
P e r f o r m a n c e T e s t o f L o c a l S e a r c h A l g o r i t h m s U s i n g N e w T y p e s o f 
R a n d o m C N F F o r m u l a s 

Byungk i Cha and Kazuo Iwama 
Department of Computer Science and Communication Engineering 

Kyushu University, Fukuoka 812, Japan 

Abst rac t 

New types of test-instance generators have 
been developed for generating random CNF 
(Conjunctive Normal Form) formulas with con­
trolled attributes. In this paper, we use these 
generators to test the performance of local-
search-based SAT algorithms. For this pur­
pose, the generator which produces formu­
las having exactly one satisfying truth assign­
ment is especially desirable. It is shown that 
(i) among several different strategies of local 
search, the weighting strategy is overwhelm­
ingly faster than the others and that (ii) local 
search works significantly better for instances 
of larger clause/variable ratio, which allows us 
to come up with a new strategy for making lo­
cal search even faster. 

1 In t roduc t i on 
It is needless to say that selecting good test instances is 
crucial when evaluating the performance of combinato­
rial algorithms empirically. As a common practice, we 
usually include into the benchmark set both random and 
natural instances because both types of test instances 
have their own merits (and demerits). Natural instances 
of course reflect the real world but they often lack the 
generality. By contrast, random instances can be ob­
tained in relatively simple ways, by which we can know 
the average performance of algorithms and its growth ra­
tio as the size of instances grows. However, critics always 
say that they are too artificial. 

In the case of local search algorithms for satisfiabil­
ity testing [Gu, 1992; Selman et a/., 1992], the nature of 
local search particularly makes difficult to use random 
test instances. The reason is not unique: Local search 
is incomplete algorithms, so we cannot use unsatisfiable 
predicates for testing. It inherently works very well for 
formulas having many satisfying truth assignments (so­
lutions). Henceforth we should select instances having 
very few solutions to test its critical performance, but 
it is essentially hard in the case of random instances. 
The only way of trying to do so is to select formulas 
from the so-called cross-over region (the clause/variable 

ratio ~ 4.2 ~ 4.3 in the case of 3SAT formulas, see 
e.g., [Cheeseman et a/., 199l]). However, no one knows 
reasonable ways of proving that such instances actually 
have sufficiently few solutions. (By simple experiments 
for formulas of 20 variables, we found that formulas at 
the cross-over region have usually ten or more solutions 
if they are satisfiable.) Thus one can hardly deny the 
criticism that random instances are too easy and are in­
adequate for local search algorithms. Ironically, many 
papers claim the merit of local search mainly using ran­
dom instances [Morris, 1993; Selman and Kautz, 1993a; 
1993b; Selman et a/., 1992]. 

New types of test-instance generators, called AIM gen­
erators [Asahiro et a/., 1993], have been developed to an­
swer such criticism about random SAT instances. They 
are also random generators but accept several parameter 
values to control attributes of the generated instances. In 
the present situation, the most important attribute is the 
number of solutions. AIM generators include the gen­
erator, called k ONESAT-GEN, which produces kSAT 
formulas having exactly one solution over a wide range 
of clause/variable ratio. Also, another AIM generator, 
called ibSAT-GEN, can generate satisfiable instances at 
the clause/variable ratio when the ordinary random gen­
erator can never generate satisfiable instances. 

In this paper, we use these new types of random in­
stances for testing the performance of several algorithms 
based on local search. Two major results are as follows: 

(1) Among several different strategies of local search, 
the weighting strategy is overwhelming faster than the 
others. 

(2) Our test instances made clear that local search 
works better for instances of larger clause/variable ratio 
even though the number of solutions is very few. To 
exploit this nature, we propose a new strategy, namely, 
to modify given instances so that they will become easier 
for local search. 

In the next section, we survey existing strategies of 
local search. In Section 3, AIM generators are briefly 
described. In Sections 4 and 5, we present our experi­
mental work and show the two major results mentioned 
above. 

