-leaf path is min­
imized. After we choose a child of the current root node, 
then we can expand the frontier nodes below that child, 
and learn the remaining edge costs in the chosen subtree, 
before making the remaining decisions. The last incre­
mental decision problem is basically a choice between a 
set of partially explored subtrees in which we will subse­
quently execute a sequence of optimal decisions. 

The general incremental decision problem is just an 
extension of the last incremental decision problem to an 
arbitrary number of decisions. The main advantage of 
studying the last incremental decision problem over the 
general incremental decision problem is that we know 
that the remainder of the tree will be explored after the 
decision is made. This means that the distribution of 
minimum-cost paths that will be traversed below a given 
child of the root node is the same as the distribution of 
minimum-cost paths in the tree below that child, inde­
pendent of the decision and exploration methods. This is 
why we have focussed our efforts on the last incremental 
decision problem. 

4 Mak ing a Last Incrementa l Decision 
Consider the last incremental decision problem shown in 
Figure 2. The top two levels have been explored, and 
the bottom level of the tree (the gray edges and nodes) 
has not been explored. At this point, we must choose 
between nodes B1 and B2. We know that the remaining 
edge costs are chosen independently from a uniform dis­
tribution over [0,1], and that once we make a choice, we 
will be able to explore the remaining edge costs in the 
chosen subtree before making any additional decisions. 
The reader is encouraged to stop and answer the follow­
ing question: Should we move to node B1 or node B2? 
The obvious answer to this question is to move toward 
B\ because it is the first step toward the lowest-cost 
frontier node This de-

228 AUTOMATED REASONING 

Figure 2: Example of the last incremental decision prob­
lem. Which node is a better decision, B1 or B2? 

cision strategy, which is called minimin decision making 
in [Korf, 1990] (or simply MINIMIN), has been employed 
by others for single-agent search (e.g., [Russell and We-
fald, 199l]), and is also a special case of the two-player 
minimax decision rule [Shannon, 1950]. 

In fact, the optimal decision is to move to node B2 be­
cause it has a lower expected minimum root-to-leaf path 
cost. The expected minimum root-to-leaf path cost (or 
simply expected minimum path cost) through either B1 
or B2 is the equal to the edge cost between the root 
and the child node plus the expected cost of the path 
that will be traversed after the remaining edge costs are 
learned. To make an optimal last incremental decision 
(and to show that B2 is the better decision in our exam­
ple), we must calculate the expected minimum path cost 
through both children of the root node given the edge 
costs in the explored tree and the edge-cost distribution 
for the unexplored edges. 

In order to calculate the expected minimum path cost 
for a child of the root node, we need to first calculate the 
distribution of minimum path costs for that child node. 
In general, the problem of calculating the distribution for 
a minimum-cost path from a child of the root node to a 
leaf node can be broken down into two steps. The first 
step is to determine the distribution for a minimum-cost 
path from a frontier node to a leaf in the tree. The sec­
ond step is to combine the frontier node completion-cost 
distributions with the known edge costs in the explored 
search tree. 

For node C\ in Figure 2, there is one unexplored level 
between the frontier node (C1) and the leaf nodes below 
it. The cumulative distribution can be calculated 
as follows is the edge-cost distribution). We 
assume that the edge-cost distributions are independent. 

Given the distribution for a minimum-cost path from 
a frontier node to a leaf node, the second step is to cal­
culate the expected minimum path cost through a child 



of the root node. This involves constructing a piece-
wise combination of the frontier-node minimum-path-
cost cumulative-distribution functions (CDF's). Figure 
3 shows the CDF's for frontier nodes as 
well as the combined CDF for node B\ for two differ­
ent relative values of y1 and 

. . . 
Finally, the cumulative-distribution functions for the 

children of the root node (i.e., B1 and B2) are differen­
tiated to yield the probability density functions (PDF's) 
for minimum path cost through these nodes. These 
PDF's are then used to calculate the expected minimum 
path costs through each child of the root by integrating 
over the range of possible root-to-leaf path costs. The 
optimal last incremental decision is then to move to the 
child with the lowest expected minimum path cost. 

