On the Complexity of Extending Ground Resolution
with Symmetry Rules”

Thierry Boy de la Tour

Stephane Demri

LIFIA-IMAG
46, Av. Felix Viallet, 38031 Grenoble Cedex, France
{Thierry.Boy-de-la-Tour, Stephane. Demri }@imag.fr

Abstract

One important issue of automated theorem
proving is the complexity of the inference rules
used in theorem provers. If Krishnamurty's
general symmetry rule is to be used, then one
should provide some way of computing non
trivial symmetries. We show that this prob-
lem is NP-complete. But this general rule can
be simplified by restricting it to what we call 5-
symmetries, yielding the well-known symmetry
rule. We show that computing 5-symmetries
is in the same complexity cass as the graph
isomorphism problem, which appears to be
neither polynomial nor NP-complete. How-
ever it is sufficient to compute the set of all
5-symmetries at the beginning of the proof
search, and since it is a permutation group,
there exist some efficient techniques from com-
putational group theory to represent this set.
We also show how these techniques can be used
for applying the S-symmetry rule in polynomial
time.

1 Introduction

Symmetries in theorems have long been recognized to
induce symmetries in proofs, and used to avoid the bore-
dom of repetitive arguments. As such, this rule of meta-
reasoning can be considered as a useful trick for writing
proofs, and hence for discovering them, but by no means
is it accredited as a powerful method for gaining deep
knowledge of the problem at hand (except when sym-
metries are the subject of the problem, but this is out of
the soope of our concem). Indeed, when this argument
is invoked (e.g. "case 2 is similar"), the symmetry is
supposed to be self-evident, not deserving any proof.
However, the appearance of computers and their use
to assist in rigorous proofs shed a new light on the sub-
ject. Experience shows that computers never get bored,
even on repetitive work that could be avoided. But expe-
rience also shows that users often get bored when their
computer spends more time than expected for solving
seemingly trivial problems. Hence the necessity to help

*This work has been partly supported by CNRS.

compurters think twice before doing something, and allow
them to conclude: case 2 is similar.

One way to do this is to reason in a highly expressive
logic, in which symmetry arguments can naturally be
expressed. This is usually the case when all non-logical
symbols can be quantified. However, such higher order
logics are seldom used in Atrtificial Intelligence. It should
also be noted that specific calculi, or strategies, may not
be able to reach such arguments. Hence the very natural
idea to extend calculi with symmetry rules, and provide
strategies for using them. Indeed, the idea appeared
in the literature as early as 1959, in [Gelemter, 1959]1.
Maybe this was too early: to our knowledge, this paper
has had no lineage in the following decades. It is written
in a setting that looks weird today, and makes it difficult
to read. By the way, [Gelemter, 1959] is only concemed
with symmetries as permutations of first-order variables,
and gives a rather complicated algorithm for computing
these, which may appear as a waste of computational
time.

It is only 26 years later that Krishnamurty, in [Krish-
namurty, 1985], introduced his symmetry rules (without
reference to [Gelemter, 1959)) to extend propositional
resolution, and showed on difficult examples how these
rules can be used to reproduce natural arguments. These
rules, and the complexity of the problems they involve,
are the main concem of the present work, and are defined
below. Since 1985, little work has been devoted to this
problem (the implementation of [Benhamou and Sais,
1994] is discussed below). This should be surprising to
anyone sharing Slaney's opinion: "I consider symmetry
to be one of the most important topics of current re-
search in ground theorem proving" (see [Slaney, 1994]).

In the sequel, we will refer to notions from computa-
tional complexity (see [Garey and Johnson, 1979)), graph
and group theory (see [Hoffmann, 1981]), which we will
introduce when needed. A clause is a set of literals. A
set S of dauses is on a set of literals L, or L is for S iff
the literals occurring in S also occur in L. For/E L, Ic
is the complementary literal of /.

Given a resolution derivation of a dause C from a set
of dauses S7on L7 (noted S7 + C), one can obtain a
new derivation by substituting new literals to those in
L1, under the following conditions: the literals resolved

1 We thank Ricardo Caferra for pointing us to this paper.

DE LATOUR AND DEMRI 289

upon should remain complements after the substitution,
and they should occur in the clauses, which means that
they shouldn’t have been resolved away sooner in the
resulting proof. Hence the conditions thal a substitu-
tion o, say a function from L, to Lg, should satisfy:
firsi, o should preserve complementarity (¥l € L, if
I" € L then o{i) = e{l)°), and second, it should be
injective. We note Subst(L,, L) the set of these func-
tions. Hence for all $) on L, ¢ € Subst(L,, Lz), if
5 F O then ¢(5) F #(C). While refuting Sz, a set
of clauses on Lg, and a clause " being derived from
Sy C Sy, it is therefore correct to infer ¢(C') provided
e{5)) € 52. This inference rule depends on the proof
of C’, or more precisely on the hypotheses used in this
proof, and can therefore be formalized in sequent style.
Lat Symg,(S1) = {¢ € Subst{L,, L1)/o(S1} C Sz} be
the set of symmetries of 51 in Sz, the general symmeiry
rule is:
S+HC
Sa F a(C)

