
O n t h e C o m p l e x i t y o f E x t e n d i n g G r o u n d R e s o l u t i o n 
w i t h S y m m e t r y R u l e s * 

Thierry Boy de la Tour Stephane Demri 
LIFIA-IMAG 

46, Av. Felix Viallet, 38031 Grenoble Cedex, France 
{Thierry.Boy-de-la-Tour, Stephane. Demri }@imag.fr 

Abst rac t 

One important issue of automated theorem 
proving is the complexity of the inference rules 
used in theorem provers. If Krishnamurty's 
general symmetry rule is to be used, then one 
should provide some way of computing non 
trivial symmetries. We show that this prob­
lem is NP-complete. But this general rule can 
be simplified by restricting it to what we call 5-
symmetries, yielding the well-known symmetry 
rule. We show that computing 5-symmetries 
is in the same complexity class as the graph 
isomorphism problem, which appears to be 
neither polynomial nor NP-complete. How­
ever it is sufficient to compute the set of all 
5-symmetries at the beginning of the proof 
search, and since it is a permutation group, 
there exist some efficient techniques from com­
putational group theory to represent this set. 
We also show how these techniques can be used 
for applying the S-symmetry rule in polynomial 
time. 

1 I n t roduc t i on 
Symmetries in theorems have long been recognized to 
induce symmetries in proofs, and used to avoid the bore­
dom of repetitive arguments. As such, this rule of meta-
reasoning can be considered as a useful trick for writing 
proofs, and hence for discovering them, but by no means 
is it accredited as a powerful method for gaining deep 
knowledge of the problem at hand (except when sym­
metries are the subject of the problem, but this is out of 
the scope of our concern). Indeed, when this argument 
is invoked (e.g. "case 2 is similar"), the symmetry is 
supposed to be self-evident, not deserving any proof. 

However, the appearance of computers and their use 
to assist in rigorous proofs shed a new light on the sub­
ject. Experience shows that computers never get bored, 
even on repetitive work that could be avoided. But expe­
rience also shows that users often get bored when their 
computer spends more time than expected for solving 
seemingly trivial problems. Hence the necessity to help 

*This work has been partly supported by CNRS. 

computers think twice before doing something, and allow 
them to conclude: case 2 is similar. 

One way to do this is to reason in a highly expressive 
logic, in which symmetry arguments can naturally be 
expressed. This is usually the case when all non-logical 
symbols can be quantified. However, such higher order 
logics are seldom used in Artificial Intelligence. It should 
also be noted that specific calculi, or strategies, may not 
be able to reach such arguments. Hence the very natural 
idea to extend calculi with symmetry rules, and provide 
strategies for using them. Indeed, the idea appeared 
in the literature as early as 1959, in [Gelernter, 1959]1. 
Maybe this was too early: to our knowledge, this paper 
has had no lineage in the following decades. It is written 
in a setting that looks weird today, and makes it difficult 
to read. By the way, [Gelernter, 1959] is only concerned 
with symmetries as permutations of first-order variables, 
and gives a rather complicated algorithm for computing 
these, which may appear as a waste of computational 
time. 

It is only 26 years later that Krishnamurty, in [Krish-
namurty, 1985], introduced his symmetry rules (without 
reference to [Gelernter, 1959]) to extend propositional 
resolution, and showed on difficult examples how these 
rules can be used to reproduce natural arguments. These 
rules, and the complexity of the problems they involve, 
are the main concern of the present work, and are defined 
below. Since 1985, little work has been devoted to this 
problem (the implementation of [Benhamou and Sais, 
1994] is discussed below). This should be surprising to 
anyone sharing Slaney's opinion: "I consider symmetry 
to be one of the most important topics of current re­
search in ground theorem proving" (see [Slaney, 1994]). 

In the sequel, we will refer to notions from computa­
tional complexity (see [Garey and Johnson, 1979]), graph 
and group theory (see [Hoffmann, 1981]), which we will 
introduce when needed. A clause is a set of literals. A 
set S of clauses is on a set of literals L, or L is for S iff 
the literals occurring in S also occur in L. For / E L, lc 
is the complementary literal of /. 

Given a resolution derivation of a clause C from a set 
of clauses S1 on L1 (noted S1 + C), one can obtain a 
new derivation by substituting new literals to those in 
L1, under the following conditions: the literals resolved 

1 We thank Ricardo Caferra for pointing us to this paper. 
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a restriction of the S-symmetry rule 
experimentations display drastic improvements on some 
examples. 

This is not the place to describe precisely the prov­
ing methods used in [Benhamou and Sais, 1994]. First, 
we stress the fact that only symmetric literals are con­
sidered, which means that the S-symmetry rule is used 
with unit clauses. The advantage is that symmetry on 
literals can be easily tested once the orbit partition is 
known. However, the symmetry test performed in [Ben­
hamou and Sais, 1994] only corresponds to , 
(since only one Syms is computed), which is a re­
finement of Part(Syms)\ hence this test is correct but 
not complete. This is the second restriction of the S-
symmetry rule ; a useless one, as shown below. 

It may be argued that computing a single non triv­
ial symmetry is simpler than computing Vart(Syms), 
but we show on an example that this is not relevant. 
Consider the famous pigeonhole problem with n pigeons 

, it can be formalized with the following set of 
clauses PHn: 

means "the pigeon i is in the hole . It is easy 
to show that correspond to permuta­
tions on pigeons and on holes (independently). Hence 

which shows that is highly 
symmetric, and is therefore a good example to illustrate 
the relevance of symmetry rules. Consequently, SympHn 
ha.s only two orbits: the set of positive literals, and the 
set of negative ones. 

The strategy in [Benhamou and Sais, 1994] consists 
in choosing a clause as long as possible and using sym­
metries inside that clause. In , the longest clauses 
are the positive ones . If the symmetry ob­
tained by S-SYM is a permutation on pigeons, leaving 
holes unchanged, then no two literals in a positive clause 
are symmetric according to , and there will 
be no application of the symmetry rule in this method 
(leading to an exponential proof!). 

Hence one has to search for a. symmetry satisfying a 
particular property, depending on the strategy for the 
symmetry rule. For example, one property required by 
the symmetry searching algorithm in [Benhamou and 
Sais, 1994] is that a cycle of the symmetry should con­
tain a given literal, and be as long as possible. It is easy 
to show that solving such a problem allows to solve 1R-
GA (by graph restriction), and is therefore at least as 
difficult as Gl (moreover, restrictions on easily lead to 
NP-compIcte problems, see [Lubiw, 1981]). Hence the 
problem of maximizing the length of a cycle is at least 
as difficult as O-SYM, but yields only a refinement of 
Vart(Syms). It should be mentioned that the algorithm 
in [Benhamou and Sais, 1994] uses a technique for reduc­
ing the search space which corresponds to the v-invariant 
valG'S • But the reason of its apparent efficiency is that 
it, is allowed to backtrack only a fixed amount of time; it 
therefore has a polynomial time complexity (see [Read 
and Corneil, 1977]), and hence cannot be expected to 
solve S-SYM. 

O-SYM is only one example of relevant problems for 
implementing symmetry rules, that is solvable in poly­
nomial time from a representation matrix M for Syms. 
There is also S-CSYM, and others may exist. Hence rep-
resentation matrices are not only useful for proving com­
plexity results, as done above, but also for implementing 
extensions of resolution with the symmetry rule. Other 
symmetric resolution methods, less restricted than the 
one in [Benhamou and Sais, 1994], may be designed, and 
probably may involve problems which can efficiently be 
solved if the representation matrix is available, hence 
making good use of the nice group structure of Syms. 
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