Experimenting with Revisits in Game Tree Search

Subir Bhattacharya
Indian Institute of Management Calcutta
Joka, Diamond Harbour Road
P. O. Box 16757, Calcutta - 700 027, INDIA

Abstract

The oldest known game tree search algorithm
Alpha-Beta is still the most popular one. All other
algorithms in this area fall short of Alpha-Beta in
one or more of the following three desired
characteristics - high pruning power, low storage
requirement and low execution time. This paper
discusses how revisit of nodes can be used
effectively in game tree search. A few strategies of
introducing revisits in game tree search are
presented. It is demonstrated that for any shape and
ordering of the game free to be searched, there
always exists one strategy that, on an average,
consistently evaluates less number of terminals than
Alpha-Beta in comparable memory and time.

1. Introduction

In Artificial Intelligence, game tree search has ever been an
active area of interest Over years, a number of schemes
have been proposed for searching game frees, each having
its own advantages and disadvantages. Interestingly, the
oldest known game tree search algorithm, Alpha-Beta, is still
the most popular one. To judge the effectiveness of any
game tree search algorithm, we need to consider three
different characteristics of the algorithm - its pruning power,
its storage requirement and its execution time. Alpha-Beta is
a recursive depth-first procedure and needs little memory; it
is simple to implement and executes rather fast Other game
tree search algorithms like SSS* [Stockman, 1979], SCOUT
[Pearl, 1984] and their variations fall short of Alpha-Beta in
one or other respect

SSS* is bestfirst and iterative, and consumes a large
amount of storage space. Although the pruning power of
SSS* is greater than that of Alpha-Beta, the improvement is
more than offset by its excessive memory and overhead
requirements. Recently, two recursive variations of SSS*,
viz., RecSSS* ([Bhattacharya and Bagchi, 1993]) and
RecDual* ([Reinefeld and Ridinger, 1994]) have been
proposed. Empirical evidence ([Reinefeld and Ridinger,
1994]) shows that both of them dominate Alpha-Beta so far
as terminal nodes examined are concemed, and for any game
tree, one of them is always faster than Alpha-Beta. However,

the storage requirement of either is even higher than that of
SSS*. The cautious test-before-evaluate strategy of SCOUT
[Pear, 1984] is an extension of the Alpha-Beta algorithm.
The evaluation phase is essentially Alpha-Beta, and the
testing phase prior to it is an additional layer on top of
Alpha-Beta, which enhances the pruning power of the
evaluation phase. Apart from providing an altemative to
Alpha-Beta, SCOUT is important since it infroduced the
concept of revisits in game tree search. While in Alpha-Beta
and SSS* a terminal node in the game tree can be examined
atmost once, SCOUT allows revisit of its nodes - once
during the testing phase and then, if required, again during
the evaluation phase.

The purpose of this paper is to show how revisits can be
used effectively to examine less number of terminals than
Alpha-Beta in comparable time using affordable amount of
storage space. The base algorithm in which different
strategies for revisits have been experimented is rather a new
algorithm called QuickGame. This algorithm was obtained
as a special case of the generalized game tree searth
algorithm GenGame [Bhattacharya and Bagchi, 1994].
QuickGame uses a mix of depth-first and best-first strategies
to search the game tree and, for a uniform game tree of
depth d and branching degree b, requires about (b * d)/2
units of storage space. When run on random ftrees, on an
average, QuickGame examines less number of terminals than
Alpha-Beta ([Bhattacharya and Bagchi, 1992)).

However, in practice, the game tree to be searched is
very often strongly ordered, i.e., for any non-terminal node
in the game tree the probability that the leftmost child will
prove to be optimal for the node is very high. QuickGame
has the drawback that when run on such strongly ordered
game trees, it examines, on an average, many more terminals
than Alpha-Beta. In this paper, we introduce the concept of
revising a node in the algorithm QuickGame. We
demonstrate that for any shape and any ordering - random

or strong - of the game trees to be searched, there exists at

least one version of QuickGame which, on an average,
examines less number of terminals than Alpha-Beta in
comparable memory and time.