To avoid this dependency, which is not quite in the
“gpitit” of resolution, we consider a restriction of this
rule by requiring that 5; = 5; {and Ly = Ls}. Let
Syms = {o € Subst(L,L)fa{S) C 5} be the set of S-
symmetries, then the S-symmetry rule is:

if §1 C 52 and o € Syms, (51)

% if o € Symg

It is therefore correct to extend resolution with the
gencral symmetry rule, which essentially yields Krishna-
murty’s SR-IT symmetric resolution proof system. It is
also correct to extend resolution {on a set of clauses 5)
by the S-symmetry rule, resulting in SR-1. It is doubt-
ful whether SR-1 can polynomially simulate SR-1I, but
it has nice properties: the S-symmetry rule is simple,
S-symmetries can be compuled before drawing any in-
ference from 5, and Syms forms a permutation group on
the considered set of literals L for 5 {the identity is fdy;
the trivial subgroup T is restricted to the identity). This
is obvious since Symg = {¢ € Subst(L, L)/o(S) = S},
which comes from the fact that the extension of ¢ to
sets of literals {when confusion is possible, this exten-
sion will be noted &) is injective since & is injective, hence
le{S)] = |51, but #{S) C S is finite, hence a{5) = 5.

Dealing with complexity, we will refer to the length of
particular objects (sets of clauses, sequences of permuta-
tions. ..), which means the length of the representation
of this cbject in any reasonable (unspecified) encoding
(see [Garey and Johnson, 1979]). Given two problems P
and ©Q, we note P ocp Q (P polynomsally reduces to Q)
when Lhe existence of a polynomial time algorithm for
¢ imptlies the existence of a polynomial time algorithm
for P. =p is the symmetric closure of ocp.

2 Detecting general symmetries
We address the problem of the amount of computa-
tion required in order to apply the general symmetry

2 As poted by a referee, the condition 5, C Sz i8 not neces-
sary to the correction of the rube, but elements of Syme, (5)
could not be considered as symmetries without it.

290 AUTOMATED REASONING

rile in ¢ non trivial wey. This means the search for
a o €& Syms,(851) such that o#{C) # C. The in-
put of this problem is Ly, Ly, 51,57 and (7, such that
L] = L:,S] [Sz, Sl 15 on L1 and Sz,C are on Lg, The
output is a sequence of elementa of Ly x Ly representing
such a symmetry ¢, This problem is obviously in NP:
this sequence, which length is polynomial in [L], can be
guessed and checked in polynomial time.

In the sequel, we consider the simpler decision prob-
lem 3¢ € Symg, (51) such that o # fdy,, which poly-
nomially reduces to the previous one: such a o exists iff
I € Ly, 3¢’ € Syms, (51) such that o*({I}} # {I].

2.1 The graph restriction

Let & = (V,E),G' = (V/, E') be two graphs, a homo-
morphism from & to €' is a function o from V to V',
such that a{E) ¢ E'. Let Mon((,C') be the set of in”
jective homomorphisms { menomerphisms) from (& to (.
Also, a is an isomorphism from {7 to ' if a is bijective
and a(E) = £, and Aut{G) is the set of isomorphisms
from G 1o G [aulomorphisms). G is a subgraph of ' if
V V' and E C E’; this is noted G C (.

1t is clear that a sel of edges E can be considered as
a set of clauses on V, and conversely that any set § of
clauses of length 2 {2-clauses) on L, without negatien,
can itsell be considered as a set of edges on the vertex
set L, yielding a graph {L,S)}. Moreover, we have:

LEMMA 2.1 Let G = (V,E) C G’ = (V',E'). then
Symg: (E} = Mon(G,G").

Proof. 0 € Mon(G,GV iff ¢ - V = V' is injective and
o{E) C E' iff ¢ € Subst(V,V') and o(E) C E', iff
o & Symg: (E). Q.E.D.

Hence, given any problem P on Symg (&), with
L, L', 5,8 among the input, we can consider its restric-
tion to sets of 2-clauses without negation, and translate
it as a problem on Men(G, G}, having as input G and
(', and consequent restrictions of the rest of the input
of P. This will be called the graph restrictionof P.

As for sets of clauses, the finite nature of graphs im-
plies that Mon{G,G) = Aut{G), thus lemma 2.1 on
G = G' = (V, E) yields Symg = Aut((). Hence graph
restriction of problems on Symy translate on Aut(G).

2.2 Monomorphisms and rigid graphs

The graph restriction of our problem therefore consists
in detecting the existence of a a € Mon(G, G'\{Idv},
where G = (V, E) is a subgraph of . This problem
will be simplified by further restricting it. A graph G is
rigid if Aut(G) = I; it is connected if any two vertices
are connected by a path (a sequence of adjacent edges).
Any graph can be expressed as a disjoint union (noted
+) of connected graphs, its connected components,

Given a homomorphism a from G to G', it is clear
that if G is connected, then a{G) is connected, and is
a subgraph of a connected component of G'. Also, the
valence of vertices (noted valg(v), the number of edges
of (¢ adjacent 1o v) increases by o: ¥v € V,valg(v) <
valg (n(v)). Moreover, if o is an isomorphism, Yu € V,
valg (a(v)) = valg(v).

