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Abst rac t 

An extension of semantic resolution is pro­
posed. It is also an extension of the set of 
support as it can be considered as a particular 
case of semantic resolution. It is proved sound 
and refutationally complete. The extension is 
based on our former method for model build­
ing. The approach uses constrained clauses (or 
c-clauses), i.e. couples [clause : constraint]. 
Two important new features are introduced 
with respect to semantic resolution. Firstly, the 
method builds its own (finite or infinite) mod­
els to guide the search or to stop it if the initial 
set of clauses is satisfiable. Secondly, instead of 
evaluating a clause in an interpretation it im­
poses conditions (coded in its rules) to force a 
c-clause not to be evaluated to true in the in­
terpretation it builds. 
The extension is limited in this paper to binary 
resolution but generalizing it to nary-resolution 
should be straightforward. The prover imple­
menting our method is an extension of OT­
TER and compares advantageously with it (if 
binary resolution is used in OTTER), both in 
the search space and in the proof lenght of a 
relevant non trivial example. 
Last but not least, model building is incremen­
tal. This feature is specially useful when deal­
ing with large set of clauses. 

1 In t roduc t ion 
Since the very beginning of automated theorem prov­
ing, researchers tried to put some semantics in theo­
rem provers in order to improve their power and effi­
ciency, (see for example [GELERNTER et a/., 1983]). 
This was a very natural idea: usually, human beings are 
strongly guided in their proofs by some interpretation 
of the conjecture they are trying to proof or to refute. 
But a problem immediately appeared: "how to formalize 
this idea ?" The first, fully automated formal approach 
taking semantics into account was the set of support 
strategy [WOS et a/., 1965] who was born almost simul­
taneously with resolution, and who is still considered as 
the most powerful restriction strategy available ([WOS, 

1988], page 52). In 1967, Slagle [SLAGLE, 1967] pro­
posed a very elegant and general restriction strategy for 
resolution, called semantic resolution, in which the ap­
plication of the resolution rule is controlled using ad hoc 
ground models given by the user. Slagle was aware of 
the limits of his method: 

"A disadvantage of a semantic strategy is that the pro­
gram must at present be given a model along with the 
theorem to be proved. One might hope that someday the 
progreim could devise its own models" ([SLAGLE, 1967], 
page 695). 

J. Slaney's SCOTT theorem prover [SLANEY, 1993] 
is an answer to this wish. SCOTT produces striking 
results using semantic resolution. 

Slagle also emphasized the usefulness of models in im­
proving the set of support strategy: 

'' With set of support resolution, resolvents are gener­
ally not maximal and the underlying model is unknown. 
If the models were known many resolutions and resol­
vents could be eliminated" ([SLAGLE, 1967], page 695). 

The method we propose here overcomes the two draw­
backs pointed out by Slagle (for semantic resolution and 
set of support). More precisely, we propose an extension 
of semantic resolution based on our former method for si­
multaneous search for refutation and model ([BOURELY 
et a/., 1994; CAFERRA and ZABEL, 1992]). It strongly 
relies on the use of constrained clauses, i.e. couples 
\clause : constraint s\, instead of standard clauses. The 
constraints allow in some sense to code meta-reasoning: 
they are logical formulas imposing some conditions con­
cerning the inference rules. 

Our approach has at least three important conse­
quences: first it prunes the search space for refutation 
in a similar — but stronger — way than semantic reso­
lution does. Second it allows to perform an incremental 
model construction. If a model of a formula I1 is known, 
and if we want to get a model of E/\F', then our method 
computes the new model by extending the previous one, 
instead of re-computing it entirely. Last, but not least, it 
gives to all level of the support strategy a power similar 
to that of level 1. 

The paper is divided into 5 sections. Section 2 recalls 
briefly the basic ideas of our method for model build­
ing and some of its key rules. In section 3 we propose an 
extension of semantic resolution and we prove its proper­
ties: soundness and refutational completeness. Section 4 
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is devoted to incremental model building: we state con­
ditions assuring that a model can be automatically built. 
One running example illustrates this construction. 

Section 5 shows, via an analysis of the search space of 
the halting problem proof how our method prunes the 
search space of OTTER (if binary resolution is used) and 
produces a shorter proof. 

