
E x p e r i m e n t i n g w i t h Revisi ts i n G a m e T ree Search 

Subir Bhattacharya 
Indian Institute of Management Calcutta 

Joka, Diamond Harbour Road 
P. O. Box 16757, Calcutta - 700 027, INDIA 

Abstract 
The oldest known game tree search algorithm 
Alpha-Beta is still the most popular one. All other 
algorithms in this area fall short of Alpha-Beta in 
one or more of the following three desired 
characteristics - high pruning power, low storage 
requirement and low execution time. This paper 
discusses how revisit of nodes can be used 
effectively in game tree search. A few strategies of 
introducing revisits in game tree search are 
presented. It is demonstrated that for any shape and 
ordering of the game tree to be searched, there 
always exists one strategy that, on an average, 
consistently evaluates less number of terminals than 
Alpha-Beta in comparable memory and time. 

1. Introduction 
In Artificial Intelligence, game tree search has ever been an 
active area of interest Over years, a number of schemes 
have been proposed for searching game trees, each having 
its own advantages and disadvantages. Interestingly, the 
oldest known game tree search algorithm, Alpha-Beta, is still 
the most popular one. To judge the effectiveness of any 
game tree search algorithm, we need to consider three 
different characteristics of the algorithm - its pruning power, 
its storage requirement and its execution time. Alpha-Beta is 
a recursive depth-first procedure and needs little memory; it 
is simple to implement and executes rather fast Other game 
tree search algorithms like SSS* [Stockman, 1979], SCOUT 
[Pearl, 1984] and their variations fall short of Alpha-Beta in 
one or other respect 

SSS* is best-first and iterative, and consumes a large 
amount of storage space. Although the pruning power of 
SSS* is greater than that of Alpha-Beta, the improvement is 
more than offset by its excessive memory and overhead 
requirements. Recently, two recursive variations of SSS*, 
viz., RecSSS* ([Bhattacharya and Bagchi, 1993]) and 
RecDual* ([Reinefeld and Ridinger, 1994]) have been 
proposed. Empirical evidence ([Reinefeld and Ridinger, 
1994]) shows that both of them dominate Alpha-Beta so far 
as terminal nodes examined are concerned, and for any game 
tree, one of them is always faster than Alpha-Beta. However, 

the storage requirement of either is even higher than that of 
SSS*. The cautious test-before-evaluate strategy of SCOUT 
[Pearl, 1984] is an extension of the Alpha-Beta algorithm. 
The evaluation phase is essentially Alpha-Beta, and the 
testing phase prior to it is an additional layer on top of 
Alpha-Beta, which enhances the pruning power of the 
evaluation phase. Apart from providing an alternative to 
Alpha-Beta, SCOUT is important since it introduced the 
concept of revisits in game tree search. While in Alpha-Beta 
and SSS* a terminal node in the game tree can be examined 
atmost once, SCOUT allows revisit of its nodes - once 
during the testing phase and then, if required, again during 
the evaluation phase. 

The purpose of this paper is to show how revisits can be 
used effectively to examine less number of terminals than 
Alpha-Beta in comparable time using affordable amount of 
storage space. The base algorithm in which different 
strategies for revisits have been experimented is rather a new 
algorithm called QuickGame. This algorithm was obtained 
as a special case of the generalized game tree search 
algorithm GenGame [Bhattacharya and Bagchi, 1994]. 
QuickGame uses a mix of depth-first and best-first strategies 
to search the game tree and, for a uniform game tree of 
depth d and branching degree b, requires about (b * d)/2 
units of storage space. When run on random trees, on an 
average, QuickGame examines less number of terminals than 
Alpha-Beta ([Bhattacharya and Bagchi, 1992]). 

However, in practice, the game tree to be searched is 
very often strongly ordered, i.e., for any non-terminal node 
in the game tree the probability that the leftmost child will 
prove to be optimal for the node is very high. QuickGame 
has the drawback that when run on such strongly ordered 
game trees, it examines, on an average, many more terminals 
than Alpha-Beta. In this paper, we introduce the concept of 
revisiting a node in the algorithm QuickGame. We 
demonstrate that for any shape and any ordering - random 
or strong - of the game trees to be searched, there exists at 
least one version of QuickGame which, on an average, 
examines less number of terminals than Alpha-Beta in 
comparable memory and time. 