304 AUTOMATED REASONING 



CHA AND IWAMA 305 



(2-3) Select, again randomly, a pair of clauses A and 
B in such that A covers B (if any). We remove 
the (same or smaller) clause B from 

(2-4) Construct a random clause A and add A into 

Step 3. Note that each of (2-1)-(2-4) keeps unsatisfia-
bility of and therefore is always unsatis-
fiable. So, repeat step 2 as many times as we wish, 
for example, until all clauses include three literals 
and sufficient number of clauses are generated. 

kONESAT-GEN can be obtained by modifying SAT-
GEN as follows: We start with a simple initial formula 
having only one solution instead of Similarly as 
kSAT-GEN, kONESAT-GEN first creates a random cell 
Cans. Then it constructs the initial formula such that 
it has exactly one solution which is induced by Cans. 
Let, for example, for 
variables . Then the initial formula is f in i t ia l = 

(one can easily verify that fnow becomes 
true only if one sets 
1). (ii) Just as SAT-GEN, kONESAT-GEN repeats to 
apply the four rules appropriately until the parameter 
values of the formula fit the specified one. It should 
be noted that these rules never increase the number of 
solutions. However, rules (2-2) and (2-4) may decrease 
the number of solutions, i.e., may change the formulas 
into unsatisfiable ones. Therefore, we have to be careful 
when applying those rules. Actually several details are 
needed to make the formula 3SAT and to make it satisfy 
the literal distribution. See [Asahiro et a/., 1993] for 
those details. 

Instance generators based on the same idea, i.e., gen­
erating instances with controlled attributes, especially 
with predetermined solutions, have been developed for 
other problems like the Hamiltonian Circuit problem 
[iwama and Miyano, 1995a] and the logic optimization 
problem [iwama and Hino, 1994]. All these generators 
generate instances from their solutions. So, if one can 
reverse this solution-to-instance process, then it might 
allow "cheating". We have developed how to guaran­
tee the security of generators in this sense [iwama and 
Miyano, 1993; 1995b]. 

4 St rength of Clause Weight ing 
We tested several local search algorithms using the ran­
dom formulas described in the previous section. Random 
formulas are denoted by , where t is r (pure ran­
dom generation), o (generated by 30NESAT-GEN) or 
y (generated by 3SAT-GEN), n is the number of vari­
ables, and r is the clause/variable ratio. For example, 
ol00(2.0) means random formulas of 100 variables, of 
2.0 ratio and generated by 30NESAT-GEN, i.e., having 
exactly one solution. 

Table 1 shows the performances of several algorithms. 
Each entry shows the average number of cell moves (the 
upper portion) and the average CPU time in second over 
SPARC Station 10 (the lower portion). The average was 

306 AUTOMATED REASONING 



taken for 100 instances. If an algorithm does not stop 
within specified MAX cell moves for some instances, we 
also give the percentage of successful computation af­
ter the number of cell moves. The MAX cell moves is 
1,000,000 for o200(2.0), 250,000 for ol00(all ratio) and 
25,000 for the others. Since our implementation of al­
gorithms was not so polished, the figures for CPU time 
should be used only for relative comparison. 

Since the local search algorithms depended on luck 
in principle, we cannot avoid a large diversity of com­
putation time. To observe this diversity we conducted 
three experiments: Fig. 1(a) shows the distribution of 
cell-move steps for 100 different ol 00(2.0) instances. The 
rightmost shaded bar represents the number of instances 
that need more the 8,000 moves, which are three be­
tween 8,000 and 10,000, six between 10,000 and 15,000 
and the worst one took almost 105 moves. Fig. 1(b) 
shows the same distribution for a single instance where 
100 searches from randomly selected initial cells are car­
ried out. Fig. 1(c) is also for a single instance where 
100 searches are carried out from the same initial cell. 
(Note that we still use randomization for tie break in 
Moving Downward.) It might be interesting that three 
distributions are fairly alike. 

The first four columns of Table 1 show the perfor­
mance of the four existing algorithm described in Section 
2. One can conclude that: 

(1) Most importantly, WEIGHT is much faster than 
the other three algorithms. 

(2) [Selman and Kautz, 1993b] claims that GSAT + 
rwalk is faster than GSAT, but it is only for pure random 
instances of 4.3 ratio. When the ratio is larger, it is 
slower than GSAT for y instances. 

(3) Not surprisingly, single-solution instances are 
much harder than other types of instances. No al­
gorithms but WEIGHT can cope with 50-variabIe in­
stances which is of surprisingly smaller size than the re­
sult obtained using pure random instances [Morris, 1993; 
Selman and Kautz, 1993a; 1993b; Selman et a/., 1992]. 
One should note that it is a merit that we can use 
smaller-sized instances to test algorithms since they 
make it easier to analyze the behavior of algorithms for 
the purpose of possible improvements. 

(4) Generally speaking, local search works better for 
instances of larger clause/variable ratio. This will be 
more considered in the next section. 

