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Abstract

An extension of semantic resolution is pro-
posed. It is also an extension of the set of
support as it can be considered as a particular
case of semantic resolution. It is proved sound
and refutationally complete. The extension is
based on our former method for model build-
ing. The approach uses constrained dauses (or
cclauses), i.e. couples [clause : constraint].
Two important new features are introduced
with respect to semantic resolution. Firstly, the
method builds its own (finite or infinite) mod-
els to guide the search or to stop it if the initial
set of dauses is satisfiable. Secondly, instead of
evaluating a dause in an interpretation it im-

1988), page 52). In 1967, Slagle [SLAGLE, 1967] pro-
posed a very elegant and general restriction strategy for
resolution, called semantic resolution, in which the ap-
plication of the resolution rule is controlled using ad hoc
ground models given by the user. Slagle was aware of
the limits of his method:

"A disadvantage of a semantic strategy is that the pro-

gram must at present be given a model along with the

theorem to be proved. One might hope that someday the
progreim could devise its own models” ([SLAGLE, 1967],

page 695).

J. Slaney's SCOTT theorem prover [SLANEY, 1993]
is an answer to this wish. SCOTT produces striking
results using semantic resolution.

Slagle also emphasized the usefulness of models in im-
proving the set of support strategy:

poses conditions (coded in its rules) to force a
cclause not to be evaluated to true in the in-
terpretation it builds.

" With set of support resolution, resolvents are gener-
ally not maximal and the underlying model is unknown.
Ifthe models were known many resolutions and resol-

The extension is limited in this paper to binary
resolution but generalizing it to nary-resolution
should be straightforward. The prover imple-
menting our method is an extension of OT-
TER and compares advantageously with it (if
binary resolution is used in OTTER), both in
the search space and in the proof lenght of a
relevant non trivial example.

Last but not least, model building is incremen-
tal. This feature is specially useful when deal-
ing with large set of clauses.

1 Introduction

Since the very beginning of automated theorem prov-
ing, researchers tried to put some semantics in theo-
rem provers in order to improve their power and effi-
ciency, (see for example [GELERNTER et a/., 1983]).
This was a very natural idea: usually, human beings are
strongly guided in their proofs by some interpretation
of the conjecture they are trying to proof or to refute.
But a problem immediately appeared: "how to formalize
this idea ?" The first, fully automated formal approach
taking semantics into account was the set of support
strategy [WOS et al., 1965] who was bom almost simul-
taneously with resolution, and who is still considered as
the most powerful restriction strategy available (WOS,
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vents could be eliminated" ([SLAGLE, 1967], page 695).

The method we propose here overcomes the two draw-
backs pointed out by Slagle (for semantic resolution and
set of support). More precisely, we propose an extension
of semantic resolution based on our former method for si-
multaneous search for refutation and model (BOURELY
et al., 1994; CAFERRA and ZABEL, 1992)). It strongly
relies on the use of constrained clauses, i.e. couples
\clause : constraint s\, instead of standard clauses. The
constraints allow in some sense to code meta-reasoning:
they are logical formulas imposing some conditions con-
ceming the inference rules.

Our approach has at least three important conse-
quences: first it prunes the search space for refutation
in a similar — but stronger — way than semantic reso-
lution does. Seocond it allows to perform an incremental
model construction. If a model of a formula /7 is known,
and if we want to get a model of EAF', then our method
computes the new model by extending the previous one,
instead of re-computing it entirely. Last, but not least, it
gives to all level of the support strategy a power similar
to that of level 1.

The paper is divided into 5 sections. Section 2 recalls
briefly the basic ideas of our method for model build-
ing and some of its key rules. In section 3 we propose an
extension of semantic resolution and we prove its proper-
ties: soundness and refutational completeness. Section 4



is devoted to incremental model building: we state con-
ditions assuring that a model can be automatically built.
Ore running example illustrates this construction.

Section 5 shows, via an analysis of the search space of
the halting problem proof how our method prunes the
search space of OTTER (if binary resolution is used) and
produces a shorter proof.

2 Simultaneous Search for refutations
and models

With the aim of increasing the possibilities of theorem
provers as (hopefully intelligent) research assistants, we
have developed few years ago a (refutationally complete)
method combining search for refutations and models for
first order formulas. The method captures the "normal"
attitude of a human being faced to a conjecture: he con-
siders simultaneously two possibilities: to prove and to
disprove the conjecture.