We first take a quick look at the algorithm QuickGame 
and its relevant characteristics in section 2. Section 3 
improves upon QuickGame by allowing revisit of nodes and 

BHATTACHARYA 243 



discusses the various ways in which revisits can be done. 
Section 4 details our experimental results comparing 
performances of Alpha-Beta, QuickGamc and its variations 
on game trees with both random and strong orderings. 
Section 5 concludes the paper. 

Throughout the paper the root node s of the game tree 
T to be searched is assumed, without loss of generality, to 
be a MAX node. We use d to denote the length of the 
longest path in T, and b to denote the maximum number of 
sons that a non-terminal node in T can have, called the 
branching degree. T is a uniform (b, d) tree if every non­
terminal node has exactly b sons, and if every path from s 
to a terminal node has length d; otherwise it is non-uniform. 
Individual nodes are named using a Dewey radix-b code 
[Pearl, 1984], in which the root node is represented by the 
empty sequence, and the b* < b sons of a non-terminal node 
x in T as x.i, 0 < i < b' A static evaluation function v(.) 
scores each terminal node from MAX's point of view. For 
any non-terminal node x in T, let tx, be the minimax value of 
the subtree rooted at x. When x is a terminal node, tx, = v(x). 

2. A Quick Look at QuickGame 
In SSS*, a global list of nodes called OPEN is maintained, 
which, at any instant during execution, contains one 
representative node from each solution tree of the game tree 
T. The high pruning efficiency of SSS* is explained by the 
fact that all solution trees in T are in contention at every 
instant But in the process, the size of the global OPEN list 
rises to b d/2 units of storage space for a (b, d) uniform 
tree. Alpha-Beta evaluates more terminals because it does 
not keep all solution trees in simultaneous contention, but 
compares in a depth-first scan the current solution tree with 
the best one found so far. In QuickGame, we intend to go 
for a compromise. QuickGame is a recursive procedure that 
gets invoked only at non-terminal MAX nodes and at 
tenninal nodes. Below any non-terminal MAX node p, the 
subtree rooted at p is split up into as many subtrees as the 
number of sons of p, and all the solution trees of these 
subtrees are kept in simultaneous contention. 

Let T be a uniform (b, d) game tree rooted at a MAX 
node s. For ease of understanding d can be taken to be even, 
but QuickGame runs just as smoothly on uniform trees of 
odd depth and on non-uniform trees. Let p be a non-terminal 
MAX node in T. If QuickGame gets invoked at p, it is 
passed three parameters: the node p, and the two bounds, 
alpha and beta. The bounds play a role comparable to that in 
Alpha-Beta : alpha, the lower bound, is the highest currently 
known value of all MAX ancestors of p, while beta, the 
upper bound, is the lowest currently known value of all MIN 
ancestors of p. At the root node s, alpha = and beta = . 
When QuickGame returns from the call at node p, the 
correct minimax value at p has been found, provided that the 
value lies within the alpha and beta bounds specified in the 
call. In order to find the best solution tree rooted at p, 
QuickGame uses a local OPEN list of b entries; an entry for 
a node x in OPEN has two fields, the Dewey code for x, and 

the current value h(x) of x. The node p is expanded, and the 
b grandsons p.i.0,0 < i < b, enter OPEN, with their h-values 
initialized to beta(p). It is as if the set of solution trees 
rooted at p is split up into b disjoint subsets, with each 
subset having a representative in the local OPEN of p. For 
a node x in the local OPEN, h(x) is an upper bound on the 
minimax value of the subtree rooted at x. QuickGame is now 
recursively invoked on the highest-valued node among these 
grandsons, ties being resolved in favour of nodes having 
lexicographically smaller codes. 