We first take a quick look at the algorithm QuickGame
and its relevant characteristics in section 2. Section 3
improves upon QuickGame by allowing revisit of nodes and

BHATTACHARYA 243

discusses the various ways in which revisits can be done.
Section 4 details our experimental results comparing
performances of Alpha-Beta, QuickGamc and its variations
on game trees with both random and strong orderings.
Section 5 condludes the paper.

Throughout the paper the root node s of the game tree
T to be searched is assumed, without loss of generality, to
be a MAX node. We use d to denote the length of the
longest path in T, and b to denote the maximum number of
sons that a non-terminal node in T can have, called the
branching degree. T is a uniform (b, d) tree if every non-
terminal node has exaclly b sons, and if every path from s
to a terminal node has length d; otherwise it is non-uniform.
Individual nodes are named using a Dewey radix-b code
[Pearl, 1984], in which the root node is represented by the
empty sequence, and the b* < b sons of a non-terminal node
xin T as x.i, 0 <i<b'"A static evaluation function v(.)
soores each terminal node from MAX's point of view. For
any non-terminal node x in T, let t,, be the minimax value of
the subtree rooted at x. When x is a terminal node, t,, = v(x).

2. A Quick Look at QuickGame

In SSS*, a global list of nodes called OPEN is maintained,
which, at any instant during execution, contains one
representative node from each solution tree of the game tree
T. The high pruning efficiency of SSS* is explained by the
fact that all solution trees in T are in contention at every
instant But in the process, the size of the global OPEN list
rises to b %2 units of storage space for a (b, d) uniform
tree. Alpha-Beta evaluates more terminals because it does
not keep all solution trees in simultaneous contention, but
compares in a depth-first scan the current solution tree with
the best one found so far. In QuickGame, we intend to go
for a compromise. QuickGame is a recursive procedure that
gets invoked only at non-terminal MAX nodes and at
tenninal nodes. Below any non-terminal MAX node p, the
subtree rooted at p is split up into as many subtrees as the
number of sons of p, and all the solution frees of these
sublrees are kept in simultaneous contention.

Let T be a uniform (b, d) game tree rooted at a MAX
node s. For ease of understanding d can be taken to be even,
but QuickGame runs just as smoothly on uniform trees of
odd depth and on non-uniform trees. Let p be a non-terminal
MAX node in T. If QuickGame gets invoked at p, it is
passed three parameters: the node p, and the two bounds,
alpha and beta. The bounds play a role comparable to that in
Alpha-Beta : alpha, the lower bound, is the highest currently
known value of all MAX ancestors of p, while beta, the
upper bound, is the lowest currently known value of all MIN
ancestors of p. At the root node s, alpha = and beta = .
When QuickGame retums from the call at node p, the
correct minimax value at p has been found, provided that the
value lies within the alpha and beta bounds specified in the
call. In order to find the best solution tree rooted at p,
QuickGame uses a local OPEN list of b entries; an entry for
a node x in OPEN has two fields, the Dewey code for x, and

244 AUTOMATED REASONING

the current value h(x) of x. The node p is expanded, and the

b grandsons p.i.0,0 <i < b, enter OPEN, with their h~values
initialized to beta(p). It is as if the set of solution trees
rooted at p is split up into b disjoint subsets, with each
subset having a representative in the local OPEN of p. For
a node x in the local OPEN, h(x) is an upper bound on the
minimax value of the subtree rooted at x. QuickGame is now
recursively invoked on the highest-valued node among these
grandsons, ties being resolved in favour of nodes having
lexicographically smaller codes.

