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Abstract

We demonstrate how to handle equality in the
inverse method using equality elimination. In
the equality elimination method, proofs consist
of two parts. In the first part we try to solve
equations obtaining so called solution clauses.
Solution cdlauses are obtained by a very re-
fined strategy — basic superposition with selec-
tion function. In the second part, we perform
the usual sequent proof search by the inverse
method. Our approach is called equality elim-
ination because we eliminate all occurrences of
equality in the first part of the proof. Unlike
the previous approach proposed by Maslov, our
method uses most general substitutions, order-
ing restrictions and selection functions.

We also note that this technique is directly ap-
plicable to extension procedures, like the con-
nection method. Unlike other approaches, we
do not require the use of rigid or mixed E-
unification.

1 The inverse method

The inverse method of theorem proving in sequent cal-
culi has been proposed by Maslov in the 1960s. The
method is based on the bottom-up1 search in sequent
calculi. The inverse method is completely local [Maslov
and Mints, 1983; Degtyarev and Voronkov, 1994b] and
can be efficiently implemented both for classical and non-
classical logics [Voronkov, 1992]. In terms of efficiency,
it is competitive with resolution2. The inverse method
requires no normal forms which can be an advantage for
interactive provers.

The introduction of equality in the inverse method
has not yet received proper attention. In this paper we

* Supported by a grant from the Swedish Institute.
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t Supported by a TFR grant.

1 Bottom-up search means the search from axioms to the
goal.

2In fact, the inverse method can be simulated by res-
olution using structure-preserving cause-form translation
[Maslov, 1983; Boy de la Tour, 1990].
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consider the inverse method with equality. Our approach
is based on equality elimination.

The structure of this paper is the following. In this
section we briefly discuss introduction of equality in the
inverse method in general. In Section 2 we introduce
main definitions and notation. In Section 3 we define
the equality elimination method and give several exam-
ples. In Section 4 we show how one can generalize our
technique to the connection method.

The first natural generalization of the inverse method
to include equality has been made by Maslov [Maslov,
1971]. It was based on theorems proven in [Kanger, 1983;
Lifschitz, 1968] about the specialization of proofs in the
sequent calculus with equality (but without free vari-
ables!). According to these theorems, all equality rea-
soning steps can be moved on top of the proof so that
they precede all other steps. This gives the characteri-
zation of the inverse method with equality which in fact
coincides with hyperresolution (on classical logic), but
with a different initial set of dauses (closed collections
in Maslov's terminology). While in the inverse method
without equality the initial sequents correspond to ax-
ioms of the sequent calculus, in the equality case initial
sequents are those derivable from axioms exclusively by
equality rules. [Kanger, 1983] called such sequents "di-
rectly demonstratable”. In later papers the role of these
sequents play (instantiated) equational mated sets [Gal-
lier, 1992] or E-complementary eg-connections [Bibel,
1987]. We call their analog solution clauses.

Let us come back to results on the specialization of se-
quent proofs. Is it possible to generalize these results on
proofs with free variables (metavariables in Maslov's ter-
minology)? In this case equality rules become paramod-
ulation rules. Direct lifting from the ground case is now
impossible without functional reflexivity axioms. As we
shall show, the use of free variables is possible both for
the traditional formulation of the inverse method and for
the formulation proposed in our paper.

In the original presentation of the inverse method by
Maslov, unification has been made by using arbitrary
(not only most general) substitutions which made lifting
from the ground case unnecessary3. Even in the paper

3In temms of resolution, such a treatment of unification
gives unrestricted resolution [Lloyd, 1987] — a calculus with
too high non-determinism.



[Maslov and Mints, 1983] evaluated in [Lifschitz, 1989]
as a "very clean explanation of the inverse method" it
was only noted that "likewise the definition of a most
general unifier, at each step one could select minimal
substitutions”. However, the proof of completeness in
the [Maslov and Mints, 1983] reformulation of the in-
verse method is made using unrestricted substitutions
given by an arbitrary saturation of the Herbrand uni-
verse. Arbitrary substitutions are also used in [Lifschitz,
1989] where the most general unifiers are only used for
factoring.