Since WEIGHT is overwhelmingly good in its ba­
sic form, it is natural to try to seek its improvement 
rather than to try to find completely new strategy. The 
fifth column of Table 1, W+mflip, is the combination 
of WEIGHT and Restart. The last column, W+rcell, is 
combination of WEIGHT with Prohibiting Recent Cells, 
i.e., when moving to a neighboring cell, the cells that 
have been visited in the last ib rounds are excluded from 
the candidate. Revisiting the same cell many times ap­
pears to be redundant, which is suppressed by this rule. 

Unfortunately both attempts do not seem to be suc­
cessful. We learned by experiment that WEIGHT occa­
sionally moves forward and backward between two cells 

until the number of overlaps at both cells increases suffi­
ciently large. This action appears to be important, which 
is prohibited if one imposes the Prohibiting-Recent-Cell 
rule. (Note that in the case of GSAT, this rule certainly 
shortens the computation time as much as 50%.) 

We also experimented with different weighting mech­
anisms. The basic type is (i) to add a unit weight (1) 
to each clause covering the current cell. Other ways ex­
perimented are: (ii) add 2 to each clause, (iii) add a real 
value to each clause that is minimum enough to get rid 
of the current local minimum, (iv) add a random value 
between 0.5 and 1.5 to each clause and (v) add 1 to a 
single clause selected at random. Again we were not 
able to see any important difference in the performance. 
For example, (steps, CPU time, success percentage) of 
(v) for o200(2.0) is (8194, 3186, 52) against (6375, 2916, 
62) of the basic method above mentioned. 

5 Increasing Clause/Var iable Rat io 

As discussed in the previous section, WEIGHT is much 
better than the other local search algorithms but its fur­
ther improvement seems to be hard. Then what about 
changing not the algorithm but the instances so as to 
become easier for the algorithm? This might be hope­
ful if we can exploit the fact that local search generally 
works better for formulas of large clause/variable ratio. 

Before discussing the way of increasing the ratio, what 
is the reason for the above fact? Fig. 2 shows the tran­
sition curve of the number of overlaps (without count­
ing the weight) during the course of traversing the cells. 
(The curve was first used by Selman et al. [Selman and 
Kautz, 1993b]. In that paper, the curve is only decreas­
ing for unknown reasons. In the present case it is no 
longer decreasing but includes many ups and downs.) 
In Fig. 2, (a) is the curve for ol00(2.0) and (b) is for 
ol00(4.7). Note that the average overlaps at each cell 
for (a) is 25 since a single clause of three literals covers 
1/8 out of the total cells and there are 200 clauses in an 
ol00(2.0) instance. This average number is 58.75 for (b). 
See Fig. 2(a). The number of overlaps becomes under 5 
very quickly and never becomes more than 5 after that 
until it gets to the solution. This few overlaps should be 
very rare, since the average is 25. 

Hence one would first speculate that the algorithm 
only searches a small number of cells by moving back 
and forth. That is not very true: We counted the num­
ber of new cells (cells that have never been visited be­
fore) at each period of the execution of WEIGHT for 
ol00(2.0) instances. In near-average cases which need 
roughly 4000 cell-moves, the ratio of new cells is 81% for 
0-1000th moves, 51% for 1000th-2000th moves, 64% for 
2000th-3000th moves and 45% for 3000th-4000th moves. 
Thus it seems that there exists ''a narrow valley" which 
eventually reaches the solution. Figs. 3(a) and 3(b) show 
the transition of the Hamming distance between the cur­
rent cell and the solution corresponding to Figs. 2(a) and 
2(b), respectively. One can see that this valley is quite 
long. 

CHA AND IWAMA 307 



In the case of high clause/variable ratio, as shown in 
Fig. 2(b), this "valley" is not so deep or the number of 
overlaps in the valley is as large as between 20 and 30. 
Therefore, there seems to be a nice "slope" down to the 
solution which begins from a fairly distant place from 
the solution. Thus the probability of running across this 
slope is much higher than Fig. 2(a) where the valley is 
quite flat. 

In order to increase the number of overlaps, the sim­
plest way is to add random clauses. However, one should 
be careful because adding clauses destroy many solu­
tions. What we propose in this paper is to add resol­
vents: Suppose that clauses A and B include exactly 
one common variable x and x appears affirmative in A 
and negative in B. Then, the resolvent of A and B is the 
clause which includes the literals of A except x and those 
of B except x. It is well known that adding resolvents 
does not destroy any solution. 