the graph &
{00 SR 0,va)
1,0, Lvn)

kawy e TN

k k

Figure 1: the graphs Kj and Gy

LEMMA 2.2 Let G = (V, E),G" = {V', E') be two dis-
joint graphs (V NV’ = #), if & is connected, then
Mon(G, Gy = Mon{G,G + G'N\Auit(G).
Proof. Let o € Mon(G, '), then & € Mon(G, G+ G'),
and also ¢ ¢ Aut({7) since a is into V', Conversely,
let @« € Mon(G,G + ') such that o & Aut{G) =
Mon((;,(7), hence 3v € V/ia(v) € V. But a(/) is a
subgraph of a conbected component of G+ G, hence of
¢’ alone, since (¢ and ' are disjoint, Henee afV) C V',
and a € Mon{G, (). Q.E.D.
We can now restrict our problem Mon{G,G") # I to
the inpul G, G+ G {7 C G+ G'), where 7 is rigid and
connected: this restriction is equivalent to the problem
Mon(G,(') £ §. We call it the Rigid Connected Graph
Monotnorphistn problern {RCGM for short), which we
just proved to be polynomially reducible 1o the search
for non trivial symmetries. ROGM is therefore NP, and
we prove its NP-completeness by reducing CLIQUE to
'S

2.3 Cliques and monomorphisms

The well-known NP-complete CLIQUE problem con-
sists in detecting in G a complete subgraph of £ ver-
tices {a k-clique), where &' = (V.E), & < |V] are
given. Since a clique is not rigid, we build the graph
e = ({6, /30 £1<j<k1<j},NEL), where

(LI INERE & (i=i=0Aj#]}
vii=jAi+l =1

1 € 4§ < j < k, then walg, {{i,j)} = 2 and
valg, ({J. i3} = 1. The subgraph of K generated by
{0, 1), .. .0, k)] is a k-clique (see figure 1).
LEMMA 2.3 Yk > 2, K, is rigid.
Proof. Let o € Aut{K,), then ¥j € {1...k),
valg, ((0,79) = k > 2, hence 35" € {1...k},e{{0,5}) =
{0,773, and ihen ¥i € {l.. .j}.a({,7)) = {,j, but
valg, ((J, 7)) = valg, (a((j, 7)) = valg, (7)) = 1,
hence § = j'. This for all j, hence o is the identity
on the vertex set of i, Q.E.D.

We are now going to embed a k-clique in a graph
G = (V,E) by embedding Ky in an extension Gy of
(7, defined as follows: Gy = (Vi Ei) where Vi = {{(i, v}/
ie{0...k},ue ¥V} and

(G V) EBR & (i=7=0A(u1)€E)

Viv=v' Ai+1=1¥)

Yo € V, valg, ({k,v)) = 1 and ¥i € {L...k -1},
valg, ({i,v)) = 2. The subgraph of Gy generated by
{{0,v}/v € V} is isomorphic to G (see figure 1).

THEOREM 2.4 Let G = (V,E) be a graph and k
such that 2 < & < |V|, G contains a k-clique iff
Mon(Ky, Gi) # 0.

Proof. H G contains a k-clique vy ...1vg, it is triv-
jal to build & monomorphism a from A to G with
a({0, 7)) = {0,v;). Conversely, let o € Mon(K.,Ge),
since ¥j € {1...k},valg, (a({0,7))) > & > 2, then
Jv; € V,a({0,5}) = {0,v;}. Let G' be the subgraph of
G generated by {v;,...,%}; since o is injective, it has
k distinct vertices, and ¥i,§ € {!...k},i # j, we have
((U,f)‘{ﬂ,j)] € K Ey, hence (<0r”f>!(0!vi}) € £, and
(vi,v;) € E, which proves that ¢ is a k-clique. Q.E.D.

CoroLLary 2.5 RCGM, and all the intermediate pro-
blems up to the problem of computing a non trivial gen-
eral symmetry, are NP-complete.

3 Detecting S-symmetries

We now address the problem of the complexity of ap-
plying the S-symmetry rule in a non trivial way, which
is a restriction of the previous one, and is therefore in
NP. We firsl consider the simpler problem of detecting
non trivial symmetries, i.e. let SYM be the problem
Syms # I, having L and S on L as input. By lemma
2.1, the graph restriction of 8YM 1s the problem of de-
tecting a non trivial antemorphism of a graph, known as
GA. Hence GA xp SYM, and a palynomial algorithm
for SYM would yield one for GA, which is very unhkely
{GA is nol even known to be in co-NP).

Before attempting to prove the converse, we should
mention that SYM is not exacily the problem we need
to solve: we are more interested in the associated search
problem S-SYM (to compute a non trivial symmetry if
there is one}. But the search problem associated to GA,
say 5-GA, may not be polynemially equivalent 1o GA.
IL will not be possible to reproduce the argument of the
previous section, where the NP-completeness of the de-
cision problem made the associated search problem poly-
notnially equivalent to it, Hence we have to carefully dis-
tinguish the different problems we consider, beginning
with C5YM: given L, S on L and a clause C on L, is
there a & € Symy such that o(C) £ C7 The associated
search problem S-C5YM is the one needed for non trivial
applications of the S-symmetry rule. The graph resiric-
tion of CSYM will be noted CGA: given G = {V, E) and
V' C V, s there a o € Aut(G) such that a(V') £ V'?