An alternative approach would be to take into ac-
count the results of [Kanger, 1983; Lifschitz, 1968] on
the specialization of sequent proofs. These results allow
one to restrict oneself to simultaneous paramodulation
only. "Simultaneous" means that in the application of
the equality rules from the conclusion to the premise
all occurrences of the "into-term" are replaced by the
"from-term". As it has been shown in [Benanav, 1990],
for simultaneous paramodulation lifting is possible with-
out the functional reflexivity axioms.

We do not, however, use simultaneous paramodulation
here. Instead, we use very refined strategies of dealing
with equality — orderings, basic restriction and selec-
tion function. It happens that these severe restrictions
on the equality part of the proof is enough to preserve
completeness using most general unifiers.

Our method is also directly applicable to so called "ex-
tension procedures" [Prawitz, 1983], including tableaux
methods [Fitting, 1990; Degtyarev and Voronkov,
1994b], mating or connection methods [Andrews, 1986;
Bibel, 1987; Degtyarev and Voronkov, 1995] and their
generalization — consolution [Eder, 1991]. We shall il-
lustrate such an application of our method in Section 4.

The major difference of our treatment of equality rea-
soning for the connection method is that instead of
checking paths through an extension of the input formula
for E-complementarity (i.e. for the existence of a rigid
E-unifier) we first generate a set of E-complementary
paths using ordinary unification, and then look for an
appropriate extension. Thus, we split extension proce-
dures into two separate processes: equality elimination
and search for an extension. The two processes are con-
nected by solution dauses generated in the equality elim-
ination part. This allows us to use strong sides of both
equality reasoning methods known so far and extension
procedures.

2 Preliminaries

We present here a brief overview of notions and prelimi-
nary definitions necessary for the paper. We assume the
basic knowledge of substitutions and unification.

Let T be a signature and X a set of variables. T{E, X}
will denote the set of all terms in the signature X with
variables from X.

A litersl is either an atomic formula or a negation of
an atomic formula. We shall always write & # t for the
literal ~(z = t}.

A clause is & finite set {L;,...,L,) of literals, de-
noted L1,..., L,. I Lis a literal, C a clause, L,C will
denote the clause {L}| JC. An equation is an expression

s =, where 8,¢ € T{E, X). By a ground ezpression (i.e.
term, equation, clause etc.) we mean an expression con-
taining no variables. We write Afs] to indicate that an
expression A containg s as a subexpression and denote
by Alt] the result of replacing particular occurrences of
sin A by t. By Ao we denote the result of applying the
substitution & to A.

We shall sometimes denote tuples of equations s, =
t1,...,85 = tg by & = . The overbar notation f can
also be used to denote sequences of terms. Substitu-
tions ¢ with the domain x,,...,2, will be denoted by
[Ilﬂle, . ,J:,,ﬂ,’:,.].

Let > be a partial ordering on T(Z, X). It is called a
reduction ordering iff

1. » is well-founded;

2. if 3 »~ ¢ then ufso] » ufte), for all terms s,t,u and
substitutions o.

We assume that reduction orderings are total on ground
terms of T(Z, X).

Following [Bachmair et al., 1992] we distinguish terms
occurring in the originat formula from terms introduced
by substitution by using clesures, i.e. pairs C - o, where
(' ia & clause, o & substitution. The clause C will often
be identified with the closure '+ ¢, where £ is the empty
substitution. For any expression F, the set Ver(E) is
defined as the set of all variables occurring in E. Two
closures 'y -, and C5 -0 are varignts iff C) is a variant
of C; and C)oy iz a variant of Cyoy.

When we use notation (= or b, they state for truth
and provability in classical first order logic with equality,
respectively.

A formula is in skolemized negation normal form iff
it is constructed from literals using connectives A,V and
the quantifier 3. There is a structure-preserving trans-
lation of formulas without equivalences into formulas in
skolemized negation normal fortn with the same number
of occurrences of atoms.