Suppose p.i.y is currently the highest-valued node in the

local OPEN of p, where 0 <i<b and 0 <y <b. This node
being the representative of the cumently most promising
subset of solution trees, we explore below p.i.y by invoking
QuickGame on the node. If p.i.y is terminal, the call retums
the minimum over the upper bound on p.i.y and the static
evaluation socore v(p.i.y);, otherwise the call retums the
minimax value at p.i.y. On retumn, if piy is not the
rightmost among its brothers we replace p.y with its
immediate right brother p.i.y+1 which belongs to the same
set of solution frees to which p.iy belongs, p.i.y+1 is the
next node to be explored in this set of solution trees if this
set is still the most promising one. Since p.i is a MIN node,
the minimax value of p.iy ads as an upper bound on the
minimax value of p.i.y+1 and is assigned to h(p.i.y+l).
Alternatively, if p.i.y is rightmost among its brothers (i.e., y
= b-1), when the call on p.i.y retums, we have examined all
those solution frees of the subtree rooted at p sharing the
common MIN node p.i. Hence the value retumed by the call
acts as a lower bound on the minimax value of the MAX
node p. So no replacement is mede when y is b-1; h(p.i.y)
in such situation reflects the value of one completely
explored solution tree of the sublree rooted at p. The
algorithm now selects the current highest-valued node from
OPEN, and the entire cycle is repeated, until the node that
gets selected has the form p.i.b-1, and QuickGame has
aready been called at this node at some earlier instant In
such a situation, since h(p.i.b-1) is highest among nodes in
OPEN and is the value of a solution free of the sublree
rooted at p, h(p.i.b-1) defines the minimax value of p, and
the call retums from p to the grandfather of p. Since calls
are made only at MAX nodes or terminals, and each call at
a non-terminal node involves the use of a local OPEN of b
entries, the total storage requirement for all the OPEN lists
taken together is about (b * d)2 units. The algorithm is
invoked by calling QuickGame(s, -00 00).
Example 1 : Let the 2* = 16 numbers in Table 1 (see
section 3) comrespond to the static evaluation scores of the
terminal nodes in left-to-right order of a uniform (2,4) game
tree with a MAX node as root QuickGame evaluates 11 of
the 16 terminal nodes in the time sequence indicated below
the scores. Alpha-Beta, on the other hand, evaluates 14 of
the nodes; owing to its depth-first nature, the terminals get
visited in left-to-right order.

It is possible to construct examples where QuickGame
evaluates more terminals than Alpha-Beta.

Example 2 : If the 16 static evaluation scores of the (2, 4}
game tree were 38 given in Table 2, QuickGame would
evalusie 9 of the texminals, but Alpha-Beta only 7 of them.
Function QuickGame(p : node; alpha, beta : real) : real;

var x : node;

i,k * inmges;

r, h{0.b-1] : real;

OPEN{0..b-1} - array of node;
begin

i p is terminal then return minimum{beta, v(p));

for (each child p.i of p) do begln

hii} = beta;
W (p.i in terminal) them OPENi] = p.i
else OPEN[i] = p.i0;

ead;

r '» alpha, k 1= 0,

while (kfk] > r) do begia (* OPENIK] = x.j, say *)

k] = QuickGame(OPENIK}, r, hik]);
if (OPEN{k] is n terminal MIN node)
or (OPENTK] has no brother 1o its right) thes
£ 1= maximumdr, kfkf)
cloe OFPENTA] = xj41,
k := index in OPEN comresporling to nodle with
maximum h-value;

end;

relurs r;
end;

For the (3, 4) uniform tree of [Knuth and Moore, 1975],
Alpha-Beta makes 31 terminal node evaluations and
QuickGame evaluates 33 terminals.

Thus QuickGame must be making some cutoffs not
made by Alpha-Beta, and Example 1 verifies this. But
Example 2 shows that on occasions Alpha-Beta makes some
cutoffs not made by QuickGame.

The cutoffs made by Alpha-Beta are of two types,
shallow and deep (see [Pearl, 1984]). When a node p1
causes a shallow cutoff below a node p2, the Dewey code of
p1 must be lexicographically smaller than the code of p2.
Instead of shallow cutoffs, QuickGame makes what may be
called generalized shallow cutoffs ([Bhattacharya and
Bagchi, 1992]). These are just like ordinary shallow cutoffs,
except that a node g2 can get cutoff either by a node p1
with a code that is lexicographically smaller or by a node p3
with a code that is lexicographically greater. This added
generality is a consequence of the use of local OPENS. It
can be shown that for any game tree, all shallow cutoffs
mede by Alpha-Beta are also made by QuickGame.
QuickGame can also influence deep cutoffs. But the number
of nodes undergoing deep cutoff in QuickGame is much less
than the comesponding number in Alpha-Beta.