We will frequently refer to the following problen:,
noted Gl: given two graphs, are they isomorphic? This
is a well-known NP problem that seems to be non NP-
cotnplete (hence the same holds for GA, since GA xp
(i1). There are quite a Joi of problems polynomially
equivalent to GI, called isomorphism-complete, among
which the associated counting problem {(how many iso-
morphisms between two graphs, see (Mathon, 1979)),
bringing evidence for the non-NP-completeness of GI.
For deeper evidence, see [Kibler et afl., 1992]. Other
isomorphism-complete problems of more direct interest
to us refer to group-theoretic notions on graph auto-
mortphisms, or more precisely on the permutation group
Aut{(7), notions we therefore have to introduce.

DELA TOUR AND DEMRI 291

(1,0 {20 3.0

-

Figure 2: the graph G for S = {{I}}

Given a permuiation group ¢ on a permutation do-
main X, the orbit of 2 € X is 2% = {ve X/p G,
g = y} (zy is standard notation for y(z), as well as
o for Yo p). The refation {{z,4)/r € ¥} 15 an equiva-
lence relation, and the orbits form a partition of X, noted
Part(G). Two literals I, 1' are symmetric if I € 155""-'?.
To any problem P for which the set of solution forms a
permutaiion group G, we associate the problem O-P of
compuling Part{G).

We address the problem of establishing as precisely as
possible the complexity classes of the problems associ-
ated with SYM. The graph restriction trivially yields S-
GA ccp 5-SYM, 0-GA xp O-5YM and CGA ocp CSYM.
Apart from SYM and 5-5YM, we are going to show that
G1I polynomially reduces to all the other problems associ-
ated with SYM. First, it is proved in [Mathon, 1979] that
Gl op O-GA, hence we directly obtain Gl «p O-SYM.

Consider the problem 1R-GA (GA with one restric-
tion): given a graph & = (V, E} and v € V, is there a
a € Aut(G) such that a(v) # v? It is proved in [Lubiw,
1981] that GI xp IR-GA. Bui it is trivial to see thal
1R-GA oxp CGA, since IR-GA is exactly the restriclion
of CGA to Lhe case where [V'| = 1. Hence Gl xp CSYM
op S-CSYM.

In order to prove these relations in the reverse direc-
tion, we need to establish a kind of converse to lemma
2.1 (restricted to G = ('). Lel § be a set of clauses,
we first consider the set of literals Ls defined as Lhe
smallest ane for 5 that is complete for complementarity:
¥i € Lg, I € Lg. Clearly, Ls can be computed in poly-
nomial time in the length of $. For any literal {, I* refers
i § stripped of its possible negation, and {~ lo (It)*.

We now consider the graph® G = (Vs, Es) such that
Vo= LsUSUN with N = {50/t Lt ie {1 .4}

and

(b)eBs & (a={EDAb={i+1,1)
Via= {4, Abe {i,~1))

vaEbe S

We have ¥I € L} valg ({1,8)) = 1, valg. ({2,0})} =
vala ({3,0) = 2, a.nd valg, ({4,1) = (see figure 2}.

LEMMA 3.1 Vo € Aut{Gs), Vi€ LY, we have o(l) € Ls
and ¥i € {1...4}, a{{,}}) = (i, a{D)*).

Proof. Since valg, (ef{1,1))} = 1, the first possibility is
a{{1,{}) = I' with ' € Ly and ¥C' € $,I' ¢ C. Hence
a({2,8}} = {4,I'"), which is impossible since the valences
of these vertices are different. The second possibility is
a({l.f)}) = C = {I'} € S, hence a({2,}) = I', which

*We cannot use the graph construction from [Basin, 1994],

although it has similarities with ours, since it is unable to take
account of the double negation law,

292 AUTOMATED REASONING

therefore should not appear in any other clause, and
kence a{(3,1)) = {4,1"*}, which is impossible.

The coaly possibility is therefore a{{1,§}} = {1,1"} (re-
alized by a = fdy, with I’ = {), hence a{{i,{}) = {i,¥'}
for i = 1...4, and either a{f) = ¥ or () = “. In both
cases I' = a(l)T. Q.E.D.

For all & € Aut(Gg), we note a” the restriction of o
on Lg. We then have:

LEMMA 3.2 Vo € Aut(Gs]» then ¥l € Lg,
a*{l) and YC € 5, o* (Y = e{C).

Proof. Wl € Lg, let I' = a{i*) € Ls from lemma 3.1,
and also o{4,1%}) = (4,1}, Smc,e 03_3 I+}] = (3,I'"),
and o is bijective, then o) {r,re},
and a{i™) € {I, J""}\{mf(i+ 1} Hence o [l‘) aflf) =
a(l)° = a*{D)°.

Hence a{N) = N (lemma 3.1} and &{Ls) = Ls.
Hence ¥C € §,a(C) € S, and Wl € Lg, a{l) € a(C) &
{eff),alC)) € Es & QJC] € Eg & | € (, hence
afC) = {elh)/l € €} = a*(C). QED.

THEOREM 3.3 The function *
Aut{7g} onto Syms.