This method - called RAMC1 - uses constrained
clauses (or c-clauses), i.e. couples {clause : constraint].
Constraints code the conditions necessary either to the
application or the impossibility of application of the in-
ference rules and denote the range of the variables of
the dauses. It is neither possible nor useful to paste
here large parts of results published elsewhere. Instead
we recall some inference and disinference rules used in
the examples that give also a taste of the method (for
technical details see [CAFERRA and ZABEL, 1992] and
[BOURELY etal, 1994]).

- The rule of binary c-resolution (abbreviated bc-
resolution) on c\ arez u p () and {(s) defined
as follows:

[iyvey - X] [iE v e Y]

feivel, 1 XAYAL=1]

- The rule of distautoltr)dqy generation imposes con-
straints on a c-clause in order to prevent it from being a
tautology.
[inviczive - X]
fvit@ve X ag£i]

- The unit be-dissubsumption rule imposes constraints
preventing a c-dause from being subsumed by a unit c-
clause. It allows the elimination of the c-clauses that are
logical consequences of other c-clauses of S. It is defined
as follows (where = = var(X) U var(l{5)))

GHVe Y] [E -4
flitive  YAvE[RA VI £L]]

The binary-c-disresolution rule is a natural extension
of the unit disresolution, defined in [CAFERRA and
ZABEL, 1992].

TP va : X]

[~PEDVE : Y]

[PETva 1 X A(VESY VI £ 12)]
[P va : X A{FEY Al =D

where ¥ = var(12) U var(y)

'standing for Refutation And Model Construction

- The GPL-rule, ("Generating Pure Literal" rule).
Let S be a finite set of cclauses. Let ¢ be a ccause
in S and / be a literal in ¢. The GPL rule computes
constraints for ¢ in order to prevent application of bc-
resolution upon / and /c (i.e. the complementary of /)
between the cclause ¢ and any of the c-clauses in S.

Formally, let S be a set of cdauses and ¢ :
[it} v : X} be acdause in 5. The GPL-rule is de-
fined as follows:

Hve X s
1) : Xpure

where Xpure = A{YB[-YVI#ET:[k: V] €S and IF(F) €
k} A X where ¥ are the variables in var{}) U var{k).

In [BOURELY et a/., 1994] the GPL rule is extended
in order to deal with self-resolvent clauses, (it is easy
to see that the result of the previous rule applied on
selfresolvent clauses, is in most cases useless).

The reader can easily imagine the meaning of other
rules of the method (based exactly on the same idea).

Our approach is not limited to Herbrand models:
in [BOURELY et al., 1994], the method is extended
to sefs of equational clauses. We defined the c-
paramodulation and c-dis-paramodulation rules (similar
to the c-resolution and c-disresolution rule) and we give
two termination criteria identifying dasses of satisfiable
equational unit dlauses for which a model can be surely
built. They allow to compute the domain D (a subset of
the Herbrand universe) and to interpret function sym-
bols on the domain.

If RAMC stops, and if the set of c-dauses that we ob-
tain contains only unit c-clauses, it gives a model of the
initial formula. The partial interpretation of the pred-
icates is given by the unit cdauses produced by the
method: each n-ary predicate P is mapped to two sub-
sets Z{ )t and Z{P)~ of I comesponding to the sets of
n-tuples of ground terms for which P is respectively eval-
uated to True and to False. The interpretation is partial
b eI(PYPUI(P)y- C D WI(P)*UI(P)~ Dn,
we have a tetal interpretation of predicate P?. Obvi-
ously total interpretations are particular cases of partial
interpretations. The sets Z{£)* and Z{#)~ are presently
expressed by equational problems in an equational the-
ory. Equational problems are a decidable dass of logical
formulas quantified in a particular way and using only

=not=, ~, A, V. We shall soon incorporate in the method con-

straints with more expressive power [PELTIER, 1995].
Interpretations (models) expressible by equational prob-
lems are called equational (or eg-) interpretations (mod-
els).

3 Extending semantic resolution

The principle of semantic resolution [SLAGLE, 197] is
the following: it uses an interpretation 71 (given by the
user) and prevents the application of resolution between
two cdauses that are true in J. This restriction is refu-
tationally complete. The main idea of the method we
propose is a very simple one: since we are able to build

2 Notice that not to be false in a partial model in not
equivalent to be true in it
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models of sefs of clauses, why not use them in order to
guide research in similar way as semantic resolution (or
the set of support strategy) does ?