In Table 1, the 10th terminal from the left has
undergone generalized shallow cutoff while the 6th and the
8th terminals have undergone deep cutoffs in QuickGame. In
Table 2, the two terminal nodes evaluated by QuickGame
but not by Alpha-Beta have undergone deep cutoffs in
Alpha-Beta. In both tables, all shallow cutoffs made by
Alpha-Beta have also been made by QuickGame.

3. Introducing Revisits in QuickGame

Empirical results demonstrate ([Bhattacharya and Bagchi,
1992)) that QuickGame, on an average, evaluates fewer
terminals than Alpha-Beta when run on random trees. But
when game frees are strongly ordered, Alpha-Beta is a much
better choice over QuickGame. In actual games, the trees
generated very often tend to be strongly ordered, and hence
Alpha-Beta will be preferred. Is there any way of improving
upon QuickGame so as to dominate over Alpha-Beta even
in case of strongly ordered frees ?

The dominance of Alpha-Beta over QuickGame in case
of strongly ordered game trees can be explained in terms of
deep cutoffs. The more strongly ordered the game tree T is,
the higher is the probability that the optimal solution tree lies
towards the left of T. When run on T, Alpha-Beta in its
strict left-to-right scan of the game tree will encounter the
optimal solution tree very quickly, examine all the terminals
of it, and the value of the optimal solution tree thus obtained
will influence deep cutoffs while scanning the rest of the
game tree. Stronger the ordering of the game tree, more
pronounced is the effect of deep cutoff while running Alpha-
Beta on it. QuickGame, on the other hand, tries to equitably
distribute its search effort among disjoint sefs of solution
trees, and, in the process, delays complete evaluation of any
particular solution tree. As a result, when QuickGame is
being called on a non‘terminal MAX node p, the alpha
bound passed as a parameter is a very poor lower bound on
the minimax value of the node p, and hence fewer deep
cutoffs occur below p.

In short, to make QuickGame competitive to Alpha-Beta
for strongly ordered game trees, we have to improve upon
its capability to influence deep cutoffs and this can be
achieved only by providing improved lower bound while
calling QuickGame on a non-terminal MAX node. Let p be
a non-terminal MAX node in a (2, d) uniform game tree T
and let QuickGame be called on p with alpha bound, Ib and
beta bound, ub. Grandsons p.0.0, and p. 1.0 will enter OPEN
each with an h-value of ub. QuickGame will be recursively
called on p.0.0 with bounds Ib and ub, and let the call retum
the minimax value p.0.0, b « «) Wwhich now
becomes the b-value of the replacing node p.0.1. The next
node to be selected from OPEN will be p. 10 and
QuickGame (p. 1.0, Ib, ub) will be called. It may be noted
that when running Alpha-Beta on the subtree rooted at p,
node p. 10 will be called with lower bound, t,, and upper
bound, ub. What happens in QuickGame if, instead of Ib, we
pass h(p.0.1) = t, as the alpha bound while calling on
p. 10 ? Clearly, since pO is a MIN node, t,54 2 & Hence
deep cutoffs below the node p.1.0 will be even more
pronounced than the deep cutoffs influenced by Alpha-Beta
when called on the same node. QuickGame (p.1.0, h(p.0.1),
ub) will continue its search until either the minimax value of
p.1.0 has been found out in which case 1,9 > b{p.0.1) =
tpoo, and the value retumed will be minimum (ub, t,, o) ot
at some point of time during execution the largest h-value

BHATTACHARYA 245

selected from OPEN is leas than b = h(p.0.1) = 1,5, Note
that in the Iatter sination node p.1.0 may not get solved, and
the value returned by the call is » tighter wpper bound on the
minimax value of p.1.0. Problem ariacs if the game tree is
such that t,, > 1, > 1, The subtree rooted at p.1.0 bas to
be revisited st some later instant of time to find out its exact
minimsx value.