Proof. By lemma 3.2, * is lnto Symg: Yo € Aut{(Gg),
o” is a complementarity preserving permutation of Lg,

ard a*(5) = a(5) = S.

* 18 onto Symg: for o € Symg, let o : Vo = V¢ such
that ¥i ¢ LY, ¥i € {L...4),a({i,)) = (i,0{0)"), and
¥l € Lg, ofl) = o(l} (hence a® = ¢}, and ¥C' € 5,
a(() = #(C). Of course, o € Auf(Gg): edges on
N, Ls are trivially preserved, and W € L V(" ¢ 5,
e Eswte (e ol) e all) e all) enl)
& (afh),a(C)) € Es.

* 18 an homomorphism: Yo, 3 € Aut(Gs), VI € Lg, we
have H{of)* = laf = lo"3 = lo" " (since In™ € Lg),
hence (nd)* = o* 3",

* is an isomorphism: let a € Aut{(:5) such that a* =
Idy,, then Y5, 1) € Vs, a({i,5}) = {i,e{l)) = {i,8), and
¥C € S, by lemma 3.2, we have o((C) = (?‘((L'} =C,
hence o = fdy,. This proves Ker* =T, Q.E.D.

Q‘(IC) =

I H

is an isomorphism from

4 Generating S-symmetries

An immediate consequence of theorem 3.3 isa 8YM wp
GA, since the graph Gz can be constructed in poly-
nomial timme in the lenglh of S, and Symsg is triv-
ial iff Aut(Gs) is trivial. Hence SYM =p GA. Fur-
thermore, we also have S-SYM xp S5-GA since for all
a € Aut{G's)\Z, the non trivial S-symmetry o can be
computed in polynomial time. Hence 8-5YM =p 5-GA.

Similarly, we could prove O-5YM op O-GA, and use
0-GA xp G from [Mathen, 1979). However, the reduc-
tion in [Mathon, 1979] involves (n?) calls to GI {whete
n is the number of vertices), and therefore does not vield
a tractable algorithm for O-SYM. In this section we focus
our attention on algorithmic issues, in order o provide
realistic reductions from problems for which realistic al-
gorithms exist. We will especially consider the problem
of generating the group Symg, in a particularly useful
way to be defined below.

4.1 Elements of computational group
theory

The material in this section is mainly taken from [Hofl-
mann, 1981], with almost the same notations. Let G be
a group with identity e, and # a subgroup of G, noted
H <G ForaeG, Ha={ha/h € M} is a right cosel of
M in G. 1t is known that [7{a| = ||, and that the right
rosets of # in § form a partition of &, which yieids La-
grange's theorem: if G is finite, then 3k € IV |G| = k|H).
Let a; .. .ax € G such that {Ha;/i = 1... &} is the par-
tition of right cosets of # in G and i £ j = Ha; # Ha;,
ther {a;...ax} s a complete right transversol of ¥ in
G. Since H = He is a right coset, then 3i/He; = H, and
{c)t{ar ... ap}\{a;} is also a complete right transversal
of H in G: we can always choose to include the identity
in complele right transversals.

(iiven a subset A C G, the subgroup generated by A,
noted <A>, is the smallest subgroup of G containing A;
then A is a generator sel for <A>. A malriochka in G
is a fimite sequence of subgroups G, < ... < G, < Gy
such that 6, = Zand Gy = G. Fori € {l...r} if
{; 15 a complete right transversal of §; in §;_,, then
Ya € Gy, 3 € I7; such that e € G,b;, hence such that
ab ! € G;. By induction we see that Ya € G, by € U,

., A6, € U such that abl_] .71 = ¢, hence a =
be...0. i, Ui is therefore a computationally useful
generator set. for G, provided r and the {/;"s are small.

Il & is a permutation group on X finite, and Y C X,
the puintwise stabilizer of Y in G is Gyy) = {p € Gf
YyeY yp=yl Yisabaseof GilOp =T [tis
not difficult 1o show that ¥¥* C ¥ Giy) < Gy, Gy = G

and .‘}{X] = T. Hente to any linear ordering (z),...,4)
of the clements of X we can associate Lhe matriochka
M < . < G, where G = Clyz,..x,})- Let U be a

complete right transversal of G in ¢ Vfori=1.. . n

Yo, ¢ € 681 we have ;¢ = 5i¢ & npv~! = 24
& el € 6 o p e G4, Hence if ¢, ¥ € 1/, then
4 # ¢ & 290 £ 29, Since ;4 € {z; .. .3, }, there are
at most n— 7+ | possibilities, hence |I4| < n—7+1, and
UL, th] < %; we have at most (}(n?} generators
for ¢, and clements of G can be uniquely expressed as
compaositions of at most n generators.

A representation malriz is a n x n matrix M such
that. M{i, j] either is empty, or if i < j, M[i,j] is a
permutation of X such that ¥& < i,y M[3, 7] = 27 and
#iMig] = x5, 0r if § = j, M[i, 7] is Jdx. Note that
.M Is Lrla.ngula.r M then re Mpmsents the set. T, whete

= {yMlk, /v € TH, .7 € {k...n), Mk, j] #
empty} and TM = LM[n rl} = I; permutai.ions are
composed from the n*! line to the firat.