We can now return to the example in Figure 2. If 
we assume without loss of generality that then 
the equation for the expected cost of a complete path 
through node B1 is: 

An analogous equation applies for node B2. Sub­
stituting the edge costs from Figure 2 into Equation 
1, we get E(min.path.cost(Bi)) - 1.066, whereas 
E(min-path-cost(B2)) = 1.06. Thus node B2 is the 
optimal decision for this example. Intuitively, a move 
to node B1 relies on either having a low cost, 
whereas a move to B2 has four chances and 
z8) for a low final edge cost. Thus, an optimal last in­
cremental decision is a move toward the child node with 
the lowest expected root-to-leaf path cost that will be 

traversed after the incremental decision is made and the 
remaining edge costs are learned. 

In general, finding an optimal last incremental deci­
sion is impractical for all but a few small search trees. 
The difficulty comes from the fact that the distribution of 
minimum path costs through a child of the root can have 
a distinct distribution function for each frontier node 
in the child node's subtree. For example, consider the 
graph and tree shown in Figure 4. This tree has one more 
frontier node under B1 than our original example (Fig­
ure 2). The graph shows the cumulative distribution of 
minimum root-to-leaf path costs through nodes C1, C2, 
C3, and B1 versus the cost of a path to a leaf node. We 
observe that each of the three frontier nodes under B\ is 
responsible for a change to the minimum-path-cost dis­
tribution for B1 (Fcc(B1))- For example, the change in 
the distribution at is due to the fact that 
at first every minimum-cost path through B1 must also 
pass through C1. Once the minimum path cost is greater 
than or equal to then a minimum-cost path be-
low B1 can be through either , This additional 
choice causes a sharp rise in the cumulative distribution 
function for as shown in the graph. Since 
the number of frontier nodes in each subtree is exponen­
tial in the search depth, in the worst case the number 
of different functions needed to describe the minimum-
path-cost distribution is also exponential in the search 
depth. This is why calculating the expected minimum 
root-to-leaf path cost and consequently making an opti­
mal last incremental decision is only possible for a set of 
small search trees. 

Thus far, we have presented two disparate incremental 
decision methods: MINIMIN, which is easy to calculate 
but makes suboptimal decisions, and the optimal deci­
sion strategy, which only works on small search trees. 
In the next section, we present a new decision method 
that bridges the gap between MINIMIN and the optimal 
decision method. 

PEMBERT0N 229 



5 k-Best: A New Incrementa l Decision 
A l g o r i t h m 

k-best is a new algorithm for making incremental deci­
sions. It operates by maintaining a list of the k-best 
frontier nodes under each child of the root node as the 
subtrees are explored. These k-best frontier node costs 
are then used to calculate an approximation of the ex­
pected minimum root-to-leaf path cost for each child of 
the of node. The approximation is calculated by as­
suming that the child's subtree only contains the k-best 
frontier nodes. The k-best decision is simply to move to 
the child with the lowest k-best estimate of the expected 
minimum root-to-leaf path cost. 

Consider again the tree shown in Figure 4b. First, 
we observe that the the lowest-cost leaf node (C1) un­
der a given child of the root node has the greatest ef­
fect on the distribution of minimum-cost paths through 
that child because it determines the starting point of the 
minimum-path-cost distribution (i.e., Fcc(B1) initially 
equals Fcc(C1) because C\ is the lowest cost frontier 
node). The next largest effect is due to the location of 
the second-best frontier node (C2) in a child's subtree, 
and the size of the effect diminishes as we approach the 
highest-cost frontier node. For example, when the mini­
mum root-to-leaf path cost through B\ becomes greater 
than or equal to X1 + y2, then the distribution of mini­
mum path costs for B1 shifts to a new function that com­
bines the distributions of minimum path costs through 
C1 and C2. When the minimum path cost through B\ 
is greater than or equal to x1 + y3, then the minimum-
path-cost distribution for B1 shifts again to reflect the 
third frontier node, although the size of the second shift 
is much smaller than the first shift. In fact, it is of­
ten the case that the higher-cost frontier nodes under a 
given child node do not contribute at all to the distribu­
tion of minimum-cost path through that child because 

their node cost exceeds the minimum frontier-node cost 
by more than the maximum possible edge cost. 

k-best takes advantage of this observation by simply 
ignoring all but the k-best frontier node costs below each 
child of the root node. To make k-best tractable, we sim­
ply choose a value for k that is small enough so that we 
can calculate the expected minimum-path-cost equation. 
When k = 1, k-best and MINIMIN will make the same 
decisions (up to tie-breaking). Alternatively, when the 
number of frontier nodes in each subtree is less than or 
equal to k, then k-best makes optimal last incremental 
decisions. Thus k-best defines a continuum of decision 
algorithms between MINIMIN and the optimal decision 
method. 