Extending the above argument, it is casy to sec that in
QuickGame, while making a call on a node p, if the lower
bosnd pessed as parameter is the second largest h-value
Jrom amongst the nodes in local OPEN whick are to the left
of p in the game tree, then no distinct node pruned by
Alpha-Beta will be examined by Quick(Game. When no such
second largest h-value is available (for example, when p is
o lefumost gramdson) the current lower bound of the
grndiather of p kas @ be veed.

But when lower bound is chosen in this manner, the gap
between the Jower and upper bounda temd to become very
sarrow; and henoe substantisi smount of revisit may bave io
be dowe. As & consequence, the totel number of terminals
examined, including revisits, may become very bigh.

In owr cxperiments, we bave considered three different
ways of determining the lower bound to be passed in & call
on a non-terminal MAX nede p, say, baving the highest h-
value in the local OPEN.

QGl: the lower bound passed is the minimum of the h-
valves of the nodes in OFEN which are lexico-
graphically smaller than p, ic., to the left of p.

QG2: the lower bound passed is the minimum of e b-
values considering all the nodes in the local OPEN.

QG3: the lower bound passcd is the sccond highest b-

value to the Jeft of p in the local OPEN.

QG1, QG2 or QG3. In QG, every node x in OPEN has an
sdditional field status baving 3 value of either SOLVED or
LIVE. Node x initially enters OPEN with status{x) = LIVE.
On examining & terminal, QG sets the corresponding status
a3 SOLVED. A call on » non-terminal MAX node p returns
the sistus of the highest h-valued node in the local OPEN as
the status of p. Heace QG returns a pair of values instead of
a single value retumed by QuickGame. On return, node p
will be replaced by its immediate right brother, if any, only
if status{p) &s SOLVED.
Procedure QG{p : node, alpha, beta : real);
var x : node;
i, jo & integer;
ib, r, 4f0..b-1} : real,
OPENJ0..b-1] : artay of node;
#atusf0.b-1] ; (LIVE, SOLVED);
begls
i p is lerminal thes returs (minimun{beta, vp)), SOLVED),
For {each child p.i of p} do begin
hfi} = bera; siatusfi} .= LIVE,
If (p.i is terminal) then OPENYi] i= p.i
else OPEN[i] = p.if},

end;
ibh .= glpha; r ;= aipha; k = O {* Remark 1 %)
while (hfk} > 7) do begln (* OPEN{k] = x J, say *)

wpdale Afk], satusfk] with QG{OFEN{X], ib, hik]),
If (satusfk} = SOLVED) then (* Remark 2 *)
If (OPEN{k] is a terminsl MIN node)
or (OPENTk] has no brother to its right) then
r = maximum(r, AfkJ)
wlse
begin OPEN[k] = x.j+1, status{k] := LIVE, ead,
k = index in OPEN corresponding 1o node with

Noie that the claim sbout Rot exsmining a node pruned b m Selout B OPENY, @ Remmes 4
byAlphl-BetlilnotvﬂidinQGlmdQGl ll'(lbakﬁ']}ﬂnnlb:-ﬂ

We describe below the resulting algorithm QG which, :
depending upom how the lower bound bas been chosen (the return (hfk] Statusfkly,
function Selectl.owerBound in the algorithm), gives risc to end;

Table 1 : Evaluation of terminals by the algorithms when run on a uniform (2, 4) tree
Terminal
BCOfes -5 3 3 4 1 0 1 2 2 7T 5 4 1 4
QuickGame 1 3 2 - 1w - 1 - 4 - 5 & 7 - 9
Alphs-Beta 1 2 3 - 4 5 6 7 8 9 10 11 12 - 13 14
QG1,QG2,QG3 1 3 2 - 10 - 1 - 4 - 5 6 7 - 8 9
Table 1 : Evaluation of terminals by the slgorithms when rum on another uniform (2, 4) tree

Terminal
KCotea s 8 1 6 9 7T 5 3 2 6 3 B 6 9 9
QuickGame 1 3 2 - 8 9 - - 4 7 5 6 - - - -
Alphs-Bet 1 2 3 - 4 5 - - 6 - 7T - - - . -
QG1,0G2,QG3 1 3 2 - &6 7T - - 4 - 5 - - - - -