For any permutation @ of X, ¢ € TM & 3¢ € TM,
dje{l...a), v =¢M[l,j). But 11 = 2 M[1, 5] =
o M1, j] = z;, hence peTMazp= :_,-,M[l,j] #
empty and pM]1, i7F € TM. Since pM[1, 41" can be
computed in time O{n] then by 1terat.mg from ™
TM we have a membership test in time O(n®) for the

L

set. of permutations represented by M.

Coming back to the matriochka G¢) and the right

transversals U;, we build the following n x n matrix M¥:

" fveliandip=j>i
MOLij)l=¢ Idx ifi=j
empty otherwise

From what precedes, one easily proves that AM¥ is u rep-
resentation matrix, and that it represents ¢. Remember
that M depends on the order z, ...z, of X, and on
the U/;’s. 11 can also be proved that such a matrix can
be computed in polynomial time from any generator set
for G (see [Hoffmann, 1981]).

4.2 Representation matrix for Sym;

We now consider the prablem MG-SYM: given S, com-
pute a representation matrix for Symg. From the previ-
ous remark, such a matrix can be computed in polyno-
mial time once a generator set for Symy is available, i its
length is polynomial in the length of 8. Hence MG-SYM
xp G-SYM, where G-SYM is the problem of computing
such a polynomial length generator set for Symg. The
graph resiriction G-GA of G-85YM is well-known: it js
proved in [Mathen, 1979] that G-GA xp GI, yielding a
gencrator set of Aul{(V, E)) of length O(|V|*). Hence

CoroLLary 4.1 G-5YM xp G-GA

Proof. Given a set of ciauses S of length n, we build
the graph G = (V3, E5) in time ((n). G-GA yields a
generator set A of Aut{Gs) of length O([Vs[*), hence A*
has length ((n?) and can be computed in time O(n?).
Since * is an isornorphism frem Awt(Gs) onto Symgs
{theorem 3.3), it is easily shown ihat A* is a generator
get. for Syms , hence G-5YM is solved in polynomial time
with one call to G-GA. Q.E.D.

As a consequence, we have MG-SYM ocp Gl In order
to prove that O-SYM and 5-CSYM are isomorphism-
complete, there remains to show that O-SYM ocp MG-
SYM and S-CSYM ocp MG-SYM, which will emphasize

the usefulness of representation matrices.

4.3 Using the matrix

For sake of generality, we show how to cotnpute Pari(G)
for any permutation group G on X = {r,...z,}, froma
representation matrix MY {corresponding to the matri-
ochka G'1). The algorithm is given in 4 steps; the input
is X, M¥ the outpul is a partition P of X.

1. initialize a n % n boolean matrix B 10 false

2. vie{l.. c]pE{t .n},
frg=12 M [,] then Bp, ¢] + true
3P+ {{x:}.. {za}}
4. ¥p,q € {1...n},if Blp,¢], let 0,0 € P such that
g, €0, z, 6 0' in P« P\{O,0'} L {0 U0}

THEOREM 4.2 After step 4, P = Part{G).
Proof. Notice that after step 2, V¥p,g € {l...n},
Blp,gl & 3,5 € {1...n} such that x, M¥[i,j] = =,
(which implies that z, € z§).

We prove inductively that P is a refinement of

Part{g): this 1s true for the initia} value of P in stcg
3, and, in step 4, if 32,2 € X/O ¢ 4,0 C =

DELA TOUR AND DEMRI 293

{induction hypothesis}, then O U O' C ¥ = &% since
z, € 2%, z, € ¢ and Bp, ¢ holds.

Conversely, Part(() is a refinement of P: ¥z € X,
let & € P such that z € O. ¥y € 2%, 3p € G/
we = x, and then 3 ...j, € {1...n} such that
¢ = MO[n,ja].. MO[1,ji). Let g, = y and gy =
wMPi, §i] for i = n... 1. Let O; € P such that y; € O
fori=n...0. ThenVig{l.. .0}, ify =2p, -1 =%
then Blp, g] holds, hence O; = O;_, (by step 4). But
yo = £, hence O, = 0, and y € . We have proved that
2 C O Q.E.D.

It is easily seen that the algorithm is in @(r®), hence
we can conclude that O-SYM op MG-5YM. We now
give an algorithm for S-CSYM, in the same general set-
ting: given X and AM¥ as above, and ¥ C X, it computes
a ¥ € G such that Y3 # Y, if there 15 one.

1. § + false
2, Vi(jeél...n},
if YMY[i, j] # Y then b+ true; ¢ « M9[1, §]
THEOREM 4.3 After step 2, if bthen ¢ € GAYY £ Y,
clse o e G, Yp=Y.

Proof. The case & = true is trivial. 1f b = false, then
Vi< je{l...n}, YM9[i j] = Y, and we easily obtain
YoeG, Yo=Y, Q.E.D.

This algorithm is also in ©@(n®), hence §-CSYM
xp MG-SYM. As a consequence, the problems C-
SYM, 5-CS5YM, O-SYM and M(G-SYM are isomorphism-
complete. Remember that S5YM =p GA and 5-8YM =p
$-GA, and of course GA xp 5-GA xp GL In the sequel,
we give some hints on solving MG-SYM as efficiently as
possible, and then anatyse the use of these different prob-
lemns in automated deduction.