Immediately, we can go further: instead of evaluating
dauses in a (in general partial) model, why not impose
conditions — coded in the constraints — forcing a clause
to be evaluated to false or not to be evaluated to false
in the model ?

These simple ideas have important consequences:
search space can be restricted with respect to that of
semantic resolution and it gives to the method at all lev-
els a power similar to that of set of support at level 1°.
The model building capabilities of our approach are also
improved, with respect to our previous work: we will
show that the use of an interpretation 7 that is a model
of some of the ccauses makes the model construction
for the whole set easier.

3.1 Semantic c-rules

We translate these ideas into the inference (and dis-
inference) rules of our method. Let 7 an eq
interpretation, represented by a finite set of unit ¢
clauses:

I={[Li(s1) - X\].- . [La(sa) :Xn]}

The variables of each cdause [Li(s;] : &;] are de-
noted by vs.

IfC [V A(E) : &) then we note Pz ('} the following
equational problem:

PriC)= \/ (@RAAs =t)
Py=L,

It is easy to verify:
XYAPHO)=ZET=IEC

(i.e. there is a literal in C evaluated to true in 2).
We introduce a new inference rule and a new disinfer-
ence rule.
binary |-c-resolution :

£ [L(@V R, : X] c2 JLC[E)V i V]

We shall call RAMCS the method RAMC augmented
by the two rules above.

Remark: RAMC is a particular case of RAMCS, with
I=0{e Z(P)*=ZI(P}" =0, forall P).

Notice that the use of equational problems allows
to restrict the application of the resolution rule in a
stronger way than semantic resolution, as defined by
[SLAGLE, 1967] does, as showed by considering the fol-
lowing set of clauses:

a1 : Plz)v 8(z)

ey =Pz} ¢3:-8(a) vV R{x)

and the Her brand interpretation:

I'= {S(a)}

The following is a valid semantic derivation, according
to Slagle's definition.

C4: S(x) (resolution between ci and C,)
Cs : R(x) (resolution between C, and C;)

While RAMCS gives the following c-clauses:

ea:[S{z) 1z # a (T-c-res,c) ,c2)
g5 [R(z) :2# a Az =a] (T-c-res,cq,ca)

The constraints of Cs have no solution and thus Cs can
be removed from the set of c-clauses.

More precisely, it is possible to show that all the c-
refutations generated by our method do correspond to a
ground semantic refutation (see theorem 1 below). This
is not the case with semantic resolution: in previous ex-
ample, the first derivation did not comrespond to any
ground semantic derivation (for more details about this
problem, see for example [McCUNE and HENSCHEN,
1985)).

In [STANDFORD, 1980], a method was proposed in
order to avoid inferences that do not correspond to any
ground inference: it attaches to each clause a list of lit-
erals whose descendants must be falsified (it was called
the FSL list). This method appears to be not efficient
[McCUNE and HENSCHEN, 1985].

"The FSL method was implemented but during pre-

liminary experiments we found that it required too much
processing time. During deep searches the FSL lists be-
came very long and the improvement was small or non-
existent." ([McCUNE and HENSCHEN, 1985], page
256)

Our approach seems to be more adapted to solve-this
problem in a more natural and efficient way.

In theorems and lemmas below "interpretation” means
peg-interpretation.

iR vR: cXAYAL =6 ARPI(a) Y -Prie))]
ry is a T-c-resolvent of ¢y and c3.
Remark: =Pr{c,}vV—Pz(cz) ensures that at least one
of the ¢y, ¢ will not be evaluated to true in 7.

binary I-c-disresolution :
o [L{E) v By X]

r RV Ry :('t'Ay.ﬁ\ﬁ=?2_!\(—|_'£’1(q)\f"v?z(c'g)]] . .
2 [LE) V Ry < X A(¥5.-Y VL £ 82V (Prier) A Pr{co)))} 1heorem 1 Let 1 be an interpretation, S a set of c-
= : clauses and d be a derivation from S using the I-c-
where 7 denote the variables of ¢, > , ) .
resolution rule. Let d'be a corresponding ground deriva-
tion(i.e. d = &,.(d)). Thend'isaground semantic
derivation from ground instances of c-clausesin S.

ez [Lo(kz) v He 1 V)

r; and ry are two I.c-disresolvents of ¢ and ¢».