246 AUTOMATED REASONING

Remark 1 : b, at any instant during the execution of the
algorithm, holds the value of the lower bound to be passed
in the next call. Initially, since all h-values in OPEN are
equal, viz., beta, Ib is set to alpha, the lower bound on p.
Remark 2 : If OPEN[K] has not been solved by the call, the
node is left in OPEN as it is with its h-value < Ib defining
a tighter upper bound on the minimax value of OPEN[K].
Remark 3 : Tie in the selection of the highest-valued node
is resolved in favour of node having lexicographically
smaller code.
Remark 4 : The function Select owerBound determines the
lower bound according to one of the sfrategies described
above. Depending on the strategy used we get algorithm
QG1 or QG2 or QG3.
Example 3 : Let us run QG1, QG2 and QG3 on the (2, 4)
game trees of Examples 1 and 2 in that order (Tables 1 and
2 respectively). It may be noted here that when the
branching degree is 2, most of the times all the three
strategies - lowest to the left, lowest among all and second
highest - will find the same lower bound. In Table 1, all the
versions of QG examine the same sequence of terminals as
QuickGame. In Table 2, all the versions of QG examine the
same set of terminals as Alpha-Beta but in a different order.

In the (3, 4) uniform tree of [Knuth and Moore, 1975],
both OG1 and QG2 examine 32 temminals and QG3
examines 30 terminals compared to 31 terminals and 33
terminals examined by AlphaBeta and QuickGame
respectively.

It may be noted that the storage requirement of each of
these algorithms is identical to that of QuickGame, ie., b *
d/2 units for a uniform (b, d) tree.

4. Experimental Results

The performances of the algorthms Alpha-Beta,
QuickGame, QG1, QG2 and QG3 have been compared
experimentally on a 486-based Vectra 33VL machine. For
each (b, d) pair, 100 random uniform trees and 100 strongly
ordered uniform game ftrees were generated. A node
ordering tells us, for any node x.i in a game tree, the
probability that x.i determines the minimax value of x. In a
random ordering, all x.i's have equal probabilities. The
strongly ordered trees were generated following the
suggestion of Richard Korf [1993]. This technique of
generating game trees first appeared in [Fuller et al., 1973].
The scheme is as follows : Assign random independent
values to the edges of the tree. The static value of a node is
computed as the sum of the edge costs from the root to that
node. Fully expand each node, and then order the children
of the node by their static values - increasing order for the
children of MIN nodes, and decreasing order for the children
of MAX nodes. "It makes no sense to fully expand nodes
one level above the terminal nodes". Following Korf s
suggestion, the strongly ordered trees have been generated
by doing full expansion with sorting all the way down to one
level above the terminal nodes. To allow comparisons of
different algorithms on the same tree, whenever we needed

a random value to be assigned to an edge, we have made use
of the static value of the parent node and the tree number
(between 1 and 100) to determine the seed for initializing
the random number generator.

The ordering of the frees thus generated have been
found to be marginally stronger than the strongly ordered
trees of Marsland et al. [1987]. For example, when run on
one hundred (10,6) strongly ordered uniform trees generated
using both the methods (Korf s and Marsland's), the average
number of terminals examined by Alpha-Beta is 3327 on
Korf trees and 3453 on Marsland trees. Note that the number
of terminals examined is 0.33 percent of the total number of
terminals in the case of Korf trees.

Table 3 compares the number of terminals evaluated and
the time taken in seconds by each of the five algorithms. For
each (b, d) pair, the number of terminals examined by an
algorithm was averaged over 100 uniform trees and rounded
off to the nearest integer. For QG1, QG2 and QG3, the
terminal count shown is the fofal number of terminals
examined, including revisits. The second column of the table
gives the value of b + b - 1, the minimum number
of terminals that any minimax algorithm has to examine.