Suppose p.i.y is currently the highest-valued node in the 
local OPEN of p, where 0 < i < b and 0 < y < b. This node 
being the representative of the currently most promising 
subset of solution trees, we explore below p.i.y by invoking 
QuickGame on the node. If p.i.y is terminal, the call returns 
the minimum over the upper bound on p.i.y and the static 
evaluation score v(p.i.y); otherwise the call returns the 
minimax value at p.i.y. On return, if p.i.y is not the 
rightmost among its brothers we replace p.i.y with its 
immediate right brother p.i.y+1 which belongs to the same 
set of solution trees to which p.i.y belongs, p.i.y+1 is the 
next node to be explored in this set of solution trees if this 
set is still the most promising one. Since p.i is a MIN node, 
the minimax value of p.i.y acts as an upper bound on the 
minimax value of p.i.y+1 and is assigned to h(p.i.y+l). 
Alternatively, if p.i.y is rightmost among its brothers (i.e., y 
= b-1), when the call on p.i.y returns, we have examined all 
those solution trees of the subtree rooted at p sharing the 
common MIN node p.i. Hence the value returned by the call 
acts as a lower bound on the minimax value of the MAX 
node p. So no replacement is made when y is b-1; h(p.i.y) 
in such situation reflects the value of one completely 
explored solution tree of the subtree rooted at p. The 
algorithm now selects the current highest-valued node from 
OPEN, and the entire cycle is repeated, until the node that 
gets selected has the form p.i.b-1, and QuickGame has 
already been called at this node at some earlier instant In 
such a situation, since h(p.i.b-l) is highest among nodes in 
OPEN and is the value of a solution tree of the subtree 
rooted at p, h(p.i.b-l) defines the minimax value of p, and 
the call returns from p to the grandfather of p. Since calls 
are made only at MAX nodes or terminals, and each call at 
a non-terminal node involves the use of a local OPEN of b 
entries, the total storage requirement for all the OPEN lists 
taken together is about (b * d)/2 units. The algorithm is 
invoked by calling QuickGame(s, -00 00). 
Example 1 : Let the 24 = 16 numbers in Table 1 (see 
section 3) correspond to the static evaluation scores of the 
terminal nodes in left-to-right order of a uniform (2,4) game 
tree with a MAX node as root QuickGame evaluates 11 of 
the 16 terminal nodes in the time sequence indicated below 
the scores. Alpha-Beta, on the other hand, evaluates 14 of 
the nodes; owing to its depth-first nature, the terminals get 
visited in left-to-right order. 

It is possible to construct examples where QuickGame 
evaluates more terminals than Alpha-Beta. 

244 AUTOMATED REASONING 



For the (3, 4) uniform tree of [Knuth and Moore, 1975], 
Alpha-Beta makes 31 terminal node evaluations and 
QuickGame evaluates 33 terminals. 

Thus QuickGame must be making some cutoffs not 
made by Alpha-Beta, and Example 1 verifies this. But 
Example 2 shows that on occasions Alpha-Beta makes some 
cutoffs not made by QuickGame. 

The cutoffs made by Alpha-Beta are of two types, 
shallow and deep (see [Pearl, 1984]). When a node p1 
causes a shallow cutoff below a node p2, the Dewey code of 
p1 must be lexicographically smaller than the code of p2. 
Instead of shallow cutoffs, QuickGame makes what may be 
called generalized shallow cutoffs ([Bhattacharya and 
Bagchi, 1992]). These are just like ordinary shallow cutoffs, 
except that a node q2 can get cutoff either by a node p1 
with a code that is lexicographically smaller or by a node p3 
with a code that is lexicographically greater. This added 
generality is a consequence of the use of local OPENs. It 
can be shown that for any game tree, all shallow cutoffs 
made by Alpha-Beta are also made by QuickGame. 
QuickGame can also influence deep cutoffs. But the number 
of nodes undergoing deep cutoff in QuickGame is much less 
than the corresponding number in Alpha-Beta. 

In Table 1, the 10th terminal from the left has 
undergone generalized shallow cutoff while the 6th and the 
8th terminals have undergone deep cutoffs in QuickGame. In 
Table 2, the two terminal nodes evaluated by QuickGame 
but not by Alpha-Beta have undergone deep cutoffs in 
Alpha-Beta. In both tables, all shallow cutoffs made by 
Alpha-Beta have also been made by QuickGame. 