The obvious question at this point is what is the cost 
in terms of solution quality of this approximation? The 
worst-case expected error for a k-best decision occurs 
when k-best chooses a decision that only has k good 
frontier nodes, and all the frontier nodes below the deci­
sion that wasn't chosen by k-best are good, in the sense 
that their node costs are very close to (or perhaps equal 
to) the minimum frontier-node cost. This is the situa­
tion where the optimal incremental decision has greatest 
potential advantage over k-best. An example of this sit­
uation is shown in Figure 5, where e is a small constant. 

For this example, the k-leftmost frontier nodes all have 
cost x, which is the minimum frontier-node cost, and 
the other m — k frontier nodes below node B1 have node 
costs equal to x + 1, which is equal to the minimum 
frontier-node cost plus the maximum edge cost. This 
means that only these k minimum-cost frontier nodes 
can contribute to the expected minimum path cost below 
B1. We assume that there are m frontier nodes below 
B2, all of which have a node cost equal to x +E. We also 
assume that there is one remaining unexplored level of 
the tree and that the branching factor in this level is b. 

230 AUTOMATED REASONING 



The expected error of a k-best decision is simply the 
difference between the expected minimum path cost be-
low the k-best decision (B1), and the expected minimum 
path cost below the optimal decision (B2)- For simplic­
ity, we assume that the unexplored edge costs are inde­
pendently chosen from a uniform distribution over the 
range [0,1] . Since the k 
minimum-cost frontier nodes are the only frontier nodes 
that can appear on a minimum-cost path below B1 the 
expected minimum path cost below B1 is equal to x plus 
the expected cost of a minimum choice between kb ran­
dom edge costs. For this edge-cost distribution, the ex­
pected cost of a minimum choice between kb random 
edge costs is l/(kb + 1). 

In order to calculate the expected minimum path cost 
below B2, we simply observe that the optimal decision 
after moving to B2 will be a choice between mb edge 
costs added to one of the m frontier nodes that have cost 
x + E. For this edge-cost distribution, the expected value 
of mb random choices is l/(mb-f 1). Thus the expected 
minimum path cost below B2 is x 4+ e +1 /(mb +1). 

The worst-case expected error for a k-best decision, on 
this example problem, is simply the difference between 
these two expected minimum path costs. In the limit 
as m goes to infinity and e goes to zero, this difference 
approaches l/(kb-\-1), which is the expected completion 
cost for the path below a set of k minimum-cost frontier 
node. This make sense, because as the number of frontier 
nodes below B2 increases, it becomes more likely that a 
zero-cost edge will be generated. 

Thus the worst-case expected error for k-best on a 
last incremental decision problem is bounded by the ex­
pected cost of a choice between kb unexplored edges. 
This expected-cost bound is a decreasing function of 
k. In addition, the amount of information that can be 
gained as k is increased is also a decreasing function of k. 
Intuitively, it seems reasonable that the most important 
piece of information about a root-child decision subtree 
is the minimum frontier-node cost, and the second most 
important piece of information is the second smallest 
frontier-node cost, etc. 

Figure 6: Average MINIMIN %error minus average 7-
best %error versus average node generations (b — 2). 

6 Exper imenta l Comparison of k-best 
and M I N I M I N 

In order to compare the average case performance of k-
best and MINIMIN, we performed a set of experiments 
on random trees with fixed branching factor, and with 
edge costs that are independently chosen from the set 

A value of 7 was 
chosen for k to make the k-best equations manageable. 
For each trial, random values were assigned to each edge 
of the problem-space tree, and then both MINIMIN and 
7-best were allowed to explore the problem space using a 
depth-first branch-and-bound exploration up to one level 
above the bottom of the problem-space tree. This is a 
last incremental decision problem with one unexplored 
level. After the MINIMIN and 7-best decisions were cal­
culated, the remainder of the tree was explored in order 
to optimally complete both paths. In addition to the 
7-best and MINIMIN path costs, we also calculated the 
optimal path cost in the completely explored problem-
space tree. We then recorded the percent solution-cost 
error, calculated as follows. 