4This corresponds to Wos's wish in the first of his 33 basic

research problem [WOS, 1988 Proof 1 By induction on the length n of d:
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o [fn =0, the theorem obuiously holds

o Assume that the theorem holds for n. lLet d be a
derivation of length n+ 1. The first step of d is of
the form § = S U { R}, where R is of the form:

[y vz - XAYALL = A (RPL(e1) V ~Prie2))]

and there exssis ¢y, 09 € 5 such that:

e =[LlE v R &)

= [Lf{i2) v Rz : Y]
The first step of d is of the form:
5 5 SU{o(R))

where o € Sl (X AV = BaA(-Pr(c) )V ~Pr(cd)}).
e € Sol(Pr{c;)) or ¢ & Sol(Pricy)). hence: I [
a{LI)VR,) or I |t o(~L°{{3) V Ry). At least one
of the two parent clouses 1s felse in I. The first
step of &' is therefore a ground semantic inference.
Using iduction hypothesis, we deduce that &' is a
ground semantie derivetion.

3.2 Soundness and Refutational
Completeness of the method

Theorem 2 (Soundness) Let ¢, ond 3 be two c-
clauses, let I be a inlerpretation, r a binary T-c-resolvent
of ¢, and ¢y, ry and rq the binary T-c-disresolvenis of ¢;
and 4. Then:

o v ts o logical consequence of ry and ro.

s cyAca=r Ary Ay Le r can be deleted from the

set of e-clauses ond replaced by ry and ro.

Proof 2 The proof is similar to those of lemmas 8.1 and
8.6 in {CAFERRA and ZABEL, 1992].

The proof of refutational completeness needs the fol-
lowing lemnma:

Lemma 1 Let T be a partial tnlerpretation I. Then
there exists a lotal interprelation I' such that, for all
ground clause C:

IEC=T EC

Proof 3 Let T be a parlial interpretation. Let I' be the
interpretation defined by, for all predicate P (D} s the
domeain of T ):

il

I(p)* 1Pyt

Ip)” DN\I(P)*

Let I:(f] a ground literal. If L is positive we have:
IELN PFTeI(P) te T€T(PY, hence I = L{t).
If L is negative, T |= L{t} imphes T £ L°(1), hence
I’ = Lo(T) {stince L° is positive) and I’ |= L(f} {stnce I’

is total).
Then for each ground cleuse C = Vi, L we
have:
IEC:
* 3T | LI, then T’ |= Ly(T;) and therefore T' &=
[

o or 3, JLEE) = Ly(t5), then T = € (C is a tautol-

ogy).
Lemma 2 (Lifting lemma)
Let fC, : X1] and [Cy : Xa] be two c-clauses, o) and

o2 solulions of X7 and Xy respectively, T a interpreta-
tion, I' the totol inlerpretation as in lemma 1, and Rg
a I’-msol‘ueut of 71 (Cy) and o2{C3). Then therc exists

a I-c-resolvent [C : V] of {C) - X4] and {C, : A%] and
a solution ¢ of Y such that «(C) = R,.
Proof 4 Let o [Lif) VR &) and eq

[Le(53) v Ry : A% be two c-clauses, oy € Sol( X)), o3 €
Sol{Xy), I o interpretation.
x ?et Ry aI-resofvent of oy (L{T;) v Ry) and ou(Lé(E2) V

2).

Let R:[C : V] be the T'-c-resolvent of ¢y and c3. Let
o= o Uogs. We have 0 € Sol(A) A X3). Moreover
rrl[il) = D’z(fg), kence & & SOJ(‘(_YI .f'\r't'z Al = 12),

Ry is a T'-resolvent of a1 (L(1) V Ry} and o2(L°(E) v
Ry), thercfore we have either I' (£ oy (L(E VR ) or I'
o3{L°(12)V Ra) By lemma 1 we have: T £ o1 (L(F )V R))
or T [ oL} V Rg) 1.0. 01 € Sol{Pr(c))) eroa €
Sol(Prea).

Henee o € Sol(Y).

Theorem 3 (Refutational Completeness)

For all interpretation T and for afl unsatisfiable sef of
c-clause S there erists a refutation of S using only T-c-
rules,

Proof 5 By rcfutational completeness of semantic res-
olution {SLAGLE, i967 there exists a ground 1'-
refutation of 5. By lemma £ it can be lifled to non ground
c-clauses, to oblain a I-c-refutation of 5.