3. Introducing Revisits in QuickGame 

Empirical results demonstrate ([Bhattacharya and Bagchi, 
1992]) that QuickGame, on an average, evaluates fewer 
terminals than Alpha-Beta when run on random trees. But 
when game trees are strongly ordered, Alpha-Beta is a much 
better choice over QuickGame. In actual games, the trees 
generated very often tend to be strongly ordered, and hence 
Alpha-Beta will be preferred. Is there any way of improving 
upon QuickGame so as to dominate over Alpha-Beta even 
in case of strongly ordered trees ? 

The dominance of Alpha-Beta over QuickGame in case 
of strongly ordered game trees can be explained in terms of 
deep cutoffs. The more strongly ordered the game tree T is, 
the higher is the probability that the optimal solution tree lies 
towards the left of T. When run on T, Alpha-Beta in its 
strict left-to-right scan of the game tree will encounter the 
optimal solution tree very quickly, examine all the terminals 
of it, and the value of the optimal solution tree thus obtained 
will influence deep cutoffs while scanning the rest of the 
game tree. Stronger the ordering of the game tree, more 
pronounced is the effect of deep cutoff while running Alpha-
Beta on it. QuickGame, on the other hand, tries to equitably 
distribute its search effort among disjoint sets of solution 
trees, and, in the process, delays complete evaluation of any 
particular solution tree. As a result, when QuickGame is 
being called on a non-terminal MAX node p, the alpha 
bound passed as a parameter is a very poor lower bound on 
the minimax value of the node p, and hence fewer deep 
cutoffs occur below p. 

In short, to make QuickGame competitive to Alpha-Beta 
for strongly ordered game trees, we have to improve upon 
its capability to influence deep cutoffs and this can be 
achieved only by providing improved lower bound while 
calling QuickGame on a non-terminal MAX node. Let p be 
a non-terminal MAX node in a (2, d) uniform game tree T 
and let QuickGame be called on p with alpha bound, lb and 
beta bound, ub. Grandsons p.0.0, and p. 1.0 will enter OPEN 
each with an h-value of ub. QuickGame will be recursively 
called on p.0.0 with bounds lb and ub, and let the call return 
the minimax value o f u b which now 
becomes the b-value of the replacing node p.0.1. The next 
node to be selected from OPEN will be p. 1.0 and 
QuickGame (p. 1.0, lb, ub) will be called. It may be noted 
that when running Alpha-Beta on the subtree rooted at p, 
node p. 1.0 will be called with lower bound, t p.o and upper 
bound, ub. What happens in QuickGame if, instead of lb, we 
pass h(p.0.1) = as the alpha bound while calling on 
p. 1.0 ? Clearly, since p.O is a MIN node, Hence 
deep cutoffs below the node p.1.0 will be even more 
pronounced than the deep cutoffs influenced by Alpha-Beta 
when called on the same node. QuickGame (p.1.0, h(p.0.1), 
ub) will continue its search until either the minimax value of 
p.1.0 has been found out in which case 
t p.0.0, and the value returned will be minimum 
at some point of time during execution the largest h-value 

BHATTACHARYA 245 



2 4 6 AUTOMATED REASONING 



Remark 1 : lb, at any instant during the execution of the 
algorithm, holds the value of the lower bound to be passed 
in the next call. Initially, since all h-values in OPEN are 
equal, viz., beta, lb is set to alpha, the lower bound on p. 
Remark 2 : If OPEN[k] has not been solved by the call, the 
node is left in OPEN as it is with its h-value < lb defining 
a tighter upper bound on the minimax value of OPEN[k]. 
Remark 3 : Tie in the selection of the highest-valued node 
is resolved in favour of node having lexicographically 
smaller code. 
Remark 4 : The function SelectLowerBound determines the 
lower bound according to one of the strategies described 
above. Depending on the strategy used we get algorithm 
QG1 or QG2 or QG3. 
Example 3 : Let us run QG1, QG2 and QG3 on the (2, 4) 
game trees of Examples 1 and 2 in that order (Tables 1 and 
2 respectively). It may be noted here that when the 
branching degree is 2, most of the times all the three 
strategies - lowest to the left, lowest among all and second 
highest - will find the same lower bound. In Table 1, all the 
versions of QG examine the same sequence of terminals as 
QuickGame. In Table 2, all the versions of QG examine the 
same set of terminals as Alpha-Beta but in a different order. 