4.4 Algorithmic aspects

As shown previously, a representation matrix for Symg
can be computed from a generator set for Aut{Gs). It
is therefore possible to use known algorithms for general
graphs, some of which can be found in {Hoffmann, 1981].
More precisely, [Hoffmann, 1981] contains aun algorithm
for generaling the automorphisms of labelled graphs: i.e.
graphs with labels attached to veriices, and only label-
preserving automorphisms are considered. Ciearly, the
labels of a labelled graph can be given as a partition of
the verlices of an unlabelled graph. The orbit partition
of label-preserving antomorphisms is a refinement of this
partition. Given any graph G = (V, E), and a partition
P of V such that Part{Aut{()) 15 a refinement of P
(or, say, P is compatible with (), then any o € Aut{G)
is label-preserving {or, say, P-preserving}, and we can
therefore use the algorithm in [Hoffmann, 1981] to gen-
erate Aui((7).

A possible value for P is {V}. For Gs, we can
take P = {N,Lg 5). The interest of providing & P
as fine as possible 18 to reduce the search space. In-
deed, the algorithm in [Hoffmann, 1981] has worst case
romplexity CG{n®(k")%(n + %)), where n = |V| and
k = max{|0|/O € P}, producing a generator set K
such that |[K] < r?(k1?, which can be transformed in a
representation matrix in time Of|K[n? 4+ n®). The num-
her of lines of this matrix can be reduced by considering

294 AUTOMATED REASONING

that L} is a base of Syms, hence any ordering of Lg
where positive literals precede negative onea leads to a
matrix whete the lines corresponding to negative literals
only contain Idy ., and can therefore be removed.

Ji should be mentioned that using labels mnakes it
possible to simplify (7. Consider the initial partition
Ps = {Ls,5} and the graph G = (V{, EL) defined as
Vi=LsUS and

(e,)eEy; & (e,bELsha=1})

veaebe S

Then * is an isomorphism from the group of Pg-
preserving antomorphisms of G onto Syms [we leave
this to ihe reader}. We will therefore say that a par-
tition P’ is P-computible with G if the partition orbit
of the group of P-preserving automorphisms of ¢ iz a
refinement of P'. 4

One natural way of partitioning vertices is based on
valences: since Yo € Aut{G),Yv € V valg(a(v)) =
valc{v}, the valences are labels, and any partition P
can be refined by splitting any O € P inte O0y...0,
such that Yv € O, valg(v) = j, resulting in a partition
P-compatible with G.

This way of combining vertex partitioning principles
can be defined in a more formal way. A verter classi-
fication into a set A is a function ¢ mapping any graph
G = (V,E} to a function vz : ¥V —+ A. The partition
of V induced by 15 is {15'(a)/a € AJ\{P}; if this par-
tition is compatible with &, for any graph G, then &
is a v-invariant (from [Corneil and Kirkpatrick, 1980]).
Hence two v-invarianis ¢, on A, B can be combined
by defining ¢ x v a8 1 x vg for any & = (V, E) and
Yv € V, (g x vg)(v) = {ig(v), ve(v)); the result is a v-
invariant into A x H, and the corresponding partition is
a refinement of both partitions for ¢ and v.

It is also possible to build a new v-invariant from any
v-mvariant ¢ into A, by counting how many adjacent
vertices have the same value by 15: more formally, ¢° is
defined by: ¥u € V,t4{v) = Aa € A5 (v) NV, |, where
V, is the set of vertices adjacent to v in (. ® is then a v-
invariant into A — IN. The corresponding partition may
not be a refinement of the partition for ¢, butl one can
comnbine ¢ X 1%, £ x¢® % ¢®%, 1 x4° 2 (£ x1°)®, etc. There are
maty other v-invariants (see {Cotneil and Kirkpatrick,
1980]), related to distance information, connectivity, or
number of small cycles (small cliques) through a ver-
tex (see also the star partition in (lWeichaeI, 1971)). It
15 sometimes meaningful to combine v-invariants on a
graph and on its complement.

As an example, val is a v-invariant, and using ua.lguq

{see |Read and Corneil, 1977]} corresponds to staling
that two literals can only be symmetric if they appear
an equal number of tirnes in clauses of equal length, and
that two clauses are in the same orbit enly if they contain
equal number of literals appearing in equal number of
different clauses. This is a refinement of valg: .

4.5 Symmetries in automated deduction

In this section, we will frequently refer to [Benhamou
and Sais, 1994f, which describes the only known imple-
mentation of Krishnamurty's rule. Although thia is only

a restriction of the S-symmetry rule (both on € and &),
experimentations display drastic improvements on some
examples.

This is not the place to describe precisely the prov-
ing methods used in [Benhamou and Sais, 1994]. First,
we stress the fact that only symmetric literals are con-
sidered, which means that the S-symmeitry rule is used
with unit clauses. The advantage is that symmetry on
literals can be easily tested once the orbit partition is
known. However, the symmetry test performed in [Ben-
hamou and Sais, 19%4] only comesponds to Part(<e=],
(since only one = € Syms is computed), which is a re-
finement of Part(Syms)\ hence this test is comrect but
not complete. This is the second restriction of the S-
symmetry rule {on #); a useless one, as shown below.