2 Simultaneous Search for refutat ions 
and models 

With the aim of increasing the possibilities of theorem 
provers as (hopefully intelligent) research assistants, we 
have developed few years ago a (refutationally complete) 
method combining search for refutations and models for 
first order formulas. The method captures the "normal" 
attitude of a human being faced to a conjecture: he con­
siders simultaneously two possibilities: to prove and to 
disprove the conjecture. 

This method - called RAMC1 - uses constrained 
clauses (or c-clauses), i.e. couples {clause : constraint]. 
Constraints code the conditions necessary either to the 
application or the impossibility of application of the in­
ference rules and denote the range of the variables of 
the clauses. It is neither possible nor useful to paste 
here large parts of results published elsewhere. Instead 
we recall some inference and disinference rules used in 
the examples that give also a taste of the method (for 
technical details see [CAFERRA and ZABEL, 1992] and 
[BOURELY etal, 1994]). 

- The rule of binary c-resolution (abbreviated bc-
resolution) on c \ and u p o n i s defined 
as follows: 

- The rule of distautology generation imposes con­
straints on a c-clause in order to prevent it from being a 
tautology. 

- The unit bc-dissubsumption rule imposes constraints 
preventing a c-clause from being subsumed by a unit c-
clause. It allows the elimination of the c-clauses that are 
logical consequences of other c-clauses of S. It is defined 
as follows (where 

The binary-c-disresolution rule is a natural extension 
of the unit disresolution, defined in [CAFERRA and 
ZABEL, 1992]. 

'standing for Refutation And Model Construction 

- The GPL-rule, ("Generating Pure Literal" rule). 
Let S be a finite set of c-clauses. Let c be a c-clause 
in S and / be a literal in c. The GPL rule computes 
constraints for c in order to prevent application of bc-
resolution upon / and lc (i.e. the complementary of /) 
between the c-clause c and any of the c-clauses in S. 

Formally, let S be a set of c-clauses and c : 
be a c-clause in 5. The GPL-rule is de­

fined as follows: 

In [BOURELY et a/., 1994] the GPL rule is extended 
in order to deal with self-resolvent clauses, (it is easy 
to see that the result of the previous rule applied on 
self-resolvent clauses, is in most cases useless). 

The reader can easily imagine the meaning of other 
rules of the method (based exactly on the same idea). 

Our approach is not limited to Herbrand models: 
in [BOURELY et a/., 1994], the method is extended 
to sets of equational clauses. We defined the c-
paramodulation and c-dis-paramodulation rules (similar 
to the c-resolution and c-disresolution rule) and we give 
two termination criteria identifying classes of satisfiable 
equational unit clauses for which a model can be surely 
built. They allow to compute the domain D (a subset of 
the Herbrand universe) and to interpret function sym­
bols on the domain. 

If RAMC stops, and if the set of c-clauses that we ob­
tain contains only unit c-clauses, it gives a model of the 
initial formula. The partial interpretation of the pred­
icates is given by the unit c-clauses produced by the 
method: each n-ary predicate P is mapped to two sub­
sets corresponding to the sets of 
n-tuples of ground terms for which P is respectively eval­
uated to True and to False. The interpretation is partial 
b e c a u s e = Dn, 
we have Obvi­
ously total interpretations are particular cases of partial 
interpretations. The sets are presently 
expressed by equational problems in an equational the­
ory. Equational problems are a decidable class of logical 
formulas quantified in a particular way and using only 
=,not= , ̂ , A, V. We shall soon incorporate in the method con­
straints with more expressive power [PELTIER, 1995]. 
Interpretations (models) expressible by equational prob-
lems are called equational (or eq-) interpretations (mod­
els). 

3 Ex tend ing semantic resolut ion 
The principle of semantic resolution [SLAGLE, 1967] is 
the following: it uses an interpretation 1 (given by the 
user) and prevents the application of resolution between 
two c-clauses that are true in J. This restriction is refu-
tationally complete. The main idea of the method we 
propose is a very simple one: since we are able to build 

2 Notice that not to be false in a partial model in not 
equivalent to be true in it 
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models of sets of clauses, why not use them in order to 
guide research in similar way as semantic resolution (or 
the set of support strategy) does ? 

Immediately, we can go further: instead of evaluating 
clauses in a (in general partial) model, why not impose 
conditions — coded in the constraints — forcing a clause 
to be evaluated to false or not to be evaluated to false 
in the model ? 