It may be noted that in our implementation, no time is
spent in 'evaluating' a terminal and substantial amount of
time is spent in generating the free in a pre-specified order.
This, in turn, implies that in our experiments if an algorithm
A examines less number of terminals than some other
algorithm B in comparable time, one can expect algorithm
A to run faster than algorithm B in actual game playing
situations. This is because in actual games, terminal
evaluation takes significant time and the free is quite
naturally generated in a strongly ordered manner.

On the basis of the experimental results given in Table
3, the following observations are in order:

a) Onrandom trees, the performance of QuickGame is the
best among all the algorithms in terms of average
number of terminals examined, execution time, and
number of imes it examines fewer terminals than
Alpha-Beta. In other words, in actual games,

QuickGame is expected to run faster than Alpha-Beta if

the tree generated is known to be random. On strong
trees, the performance of QuickGame is worst among
the algorithms.

b) On strongly ordered trees, the average fotal number of
terminals (including revisits) examined by the algorithm
QG3 is consistently less than that of Alpha-Beta. Recall
that in QG3 the lower bound passed is the second
highest h-value to the left of the selected node in the
local OPEN. As expected, on random frees, performance
of QG3 is worst among QuickGame and its variations
due to too many revisits.

c) The average execution time of QG3, when run on
strongly ordered trees, is marginally worse than that of
Alpha-Beta. It may be noted that, since our implementa-
tion requires no time to evaluate a terminal, the timings
reflect only the overheads of the algorithms. Thus the

BHATTACHARYA 247

‘eog-uRd[y Heg SR JO 1qINY 30 PmRYS ST WRUOSE S ARgam ‘5K 00T AP JO 100 '$00 Jo QU |

£ES0 PE T8¢l w0 18 veorl o o8 11691 €§®0 L6 €8LLT 660 9I6E1 Zoons
66ST 1L LPSH9E SLTI 1€ €6I8T I AN 4 6LISLE We £ 612052 I$6 LiyPlE Wopuw 66601 Lol
¥10 Sr 960€ S0 IS T¥EE 28 I 61Z¢ 610 OO 65§ oo LTEE Suons
&7 1L 1s9L W T L690S 0z 9l ZLOGY 8LT 1 SS6¥F F7N 06065 WOpUR 6661 901
(=) RS S S €1 SO0 0§ S8ET 00 0§ zagl S0 S ozst o 9Zr Boons
550 69 STOEI LD 0E 0SPOT s¥0 Of rLzol ZED § IEP6 0] 1§17 mopuw 6601 501
ole ¥ ST 010 €9 vO¥E oro 09 81£Z *I0 &6 SP8E wo £IeL Suons
W1 L SUEEK T 9T LyizE 8T 1z ELSTE T » S5882 o'l 08R9¢ Wopuw LSPT 6
e 6 sssl we s 9Ll o 55 SL91 00 9% 6992 SO0 £ELT Zoons
860 L I e € £9Z61 wn BLDET %0 1 &5TLT $90 (E0ZT tmopaml €201 98
11 S ~ 4 o 89 1015 w®o 9 06 €0 86 S0L8 Y0 969 foons
EE IS UL 66T 1€ ZIE99 wZ % Z6SY oz 91 18¢19 (7T 6209. mopom 165 89
W0 L HR 00 SL TIET 00 1z ¥eZZ ore 16 STHT W0 61T Zuons
U I A .+ 4 O £ TYOOT 180 §2 £6P61 Qo s 01081 0.0 OpSZT wopwd 1181 L'y
€00 S8 169 €00 5 €9L €®0o 9% £bi W0 €6 6601 00 9L Juons
10 s¢ $65§ 6o 81 £E8F 810 st S0LY 10 B vy 810 . Lib6S mopues 632 o'y
[P 1] TR JORROOY el JOmneEy s TR} oo i lia) Uy JUTO bl gl) o JUNDD EE
FOE EIOM [PURLE Ep GAlom UL MY Mo VOIS R SWom [EIIEIN amn [t aq o) sjwa
=0 -FIIY, JO P9
£00 0D 00 AMHIPINY wog-wd[y "OU ‘T

oD puw 7950 ‘190 Sunoyn]) ‘weg-eydy sunppols aq jo sogmdme) : ¢ HqeL

AUTOMATED REASONING

overhead of QG3 is marginally higher than that of
Alpha-Beta.