We also compared the solution cost of the two algo-
rithms, and recorded the number of times that each al­
gorithm produced a lower-cost solution. 

The graph in Figure 6 shows the difference in aver­
age solution cost error for MINIMIN and 7-best. The 
vertical axis is the difference between the average MIN­
IMIN percent solution-cost error and the average 7-best 
solution-cost error, whereas the horizontal axis is the 
average generations used per decision for search depths 
ranging from 2 to 10. Each data point is an average 
of 10,000 trials, and the vertical line at each point in­
dicates the 95% confidence interval. The results show 

PEMBERT0N 231 



that 7-best produces solutions with lower average per­
cent error than MINIMIN. Although the improvement 
of 7-best over MINIMIN is very small, it is consistent 
over the range of random-tree problems considered. The 
results in Table 1 shows the percentage of the trials that 
either 7-best or MINIMIN produced a lower cost solution 
(i.e., wins a head-to-head competition), for the same set 
of experiments (with 95% confidence intervals). We note 
that 7-best wins more of the head-to-head competitions 
than MINIMIN for a given search depth. Although the 
percentage wins by 7-best is only slightly higher than 
the percentage wins by MINIMIN, this difference is also 
consistent over the range of random-tree problems con­
sidered. 

7 M a k i n g a Series of Decisions 
Up to this point we have only considered the last in­
cremental decision problem. We have also applied our 
k-best algorithm to the problem of making a series of 
incremental decisions. For a sequence of decisions, we 
can't guarantee that we will be able to see the bottom 
of the problem-space tree before the next decision, and 
thus the completion-cost distribution that we developed 
for the last incremental decision problem no longer accu­
rately reflects the situation that will exist for the next de­
cision. Instead, the distribution of minimum-cost paths 
that might be traversed below a frontier node will de­
pend on the decision-making algorithm, the exploration 
algorithm, as well as the factors that affect the last in­
cremental decision. For these reasons, and the fact that 
an optimal solution to the general incremental decision 
problem will be at least as complicated as the optimal 
last incremental decision problem, we have assumed that 
it is reasonable to model the general incremental decision 
problem as if it were a last incremental decision problem 
with one additional level of unexplored problem-space 
tree below the bottom of the search tree. 

To compare MINIMIN and k-best on a series of deci­
sions, we performed a new set of experiments where we 
fixed the search depth of the branch-and-bound explo-
ration and increased the number of incremental decisions 
(i.e., the depth of the tree). Figure 7 shows the percent 
wins (MINIMIN against 7-best) versus the log of the 
tree depth for a fixed search depth of 5 on a binary tree 
(with 95% confidence intervals). The results are aver­

aged over 10,000 trials, and show that as the number 
of decisions increases (i.e., the tree depth), the percent­
age of the trials that each algorithm wins initially grows. 
This makes sense because the number of opportunities 
for the algorithms to make a different choice increases 
with the number of decisions. What we didn't expect is 
that for more than about 300 decisions, the percentage of 
the trials in which k-best produces a lower-cost solution 
than MINIMIN continues to grow, at the expense of the 
percentage of the trials in which MINIMIN produces a 
lower-cost solution. This result clearly shows that k-best 
makes better quality decision on average than MINIMIN. 

8 Related W o r k 
The results presented here is an extension of our previ­
ous work reported in [Pemberton and Korf, 1994]. Our 
initial work was motivated by Mutchler's analysis of how 
to spend scarce search resources to find a complete so­
lution path [Mutchler, 1986]. Our work is also related 
to Russell and Wefald's work on DTA* [Russell and We-
fald, 1991], although they have not directly addressed the 
last incremental decision problem. Eric Horvitz [Horvitz, 
1990] has also investigated the problem of reasoning un­
der resource constraints, which he called flexible com­
putation. The MINIMIN decision method was initially 
employed by RTA* [Korf, 1990] and is a special case of 
the minimax decision rule that is widely used in game 
tree evaluation [Shannon, 1950]. 