3 The equality elimination method

For the rest of this section we assume that v is a closed
formuia in skolemized negation normal form to be proven
{the "goal”}. We assume that all different occurrences
of quantifiers in ¥ bind different variables. For exam-
ple, 7 canmot have the form 3zA v 3zB. All formulas
in this section are assumed to be subformulas of v. We
shall identify subformulas and superformulas with their
cccurrences in <. For example, in the formula v of the
form A A (A v B) the second occurrence of A is condid-
ered a subformula of {A Vv B), but the first occurrence
of 4 is not. ‘The occurrence of a subformula ¢ of v is
called conjunctive iff it is the occurrence in a subformula
@AYorin A A conjunctive superformula of p is
a superformula* ¢ of ¢ that is conjunctive. The least
conjunctive superformula of ¢ is the conjunctive auper-
formula + of o such that any other conjunctive super-
formula of ¢ is & superformula of ¥. Let us note that
conjunctive superformulas do not necessarily exist. For

42 is a superformula of ¥ iff 4 is a subformula of p {not
necessarily proper).
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example, ¥ has no conjunctive superformula. Any for-
rmula having a conjunctive superformula has the unique
least conjunctive superformula.

We can enumerate all conjunctive subformulas
My Of 7, for example in the order of their occur-
rences in 4. Thus we can unambiguously use “the kth
conjunctive (sub)ormula” v, of 7.

Let Ay,..., A, be a set of predicate symbols not oc-
curring in y. We say that Ag{z1,...,%m) is the v-name
Jor a subformula ¢ of v iff

1. The least conjunctive superformula of y is 3.

2. 11,..., T are all free variables of 4, in the order of
their occurrences in “x.

If a y-name of a formula  exists, then it is unique. Note
that different formulas may have the same y-names, Also
note that some subformulas of 4 do not have y-names.
We can use the set of y-nomes of a subformula. The
set of y-names of a formula o is either P or s singleton
{Au(z1,..., zm)}.

The following example illusirates least conjunctive su-
performulas and -y-names:

Example 3.1 Let v be the formula
(Ez(A(z} A (B(z) v HC(z,1))) A2D(2))V E

All subformulas of ¥ and their y-names are shown in
Figure [ ot the end of this paper.

Lemma 3.1 Let  be a subformaula of 4. Then

1. If 9 is the least conjunctive superformula of p then
EVip DY)
2. If there i3 no conjunclive superformaula of ¢ then
E¥p D1
This lemma partially explains the need for introducing
least conjunctive superformulas. There are deterministic
chains of inferences in sequent systems, where formulas
with v or 3 occur. For example,

L= Ay
T9 A vy
=734, Etiw V)
By restricting ourselves to conjunctive superformulas
only, we eliminate these deterministic chains, making
them in one step.’

Now we can formulate our deductive system for the
inverse method. The proof-search consists of two parts:

5This simple but powerful ides of restricting to con-
junctive superformulas {see [Voronkov, 1992]) has been suc-
cegsfully implemented in the theorem prover described in
[Voronkov, 1990 and in a theorem prover for intuitionistic
logic implemented by T. Tammet (private communications).
In the framework of tableau theorem proving there were many
papers using the idea of permutability of infereace rules in
sequent calculi (see e.g. [Shankar, 1992]). In fact, the leant
conjunctive auperformula of ¢ is a superformula y of » prov-
able from ¢ and such that all inference rules applied in the
proof of 4 from ¢ are permutable with all other rules. The
use of conjunctive superformulas allows one to get vid of non-
conjunctive subformulas before the proofsearch, unlike the
dynarmic use of permutabilities as in [Shankar, 1992].
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the equality solution part and the sequent proof part.
We encode formulas by their y-names. Then sequenta
(i-e. gets of formulas) become clauses (i.e. sets of literals,
obtained as the union of corresponding sets of y-names).
In the first part of the proof, we try to solve equalities in
the formula, generating a set of closures not containing
equality. A closure not containing equality will be called
a solution clause. Solution clauses - o will always he
written in the ordinary clause notation, i.e. aa Ce. This
set of solution clauses is obtained by basic superposi-
tion from initsal closures defined below. In the second
part, the usual sequent style proof search by the inverse
method is performed. The solution clauses generated in
the first part are used as the initial clauses in the se-
quent part. Hence the name “equality elimination” for
our method: we eliminate equality in the first part of
the proof. *

Initial closures are generated aceording to ane of the
three rules:

1. Whenever a literal s # t occurs in -y and € is the set
of y-names for this occurrence of s # ¢, the closure
8=, ¢ is an initial closure.