In the (3, 4) uniform tree of [Knuth and Moore, 1975], 
both OG1 and QG2 examine 32 terminals and QG3 
examines 30 terminals compared to 31 terminals and 33 
terminals examined by Alpha-Beta and QuickGame 
respectively. 

It may be noted that the storage requirement of each of 
these algorithms is identical to that of QuickGame, i,e., b * 
d/2 units for a uniform (b, d) tree. 

4. Experimental Results 
The performances of the algorithms Alpha-Beta, 
QuickGame, QG1, QG2 and QG3 have been compared 
experimentally on a 486-based Vectra 33VL machine. For 
each (b, d) pair, 100 random uniform trees and 100 strongly 
ordered uniform game trees were generated. A node 
ordering tells us, for any node x.i in a game tree, the 
probability that x.i determines the minimax value of x. In a 
random ordering, all x.i's have equal probabilities. The 
strongly ordered trees were generated following the 
suggestion of Richard Korf [1993]. This technique of 
generating game trees first appeared in [Fuller et al., 1973]. 
The scheme is as follows : Assign random independent 
values to the edges of the tree. The static value of a node is 
computed as the sum of the edge costs from the root to that 
node. Fully expand each node, and then order the children 
of the node by their static values - increasing order for the 
children of MIN nodes, and decreasing order for the children 
of MAX nodes. "It makes no sense to fully expand nodes 
one level above the terminal nodes". Following Korf s 
suggestion, the strongly ordered trees have been generated 
by doing full expansion with sorting all the way down to one 
level above the terminal nodes. To allow comparisons of 
different algorithms on the same tree, whenever we needed 

a random value to be assigned to an edge, we have made use 
of the static value of the parent node and the tree number 
(between 1 and 100) to determine the seed for initializing 
the random number generator. 

The ordering of the trees thus generated have been 
found to be marginally stronger than the strongly ordered 
trees of Marsland et al. [1987]. For example, when run on 
one hundred (10,6) strongly ordered uniform trees generated 
using both the methods (Korf s and Marsland's), the average 
number of terminals examined by Alpha-Beta is 3327 on 
Korf trees and 3453 on Marsland trees. Note that the number 
of terminals examined is 0.33 percent of the total number of 
terminals in the case of Korf trees. 

Table 3 compares the number of terminals evaluated and 
the time taken in seconds by each of the five algorithms. For 
each (b, d) pair, the number of terminals examined by an 
algorithm was averaged over 100 uniform trees and rounded 
off to the nearest integer. For QG1, QG2 and QG3, the 
terminal count shown is the total number of terminals 
examined, including revisits. The second column of the table 
gives the value of b[d/2] + b[d/2] - 1, the minimum number 
of terminals that any minimax algorithm has to examine. 

It may be noted that in our implementation, no time is 
spent in 'evaluating' a terminal and substantial amount of 
time is spent in generating the tree in a pre-specified order. 
This, in turn, implies that in our experiments if an algorithm 
A examines less number of terminals than some other 
algorithm B in comparable time, one can expect algorithm 
A to run faster than algorithm B in actual game playing 
situations. This is because in actual games, terminal 
evaluation takes significant time and the tree is quite 
naturally generated in a strongly ordered manner. 

On the basis of the experimental results given in Table 
3, the following observations are in order: 
a) On random trees, the performance of QuickGame is the 

best among all the algorithms in terms of average 
number of terminals examined, execution time, and 
number of times it examines fewer terminals than 
Alpha-Beta. In other words, in actual games, 
QuickGame is expected to run faster than Alpha-Beta if 
the tree generated is known to be random. On strong 
trees, the performance of QuickGame is worst among 
the algorithms. 

b) On strongly ordered trees, the average total number of 
terminals (including revisits) examined by the algorithm 
QG3 is consistently less than that of Alpha-Beta. Recall 
that in QG3 the lower bound passed is the second 
highest h-value to the left of the selected node in the 
local OPEN. As expected, on random trees, performance 
of QG3 is worst among QuickGame and its variations 
due to too many revisits. 

c) The average execution time of QG3, when run on 
strongly ordered trees, is marginally worse than that of 
Alpha-Beta. It may be noted that, since our implementa­
tion requires no time to evaluate a terminal, the timings 
reflect only the overheads of the algorithms. Thus the 