It may be argued that computing a single non triv-
ial symmetry is simpler than computing Vart(Syms),
but we show on an example that this is not relevant.
Consider the famous pigeonhole problem with n pigeons
{n > 2}, it can be formalized with the following set of
clauses PH,:

e forie {] ..,ﬂ}.Pi‘l V...VP,‘_,‘_.].
e forkefl. . .n—1} for1<i<j<n ~Puv-P

P, , means "the pigeon i is in the hole j~. It is easy
to show that f#,,-symmetries comespond to permuta-
tions on pigeons and on holes (independently). Hence
|Symen, | = nl{n — 1)1, which shows that PH,, is highly
symmetric, and is therefore a good example to illustrate
the relevance of symmetry rules. Consequently, SympH,,
has only two orbits: the set of positive literals, and the
set of negative ones.

The strategy in [Benhamou and Sais, 1994] consists
in choosing a clause as long as possible and using sym-
metries inside that clause. In PH, , the longest dauses
are the positive ones (if n > 3). If the symmetry « ob-
tained by S-SYM is a permutation on pigeons, leaving
holes unchanged, then no two literals in a positive clause
are symmetric according to Part{<e>}, and there will
be no application of the symmetry rule in this method
(leading to an exponential proof!).

Hence one has to search for a. symmetry satisfying a
particular property, depending on the strategy for the
symmetry rule. For example, one property required by
the symmetry searching algorithm in [Benhamou and
Sais, 1994] is that a cycle of the symmetry should con-
tain a given literal, and be as long as possible. It is easy
to show that solving such a problem allows to solve 1R-
GA (by graph restriction), and is therefore at least as
difficult as Gl (moreover, restrictions on ¢ easily lead to
NP-complcte problems, see [Lubiw, 1981]). Hence the
problem of maximizing the length of a cycle is at least
as difficult as O-SYM, but yields only a refinement of
Vart(Syms). It should be mentioned that the algorithm
in [Benhamou and Sais, 1994] uses a technique for reduc-
ing the search space which comresponds to the v-invariant
valgs » But the reason of its apparent efficiency is that
it, is allowed to backtrack only a fixed amount of time; it
therefore has a polynomial time complexity (see [Read
and Corneil, 1977]), and hence cannot be expected to
solve S-SYM.

O-SYM s only one example of relevant problems for
implementing symmetry rules, that is solvable in poly-
nomial time from a representation matrix M for Syms.
There is also S-CSYM, and others may exist. Hence rep-
resentation matrices are not only useful for proving com-
plexity results, as done above, but also for implementing
extensions of resolution with the symmetry rule. Other
symmetric resolution methods, less restricted than the
ore in [Benhamou and Sais, 1994], may be designed, and
probably may involve problems which can efficiently be
solved if the representation matrix is available, hence
making good use of the nice group structure of Syms.

References

[Basin, 1994] D. A. Basin. A term equality problem
equivalent to graph isomorphism. Information Pro-
cessing Letters, 51:61-66, 1994.

[Benhamou and Sais, 1994] B. Benhamou and L. Sais.
Tractability through symmetries in propositional cal-
culus. Journal of Automated Reasoning, 12:89-102,
199%4.

[Comeil and Kirkpatrick, 1980] D. Corneil and D. Kirk-
patrick. A theoretical analysis of various heuristics
for the graph isomorphism problem. S/ AM Journal of
Computing, 9(2):281-297, May 1980.

[Garey and Johnson, 1979] M. Garey and D. S. John-
son. Computers and intractability: a guide to the
theory of NP-completeness. Freeman, San Francisco,
California, 1979.

[Gelemter, 1959] H. Gelemter. A note on syntactic sym-
metry and the manipulation of formal systems by ma-
chine. Information and Control, 2:80-89, 1959.

[Hoffmann, 1981] C. Hoffmann. Group-theoretic algo-
rithms and graph isomorphism. LNCS 136, Springer-
Verlag, 1981.

[Kobler et al, 1992] J. Kobler, U. Scheming, and
J. Toran. Graph isomorphism is low for PP*. In
A. Finkel and M. Jantzen, editors, S7TACS-9, pages
401-411. LNCS 577, Springer-Verlag, February 1992.

[Krishnamurty, 1985] B. Krishnamurty. Short proofs for
tricky formulas. Acta Informatica, 22:253-275, 1985.

[Lubiw, 1981] A. Lubiw. Some NP-complete problems
similar to graph isomorphism. S/ AM Journal of Com-
puting, 10(1):11- 21, February 1981.

[Mathon, 1979] R. Mathon. A note on the graph iso-
morphism counting problem. Information Processing
Letters, 8(3): 131-132, March 1979.

[Read and Corneil, 1977] R. Read and D. Corneil. The
graph isomorphism disease. Journal of Graph Theory,
1:339-363,1977.

[Slaney, 19%4] J. Slaney. The crisis in finite mathe-
matics: automated reasoning as cause and cure. In
A. Bundy, editor, CADE-12, Nancy, pages 1-13.
Springer Verlag, LNAI 814, July 1994.

[Weichsel, 1971] P. Weichsel. A note on assymmetric
graphs. Israel Journal of Mathematics, 10:234-243,
1971.

DELATOR AND DEMR 295