4 Incremental Model building

One of the most interesting features of our method is
that it allows building models incrementatly. This char-
acteristic is particularly interesting when dealing with
large sels of clauses {databases,...). The following the-
orem gives conditions allowing to extract a medel from
a set of c-clauses obtained when RAMCS stops. This
conditions are similar — but weaker — than those for
RAMC (the former conditions imposed that all c-clauses
had to be unit c-clauses). Therefore RAMCS is stronger
than RAMC. Indeed, we take advantage of the inter-
pretation I thal is already a model of a some of the
c-clauses, in order to compute the whole model as an
extension of Z.

Theorem 4 If S 15 6 set of c-cleuse stable by oll the

rules of RAMCS, and if all non unit c-clauses of 5 are

true ;n I, then a model of § can be automatically com.
puled.
Proof 6 Let 5 be a stable set of c-clouse, such thal all
non unil c-clause of 5 is true in 5.

The interpretation I' 1s defined as foilows:

For all ground term 1:

I'(LQ)) =
s]' 3[ (E ] (:‘ S such that:
FAA $

z*u,(f]) = Z(L{T)), elsewhere
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We prove thet T' |= S, by case anolysis on the length
of the c-clauses.
For all c-clowse ¢ : [\, Li(Ti} : X] € § we hove:

eifn = 1 {CC is a uml c-clause), then Yo €
Sol(X).T' | Li(afl))) (by definition of T').

» ifn > 1, then C is true in I'. Let o € Sol(X).
Then, since C' 15 stable by distautology, there exisls
i such that o(L;(t;)} is true in I. Since S is sta-
ble by unit-c-I-disresolution, for any unil c-clause
[Li(R) : V), we have: YAX AT =1, = L. Finally,
by definition of T', we have: T' |= e(L4(1;)), and

TEC

Remark: RAMCS allows therefore to perform an in-
cremental model construction: the model Z¥ in the proof
above is buill by medifying and eztending Lhe previous
one. As already pointed out, this feature is especially
useful when the set of c-clauses 5 is very large (for ex-
ample in databases), and when the adding of the new
c-clauses does not modify radically the intended mean-
ing of 5.

Example

The following example, taken from [FERMULLER et at.,
1993], illustrates the mode) building aspect of RAMCS,

t [J [[ P(x) | B{glx,x>) : TRUE J].

2 [1 [ -9¢x) | R{y,x) : TRUE ]].

3 [1 [[ ~R{a,a) | -R{£(B),a) : TRUE 1].
4 [] [[ R(£{x),y} « TRUE 1].

S [1 T[ p{x} | -P(£{x}) : TRUE 1].

6 [0 [[ -P{(a} : TRUE ]].

RAMCS builds automatically the following Herbrand
model.

4 [1 [{ R(E(x),y) : TRUE 11.

9 [gpll [l Q¢gix,x)} : TRUE 1.

12 [gp1l [ -R{a,a} : TRHUE ]].

10 fgpll {[ -Q{a) - TRUE 11.

11 [gp1} [[ -P{f(x)} : TRUE 11.

& [] {[ -P{a) : TRUE ]].

13 {gp2] [[ Rix,¥y) : ({a !=y) | {a = x)} ]].

Then suppose we add the {ollowing c-clauses:

7 [ ([ -8¢x} | 8{g(x,x)) : TRUE JI.
8 [J [C 5(a) | S(F{x)) : TRUE 13-
9 [0 [[ -8{x} | -A{b,g(x,x)} : TRUE 1].

RAMCS gives (with the previous model).

10 [resolution,8,¥] [{ -S$(x} | -A({b,g{x.x}) : TRUE ]1J.
11 [reseolution,10,7] [[ -S(x) | -Rib,g(g(x,x) ,glx,x}))
: TRUE 11.

12 [resolution,21,2] [[ -8{x) | -Qi{gl{g(x,x).g(x,x)}}

: TRUE 11.

13 [reselution,12,1] [[ -S(x) } P{g{z,x)}
14 {gp1] ([ P(g{x,x}) : TRUE 11,

clause #13 is deleted by dissubsumption 14,13,
15 [dissubsumption,14,1] [[ P{x) | Q(g{x.x})
(x = gly,y)) 11.

16 {gp1l [[ -Q{g(g{x,x).g{x,x))) = TRUE I].
clause #12 ia deleted by dismsubaumption 16,12.
17 [dissubsumptien,18,2} [[ -Q(x) | Riy,x)

: THUE ]].
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: (x 'm (glg(z,z),glz,z)))) ]].