2. Whenever & = ¢ occurs in v and C' is the aet of
+-names for thiz occurrence of 5 = ¢, the closure
s #1,C - is an initial closure.

3. Let literals P(s;,...,8,) and =P{t;,...,t,}, where
P is different from =, occur in 4 and where
C1,C: are their sets of ¥-namea. Let the substi-
tution ¢ rename variables such that variables of
Pls1,...,80)0,Cio and P(t;,...,t,), 02 are dis-
joint. Then the closure 88 # &,...,8,0 #
ty, C10,C3 « £ is an initial closure.

The equality elimination method consists of five infer-
ence rules. The basic superposition rules are defined asin
[Bachmair et al., 1992]. We always assume that premises
of rules have disjoint variables (this can be achieved by
using variants}. The first three rules derive closures from
the initial closures defined above. Applications of the
firat three rules form the equational solution part of the
proof. The aim of the equational solution part of the
proof is to generate solution clauses that are used asg
axioms of the sequent part of the proof. The sequent
part of the proof uses the last two rules. The aim of the
sequent part of the proof is to derive the empty clause.

Basic right superposition
(a=t0C) (u[s'] =2, D) - 00
(ult] =v,C, D) - 01039

where
1. pis a most general unifier of #oy and #'ey;
2. toyp ¥ soyp;
3. vaap ¥ uleoap;
4. #' is not a variable.
(We call attention to the fact that variables of the
premises must be disjoint.)
Basic left superposition



(s=1,0)-0,  (uls}#,D) 0
(H[t] # v, C, D} Lt

with the same condjtions aa for basic right superpo-
sition and one additional restriction: ufs’] # v must
be the leftmoat disequation in the second premise.?

Equality solution

(s#£1,0)-0
C.op

where p is a most general unifier of so,i0 and s # ¢
is the leftmost disequation in the premise.

Conjunction rule This rule is used in the sequent part
of the proof, thus it is only applied to clouses, con-
taining no equality. Let ¢ A v be a subformula of
v, and N, Ny and Nyay be sets of y-names of ¢,
Y and @ A, respectively. Let I be all variables
of w Arp. Let clauses T', A have no occurrences of
equality. Then the following is a conjunction rule:

U,N,[5/5] A, Ny[i/z]
(T, A, Nong[3/2))0

where # is a most general unifier of 3 and .

Factoring rule This rule is also used in the sequent
part of the proof, thus it is only applied to clauses,
cotitaining nio equality. Let the clause T', A, B have
ne occurrences of equality. Then the following is &
factoring rule

T A B

(T, A)0
where @ is a most general unifier of A, B.
The following theorems are true about the method:

Thecrem 3.1 (Soundness) If there is & derivation of
the empty clause from the initial closures then v is proy-
able,

Theorem 3.2 (Completeness) If 7 is proveble then
there is g derivation of the emply clause from the initial
closures.

Proofs of these two theorems may be found in [Degt-
yarev and Voronkov, 1994c),

Consider an example (the formula is taken from
[Maslov, 1971]):

Example 3.2 The formula to be proven is

Fa{(a # 2 VGO VG A (SGf(2) va =1b)

There are two conjunclive subformulas with the following
names:

6 According to our definitions, a dause is a set of literals,
so the use of the leftmost disequation is not quite correct,
but this restriction can easily be formalized using the selec-
tion mechanism [Bachmair and Ganzinger, 1994]. The proof-
thea?re:t]igéléstiﬂcation of this possibility is given in [Degtyarev
etal, .