For experiment, we used o 100(2.0). The number 
of added resolvents (mostly clauses of four literals) is 
changed from 100 to 400. Then the number of added 
clauses v.s. the number of cell-move steps and CPU 
time of WEIGHT is as follows: 

100 2792(95)/374 
200 2584(85)/423 
300 2377(90)/400 
400 2069(95)/438 

Thus there is a clear tendency that WEIGHT runs 
faster as the number of added resolvents increases. It 
would be reasonable to claim that the number of cell 
moves, 2069 when 400 resolvents are added, is signifi­
cantly less than 2838 of Table 1, since it was very hard 
to improve the figure by, say, even 10%, by many other 
attempts described in Section 4 (most of them increased 
the number of steps). One can notice, however, that the 
CPU time increases because it takes more time to com­
pute the number of overlaps at neighboring cells. We 
need more experiments to claim that the decreased num­
ber of cell moves will become more important than the 
increase of computation time necessary in each cell move. 

Thus this approach is somehow hopeful. However, we 
should try to find better ways of adding clauses: See 
Fig. 4 which illustrates, just as Fig. 2, the transition 
curve of overlaps when 300 resolvents are added. Al­
though a lot of clauses are added, the "depth" of the 
valley is still very deep or we can find very little improve­
ment from Fig. 2. Actually we tried some attempts such 
as adding a clause A + B for two clauses A and B such 
that they overlap with each other and the number of 
overlaps there is much less than the average. However, 
no good results are obtained at this moment. 

6 Conclud ing Remarks 
Our requirement for good test instances is twofold: One 
is that they can make clear the performance difference 
of different algorithms. The other, which might be more 
helpful, is that they can give us some hint to improve the 
algorithms. The main purpose of this paper is to claim 

that our new type of random instances can play both 
roles (Section 4 for the first role and Section 5 for the 
second role). Of course, there remain a lot of possibilities 
for further work in both roles. 

An important question is whether local search is really 
better than Davis-Putnum-type algorithms and for what 
kind of instances it is so. For example, CSAT developed 
by Dubois et al. [Dubios et al, 1993], runs in almost the 
same number of branches for ol00(2.0) as the number of 
cell-visits of WEIGHT. Answering this question would 
be one of the most urgent requirement in this field. 

References 
[Asahiro et al, 1993] Y. Asahiro, K. Iwama and E. 

Miyano, Random generation of test instances with 
controlled attributes, 2nd DIM ACS Challenge Work­
shop, 1993. (Also, to appear in Cliques, Coloring 
and Satisfiability, DIM ACS Series in Disc. Math, and 
Theory Corny. Sci, 1995) 

[Dubios et al, 1993] O. Dubois, P. Andre, Y. Boufkhad 
and J. Carlier, SAT versus UNSAT, 2nd DIM ACS 
Challenge Workshop, 1993. 

[Gu, 1992] J. Gu, Efficient local search for very large-
scale satisfiability problem, SIGART Bull., Vol.3, 
pp.8-12, Jan, 1992. 

[Morris, 1993] P. Morris, The breakout method for es­
caping from local minima, Proc. AAAI-93, 1993. 

[Selman and Kautz, 1993a] B. Selman and H.A. Kautz, 
An empirical study of greedy local search for satisfia­
bility testing, Proc. AAAI-93, 1993. 

[Selman and Kautz, 1993b] B. Selman and H.A. Kautz, 
Local search strategies for satisfiability testing, 2nd 
DIM ACS Challenge Workshop, 1993. 

[Selman et al, 1992] B. Selman, H.J. Levesque and 
D.G. Mitchell, A new method for solving hard satisfi­
ability problems, Proc. AAAI-92, pp.440-446, 1992. 

[Cheeseman et al, 1991] P. Cheeseman, B. Kanefsky 
and W. Taylor, Where the Really Hard Problems Are, 
Proc. IJCAI-91, pp.163-169, 1991. 

[Iwama and Miyano, 1995b] K. Iwama and E. Miyano, 
"Intractability of read-once resolution," Proc. 10th 
IEEE Conference on Structure in Complexity Theory, 
1995. 

[iwarna and Miyano, 1995a] K. Iwama and E. Miyano, 
"Better approximations of non-Hamiltonian graphs," 
manuscript, 1995. 

[iwama and Miyano, 1993] K. Iwama and E. Miyano, 
"Security of test-case generation with known an­
swers," Proc. AAAI Spring Symposium Series, 1993. 

[iwama and Hino, 1994] K. Iwama and K. Hino, "Ran­
dom generation of test instances for logic optimizers", 
Proc. 31th ACM/IEEE Design Automation Confer­
ence, pp.430-434, San Diego, 1994. 

308 AUTOMATED REASONING 



CHA AND IWAMA 309 



3 1 0 AUTOMATED REASONING 