d) As argued in section 3, no node pruned by Alpha-Beta
will be examined by QG3, although QG3 may need to
revisit some of the nodes. In actual games, the time for
evaluating a terminal during revisit can be saved by
keeping track of the already evaluated terminals in a
hashed table. Hence, compared to Alpha-Beta, the total
time that would be saved in terminal evaluation by
QG3, when embedded in game playing programs, is
expected to be more than what is reflected by the
difference between the average number of terminals
examined by the two algorithms.

e) Considering the observations in (b), (c) and (d) above,
it is reasonable to expect that in actual games where (i)
no special effort is required to generate the tree in
strongly ordered manner and (ii) evaluation of a
terminal takes substantial time, QG3 will run faster than
Alpha-Beta.

f) Between QG1 and QG2, performance of QG1 (lower
bound passed is the lowest h~value to the left of the
selected node) is consistently better than that of QG2
(lower bound passed is the lowest among all h-values in
local OPEN). On random trees, both QG1 and QG2
perform worse than QuickGamc but better than both
Alpha-Beta and QG3. On strongly ordered trees, both
QG1 and QG2 perform worse than QG3 and better than
QuickGamc We conjecture that for some ordering
between random and strong, these algorithms will
perform better than both QuickGame and QG3.

5. Conclusion

In this paper different strategies for allowing revisits in
game tree search have been discussed. It has been shown
that on random trees, the algorithm QuickGame, which does
not allow revisit of a node, outperforms Alpha-Beta in
comparable time and memory. On strongly ordered frees,
QG3, which is an extension over QuickGame and allows
revisits in a specific manner, is a dose competitor of Alpha-
Beta. The other strategies discussed may prove useful for
orderings in between random and strong.

We expect that the algorithms discussed will stimulate
further research in using revisit of nodes effectively in game
free search.

References

[Bhattacharya and Bagchi, 1994] Subir Bhattacharya and A.
Bagchi, A General framework for minimax search in
game frees, Information Processing letters, vol 52,
19%4, pp 295-301.

[Bhattacharya and Bagchi, 1993] Subir Bhattacharya and A.
Bagchi, A Faster altemative to SSS* with extension to
variable memory, Information Processing letters, vol
47, 1993, pp 209-214.

[Bhattacharya and Bagchi, 1992] Subir Bhattacharya and A.

Bagchi, QuickGame : A compromise between pure
depth-first and pure bestfirst game ftree search

strategies, Proc. International Workshop on Automated

Reasoning, IWAR'92, Beijing, China, July 13-16,1992,
pp 211-220.

[Fuller et al., 1973] S. H. Fuller, J. G. Gaschnig and J. J.
Gillogly, An analysis of the Alpha-Beta pruning
algorithm, Department of Computer Science Technical
Report, Camegie-Mellon University, Pittsburgh, Pa,
1973.

[Knuth and Moore, 1975] Donald £. Knuth and Ronald W.
Moore, An analysis of Alpha-Beta pruning, Artificial
Intelligence, vol 6, 1975, pp 293-326.

[Korf, 1993] Richard Korf; 1993, Personal communication
to A. Bagchi.

[Marsland et al., 1987] T. A. Marsland, Alexander Reinefeld
and Jonathan Schaeffer, Low overhead altematives to
SSS*, Artificial Intelligence, vol 31, 1987, pp 185-199.

[Pear, 1984] J. Pear, Heuristics : Intelligent Search
Strategies for Computer Problem Solving, Addison-
Wesley, Reading, Massachusetts, U.S.A., 1984.

[Reinefeld and Ridinger, 1994] Alexander Reinefeld and
Peter Ridinger, Time-efficient state space search,
Atrtificial Intelligence, vol 71, 1994, pp 397-408.

[Stockman, 1979] G. C. Stockman, A minimax algorithm
better than Alpha-Beta ?, Artificial Intelligence, vol 12,
1979, pp 179-196.

BHATTACHARYA 249