18 [gpl] [[ -R(b,g{g{x,x) ,g(x,x))} : TRUE ]].
clause #11 ie delated by dipaubsusption 1B,11.

19 [dissubsunption,18,10] [[ ~5{x) | -R(b,g(x,x))
: (x 1= gly,y¥)) 11.

20 [gpld ([ S(gdx,x)} : TRUE 1].

21 [gpll [f S(a) : TRUE 11.

Here we get a set of c-clauses satisfying the conditions
of section 4, and 1he model ia:

% modified previous literals

[L a¢fix).y> : TRUE 11.
[[Qglx,x}) : (x 'm giy,y)) 1.
[[ -A{a,a) : THUE ]3.

[L ~q{a} : TRUE J1.

[[ -P{f(x)) : TRUE 1].

[[ -P{a) : TRUE 1].
[[ R(x,y) : (all z {({a '= y) | {a != x})
2 ((x '=b) | {y != glglz,z),glz,2)1)}) 1]. 1

% new literals

14 [gpll [[ Pig(x,x)) : TRUE 11.

16 [gpl) [ -0{g(glx.x),glx,x))) : TRUE IJ.
18 [gpl] [[ -R(b,glg(x,x),g(x,x))} : TRUE ]1.
20 [gp1] ([ S(g(x,x)) : TRUE 1].

21 [gpl] ([ S(a) : TRUE 11.

Bemark 1: for the sake of clarity, we let the con-
straints of R(x,y) in unsolved form (i.e. in non canoni-
cal one). its solved form would be (after eliminaiion of
parameter z):

[L Rix,y) : (({a '=y} | (a 1= x})

& ((x'=b) | (yma) | (y=mb) | (y=£(2}) |
((y =glu,v)) & ((u'=v) | {{u=a)

Flu=b) [ (u=fCr1)) | {(u=glvl,vd))

& (vl 1= w2},

Remark 2: the model built by RAMCS ix infinste.

‘The next section is devoled to the delailed analysis of
anon trivial example in which, in addition to the pruning
of the search space allowed by RAMCS, we show a nice
side eflect of its application: the possibility of finding
shorter proofs.

5 Pruning the search space and
shortening proofs: an example

To prove that a set of c-clauses S implies a conclusion €7,
we use — according to the ideas introduced in seclion 3
— the following procedure:

1. Compuie a partial mmodel M of 5.
2. Use M-c-rules on S U-C.

The first siep may of course not stop (first order logic
is undecidable), hence we have to fix a limit on the search
for M (for example an upper bound on the number of
c-clauses generated or on the search time. ..}, in order to
keep refutational completeness. This is similar to what
is done in SCOTT [SLANEY, 1993). Nevertheless, even
if we do not get a model of 5, we will get a model of 2
subset of 5, that can be use in step 2 (in the worst case
M will be empty).

1t should be remarked that the use of partial models
allows a finer and more dynamic control of the applica-
tion of resolution rule because it can be enriched as the
search for refutation goes along.



A problem we consider related to the use of seman-
tic notions in theorem proving is the one of finding
shorter proofs. This problem became to be an important
one in automated deduction. Obviously, an exhanstive,
breadth-first search (ensuring thai the shortest proof will
be found) is in general impossible. Sometimes the use of
semantic nolions as in our method allows to find shott
proofs in a reasonable time.

The haiting problem

This fundamental problem in Computer Science is an
interesting challenge for automatled theorem provers, es-
pecially for those using resolution (for one of the usval
fornudalions in the automated deduction literature there
is no known fully automated resclution proof [DAFA,
1994]).

The formulation we consider in this section is the one
of M. Bruschi (BRUSCHI, 1991)%.

With this formulation, M. Bruschi obtained a 26 steps
preof of the theorem, using ENprover, the DSI imple-
mentation of the Hsiang's EN-strategy method. He nsed
a breadih fiest strategy with set of support.

RAMCS builds the following model A of the hy-
pothesiz (withoul the deniul of the conclusion):

[1 [[ -algorithm_program_decides{i) : TRUE }].
[1 [[ -pregram{a) : TRUE ]] .
[1 [[ ~program_program_decides(4) : TRUE ]].

{1 [[ -program_halts(A,B) : TRUE ]1].

[1 [[ -algorithm(4} : TRUE 1].