These simple ideas have important consequences: 
search space can be restricted with respect to that of 
semantic resolution and it gives to the method at all lev­
els a power similar to that of set of support at level l3 . 
The model building capabilities of our approach are also 
improved, with respect to our previous work: we will 
show that the use of an interpretation 1 that is a model 
of some of the c-clauses makes the model construction 
for the whole set easier. 

3.1 Semantic c-rules 
We translate these ideas into the inference (and dis-
inference) rules of our method. Let 1 an eq-
interpretation, represented by a finite set of unit c-
clauses: 

The variables of each c-clause are de­
noted by y1. 

then we note the following 
equational problem: 

It is easy to verify: 

(i.e. there is a literal in C evaluated to true in 2). 
We introduce a new inference rule and a new disinfer-

ence rule. 

binary I-c-resolution : 

We shall call RAMCS the method RAMC augmented 
by the two rules above. 

Remark: RAMC is a particular case of RAMCS, with 

Notice that the use of equational problems allows 
to restrict the application of the resolution rule in a 
stronger way than semantic resolution, as defined by 
[SLAGLE, 1967] does, as showed by considering the fol­
lowing set of clauses: 

and the Her brand interpretation: 

I = {S(a)} 

The following is a valid semantic derivation, according 
to Slagle's definition. 

C4 : S(x) (resolution between c1 and C2) 
C5 : R(x) (resolution between C4 and C3) 

While RAMCS gives the following c-clauses: 

The constraints of C5 have no solution and thus C5 can 
be removed from the set of c-clauses. 

More precisely, it is possible to show that all the c-
refutations generated by our method do correspond to a 
ground semantic refutation (see theorem 1 below). This 
is not the case with semantic resolution: in previous ex­
ample, the first derivation did not correspond to any 
ground semantic derivation (for more details about this 
problem, see for example [McCUNE and HENSCHEN, 
1985]). 

In [STANDFORD, 1980], a method was proposed in 
order to avoid inferences that do not correspond to any 
ground inference: it attaches to each clause a list of lit­
erals whose descendants must be falsified (it was called 
the FSL list). This method appears to be not efficient 
[McCUNE and HENSCHEN, 1985]. 

"The FSL method was implemented but during pre­
liminary experiments we found that it required too much 
processing time. During deep searches the FSL lists be-
came very long and the improvement was small or non­
existent." ([McCUNE and HENSCHEN, 1985], page 
256) 

Our approach seems to be more adapted to solve-this 
problem in a more natural and efficient way. 

In theorems and lemmas below "interpretation" means 
peq-interpretation. 
Theorem 1 Let 1 be an interpretation, S a set of c-
clauses and d be a derivation from S using the I-c-
resolution rule. Let d' be a corresponding ground deriva­
tion (i.e. Then d' is a ground semantic 
derivation from ground instances of c-clauses in S. 
Proof 1 By induction on the length n of d: 
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Discussion 
Globally (i.e. for refutation and model building) our 
method generates 134 c-clauses, OTTER generates 90. In 
fact, when comparing the two methods, one should keep 
in mind than we apply simultaneously refutation and 
model building rules. So, for each clause generated by 
resolution, 2 or 3 c-clauses are generated by c-resolution 
and c-disresolution rules. If we consider only refutations 
rules RAMCS generates only about 50 c-clauses. The 
search space for refutation is therefore reduced by almost 
50%. Computing time is roughly the same. 

Of course, when looking only for refutation , the 
"model building rules" flag can be turned off and the 
search space is the refutation search space in the usual 
sense, which is reduced in this example by 45% with re­
spect to that of OTTER. 

Remark: the model building task performed by 
RAMCS can be consider as automated meta-reasoning 
done in the object level. 

6 Conclusion and fu tu re work 

We have extended semantic resolution and as side effect 
we have also improved the set of support strategy us­
ing a method for incremental automated construction of 
(finite or infinite) models. 

Two points will be studied in the near future. 

• The first one is a practical one, i.e. we shall exten­
sively experiment our method on more complicated 
examples, particularly on open problems. For exam­
ple, we shall look for a mechanical solution of the 
halting problem using the specification for which no 
fully automated resolution proof is known. 

• We shall study the extension of our method to se­
mantic paramodulation. 
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