The main difference between anytime algorithms 
[Dean and Boddy, 1988] and our real-time incremen­
tal search algorithms is that anytime algorithms ad­
dress what we refer to as the complete solution problem, 
whereas we have focussed on the incremental decision­
making problem. For example, in the random tree 

232 AUTOMATED REASONING 



model, an anytime algorithm would generate a complete 
root-to-leaf path, whereas to-best focuses its attention on 
improving the quality of the next decision. Thus, instead 
of generating a complete root-to-leaf path all at once, to-
best generates the root-to-leaf path one step at a time, 
while interleaving computation and execution. 

In some sense, we can view the computation for each 
incremental decision as an anytime decision problem. 
Thus the difference between incremental search algo­
rithms and anytime algorithms is in the way that the 
real-time search problem is formulated. Anytime algo-
rithms try to find the best complete solution under a 
time constraint, whereas real-time incremental search al­
gorithms try to find the best next decision under a time 
constraint. 

0 Conclusions 
We have presented to-best, which is a new method for 
making incremental search decisions. We have shown 
that the expected error of to-best on the last incremen­
tal decision problem with one unexplored level remain­
ing is at most equal to the expected cost of the mini­
mum of kb random edge costs, where k is the number 
of frontier nodes considered, and 6 is the branching fac­
tor of the nodes in the unexplored level of the tree, to-
best is both an approximation of the optimal decision 
method, and an extension of MINIMIN. Our experimen­
tal results show that to-best decisions are slightly better 
quality than MINIMIN decisions on average, and that 
this improvement does add up over long sequences of 
decisions. Since MINIMIN is easy to implement, and is 
typically very efficient to execute, we recommend it as 
the first choice for real-time incremental decision prob­
lems. When the resource constraint is on the depth of 
the search rather than the time spent searching (e.g., 
limited sensor range, unknown future job-scheduling re­
quirements), then to-best provides a useful way to incor­
porate additional information about future decisions in 
order to improve the overall quality of the decision se­
quence. 

[Horvitz, 1990] Eric J. Horvitz. Computation and Ac­
tion Under Bounded Resources. PhD thesis, Stanford 
University, December 1990. 

[Korf, 1990] Richard E. Korf. Real-time heuristic search. 
Artificial Intelligence, 42(2-3):189-211, March 1990. 

[Mutchler, 1986] David Mutchler. Optimal allocation of 
very limited search resources. In Proceedings, Fifth 
National Conference on Artificial Intelligence (AAAI-
86), Philadelphia, PA, pages 467-471, Palo Alto, CA, 
1986. 

[Pemberton and Korf, 1994] Joseph C. Pemberton and 
Richard E. Korf. Incremental search algorithms for 
real-time decision making. In Proceedings, Second In­
ternational Conference on Artificial Intelligence Plan­
ning Systems (AIPS-94), pages 140-145, 1994. 

[Russell and Wefald, 199l] Stuart Russell and Eric We-
fald. Do the Right Thing. MIT Press, Cambridge, 
MA, 1991. 

[Shannon, 1950] C. E. Shannon. Programming a com­
puter for playing chess. Philosophical Magazine, 
41(7):256-275, 1950. 

[Zhang and Korf, 1995] Weixiong Zhang and Richard E. 
Korf. Performance of linear-space search algorithms. 
to appear in Artificial Intelligence, 1995. 

Acknowledgements 
This research was supported by NSF grant #IRI-
9119825, the Air Force Office of Scientific Research un­
der contract 92-0693, ARPA/Rome Labs under contracts 
F30602-91-C-0036 and F30602-93-C-00031, a grant from 
Rockwell International, and an equipment grant from 
Hewlett-Packard. We would like to acknowledge help­
ful discussions with Rich Korf, Weixiong Zhang, and the 
members of CIRL. Thanks to William Cheng for tgif, 
David Harrison for xgraph, and the Free Software foun­
dation for gcc, gdb, and gnuemacs. 

References 
[Dean and Boddy, 1988] Thomas Dean and Mark 

Boddy. An analysis of time-dependent planning. In 
Proceedings, Seventh National Conference on Artifi­
cial Intelligence (AAAI-88), St. Paul, MN, pages 49-
54, Palo Alto, CA, 1988. 

PEMBERTON 233 