[J [[ -program_halts_halts2_outpute(4,B,C,D)
TRUE 1].

7 [1 [[ program_decides{A) :

EEI - B+ I O % B %

TRUE 11.

8 [1 [[ -halts2_outputs{4.B.C,D) : TRUE 1].

9 [1 [( -program_not_halta{k,B} : TRUE 1].

10 [1 [[ -pregram_not_halta_halta?_outputs(4,B,C,D)
: TRUE 11,

11 [0 [[ -program_not_halts_halts2_outputaiA,B.C,D)
: TRUE 1].

12 [] [{ -program_not_halts_halts_outputs{A,B,C}

: TRUE 11.

13 [1 [[ -halte_outputs{A,B,C) : TRUE 1].

14 [1 [[ -program_halte_halts_outputs(i,B,C)

: TRUE 1] .

15 [0 [[ ~outputa(a,By : TRUE 1].

16 [1 [f -pregram_not_halts_halts_outputs(4,E,C)

: TRUE 1].

Once we have a inodel we can use RAMCS. The proof
obtained by RAMCS using the model M is (input c-
vlauses are distinguished by the “[ ]” prefixing them):

11 [1 [[ -program_halts{A,B) | halta(4,B) : TRUE 1].
17 [1 I[ -program_not_halta{i,B) | -halte(A,B}

: TRUE 1].

22 [1 [[ ~program_halts_halte2 outpute(4,B,C,D) {
progran, _halta(B,C) : TRUE 11,

25 [1 ([ -program_not_halte_halts2_outpute(r,B,C.D)
| program.not_halts(B,C) : THUE 1].

34 [1 [[ -algorithm_program_ decxdes(.\)

| program_program_decides(cl) : TRUE 11,

‘taken from the TPTP library, problem COMO003-2, see
there the initial sel of clauses

35 [] [[ -program_program_dacides(h)

| program_halte_halta2_ outpute(A,B,C,goed)

: TAUE 1].

36 {1 [[ -program_program_decides(A)

| program_not_halts_halta2_outputs{4,B,C,bad)

: TRUE ]1].

48 [1 [{ algoerithm_program_decides{c4} : TRUE ]].
44 [resclution,43,34] [[ program_progran_decides(ci)
: TRUE ]].

50 [resolution,44,36] [[ program_not_halta_halta2_
cutputa(cl,i,B,bad) : TRUE ]J.

52 [resolution,44,35] [[ program_halts_halts2_
outputa{ci,A,B,good} : TRUE ]1.

79 (resolution,50,25] [[ program_not_halte(4,B)

: TRUE 11.

83 [resolution,52,22] [[ program_halts(k,B) :
88 [resolution,83,11] [[ halta{s,B} : TRUE ]].
133 [remelution,78,17} [[ -halta{A,B) : TRUE ]].
134 [resocluticm,133,88) [[ : TRUE 1].

TRUE 1].

OTTER [McCUNE, 1990], using binary resolytion and
sel of support strategy, produces a 12 steps proof, after
generation of 90 clauses. The proof found by RAMCS is
8 sr)t!eps long. The proof has therefore been shortened by
A3%.

Discussion

Globally (i.e. for refutation and model building) our
method generates 134 cclauses, OTTER generates 90. In
fact, when comparing the two methods, one should keep
in mind than we apply simultaneously refutation and
model building rules. So, for each clause generated by
resolution, 2 or 3 c-clauses are generated by c-resolution
and c-disresolution rules. If we consider only refutations
rules RAMCS generates only about 50 cclauses. The
search space for refutation is therefore reduced by almost
50%. Computing time is roughly the same.

Of course, when looking only for refutation , the
"model building rules" flag can be turned off and the
search space is the refutation search space in the usual
sense, which is reduced in this example by 45% with re-
spect to that of OTTER.

Remark: the model building task performed by
RAMCS can be consider as automated meta-reasoning
done in the object level.

6 Conclusion and future work

We have extended semantic resolution and as side effect
we have also improved the set of support strategy us-
ing a method for incremental automated construction of
(finite or infinite) models.

Two points will be studied in the near future.

+ The first one is a practical one, i.e. we shall exten-
sively experiment our method on more complicated
examples, particularly on open problems. For exam-
ple, we shall look for a mechanical solution of the
halting problem using the specification for which no
fully automated resolution proof is known.

* We shall study the extension of our method to se-
mantic paramodulation.
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