BHATTACHARYA 247 





overhead of QG3 is marginally higher than that of 
Alpha-Beta. 

d) As argued in section 3, no node pruned by Alpha-Beta 
will be examined by QG3, although QG3 may need to 
revisit some of the nodes. In actual games, the time for 
evaluating a terminal during revisit can be saved by 
keeping track of the already evaluated terminals in a 
hashed table. Hence, compared to Alpha-Beta, the total 
time that would be saved in terminal evaluation by 
QG3, when embedded in game playing programs, is 
expected to be more than what is reflected by the 
difference between the average number of terminals 
examined by the two algorithms. 

e) Considering the observations in (b), (c) and (d) above, 
it is reasonable to expect that in actual games where (i) 
no special effort is required to generate the tree in 
strongly ordered manner and (ii) evaluation of a 
terminal takes substantial time, QG3 will run faster than 
Alpha-Beta. 

f) Between QG1 and QG2, performance of QG1 (lower 
bound passed is the lowest h-value to the left of the 
selected node) is consistently better than that of QG2 
(lower bound passed is the lowest among all h-values in 
local OPEN). On random trees, both QG1 and QG2 
perform worse than QuickGamc but better than both 
Alpha-Beta and QG3. On strongly ordered trees, both 
QG1 and QG2 perform worse than QG3 and better than 
QuickGamc We conjecture that for some ordering 
between random and strong, these algorithms will 
perform better than both QuickGame and QG3. 

5. Conclusion 
In this paper different strategies for allowing revisits in 
game tree search have been discussed. It has been shown 
that on random trees, the algorithm QuickGame, which does 
not allow revisit of a node, outperforms Alpha-Beta in 
comparable time and memory. On strongly ordered trees, 
QG3, which is an extension over QuickGame and allows 
revisits in a specific manner, is a close competitor of Alpha-
Beta. The other strategies discussed may prove useful for 
orderings in between random and strong. 

We expect that the algorithms discussed will stimulate 
further research in using revisit of nodes effectively in game 
tree search. 

Bagchi, QuickGame : A compromise between pure 
depth-first and pure best-first game tree search 
strategies, Proc. International Workshop on Automated 
Reasoning, IWAR'92, Beijing, China, July 13-16,1992, 
pp 211-220. 

[Fuller et al., 1973] S. H. Fuller, J. G. Gaschnig and J. J. 
Gillogly, An analysis of the Alpha-Beta pruning 
algorithm, Department of Computer Science Technical 
Report, Carnegie-Mellon University, Pittsburgh, Pa, 
1973. 

[Knuth and Moore, 1975] Donald £. Knuth and Ronald W. 
Moore, An analysis of Alpha-Beta pruning, Artificial 
Intelligence, vol 6, 1975, pp 293-326. 

[Korf, 1993] Richard Korf; 1993, Personal communication 
to A. Bagchi. 

[Marsland et al., 1987] T. A. Marsland, Alexander Reinefeld 
and Jonathan Schaeffer, Low overhead alternatives to 
SSS*, Artificial Intelligence, vol 31, 1987, pp 185-199. 

[Pearl, 1984] J. Pearl, Heuristics : Intelligent Search 
Strategies for Computer Problem Solving, Addison-
Wesley, Reading, Massachusetts, U.S.A., 1984. 

[Reinefeld and Ridinger, 1994] Alexander Reinefeld and 
Peter Ridinger, Time-efficient state space search, 
Artificial Intelligence, vol 71, 1994, pp 397-408. 

[Stockman, 1979] G. C. Stockman, A minimax algorithm 
better than Alpha-Beta ?, Artificial Intelligence, vol 12, 
1979, pp 179-196. 

References 
[Bhattacharya and Bagchi, 1994] Subir Bhattacharya and A. 

Bagchi, A General framework for minimax search in 
game trees, Information Processing letters, vol 52, 
1994, pp 295-301. 

[Bhattacharya and Bagchi, 1993] Subir Bhattacharya and A. 
Bagchi, A Faster alternative to SSS* with extension to 
variable memory, Information Processing letters, vol 
47, 1993, pp 209-214. 

[Bhattacharya and Bagchi, 1992] Subir Bhattacharya and A. 

BHATTACHARYA 249 