Az} =a# zV-GH) VE(f(f(z)))
As(z) = -G(f(zhver=b

The corresponding conjunction rule is

T,Ai(s)  A,Aaf)
(T,A)p

where § 13 a most generel unifier of 5,1,
The tnitial closures are

l.a=

2, ; #bAz(z) €

3. b £ f(f(z)), Ai(z), Aily) - ¢

4. f(z) # .f(.f(ll}J; A?(z)t Al [y] ‘£

The first two closures are generated by equations in the
goal, the laat two by pairs G, (3.

As the order = we consider the recursive path ordering
with f > b > o. The equality elimination part of the
proof conasists of applications of basic superposition ond
equality solution:

5. Ag(z)- [b/z] (equality solution from 2)

6. b# e, Ai{z}, Ai{y), Ai(2) - [£(f(y))/2]
left superposition from 1,3)

7. a # a, Ay(2), Ai(p), Ar{2), A1 (0) - [(F () /2. B/v]

eft superposition from 1,6)

8. Ai(z), Ailw), Au(2), Ai (o) - [f (S (y)) /2, bfv]
(equality sotution from 7}

9. Az(z), Aily) - [flw)/a
{equality solution from 4)

The clauses which can be used in the sequent part of the
proof are the following:

5. Aq(b}
8. A1 (F(F ), Avly), Ar(z), AL ()
9. As{f{)), Auly)

The sequent part of the proof only uses the conjunction
rule and the factoring rule:

10. A;(f(f(1)), Ar(w), As(b)

(factoting from 8")
1L A (£}, Ar ()

(factoring from 10)
12, A4, (F(f{8)) (conjunction rule from 5°,11}
13. Aj(f{(d)) {conjunction rule from 9°,12)
14. A;(b) (conjunction rule from 9',13)
15. O (conjunction rule from 5°,14)

There are many optimizations not considered in this
paper. The most powerful one is subsumption that can
be applied in both parts of the proofin order to prevent
generation of unnecessary clauses. Subsumption for the
basic strategy has been explained in [Degtyarev, 1982;
Bachmair et a/., 1992]. In the sequent part of the proof
we can use ordinary subsumption, or even a stronger
subsumption for sequent proofs proposed in [Voronkov,
1992).
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4 The connection method
The equality elimination method is very general and can
be applied to other automated reasoning methods, for
example the connection method. In order to illusirate it,
we consider Example 3.2 in the connectior method. We
shall refer to definitions and statementa from [Gallier,
1992]. The connection method is considered in more
detail in [Degtyarev and Voronkov, 1995].

Asin [Gallier, 1992], we try to establish unsatisfiability
of the negation of the goal formula

Yz{(a = z AG(B) A-Gf(f2DN) V (Gf(2)) Az £ b))
Denote the matrix of this formula via M{x). Accord-
ing to Theorems 4.3 and 7.7 of [Gallier, 1992] this for-
mula is inconsistent iff there is a path-acceptable equa-
tional mating for some amplification M (z,)A. . AM(z,).
Consider the set of vertical paths through this amplifica-
tion. According to Definition 4.4 of {Gallier, 1992], the
set of vertical paths vp(A) through amplification A ts the
set of sets of literals defined inductively as follows:
up{A) = {{A}}, if A is a literal;
vp(BAC) = {m |Jm | my € vp(B),7; € vp(C)};
vp(B v C) = vp(B) ) vp(C)
Denote
Ai(z) = {e = z,G(B), ~G(f(f (@)}
Az(z) = {G(f(z)), z # b}
From the above definition of vp it follows that the set
vp(M{z:) A ... A M(z,)) has the form

{Ai (x| -JAi (@a) | 1< 5 < nand iy € {1,2}}

Note now that the solution clauses used in Example 3.2
define the following set of inconsistent instantiated par-
tial paths:

As(B)

AU A ) U AN U A

A2} A2(f ()
Indeed, any of these partial paths contains an incon-
sistent instantiated mated set (see [Gallier, 1992]) of
M(z;) A ... A M(z,). For example, for the second of
these partial paths it will be the instantiated mated set

{a=b,a = f(f(y), G®),~G{f(f(1))}
The composition of these instantiated mated seta forms
an equational mating. It remains to find an instantiated
amplification for which this mating is path acceptable.
Such amplification can be extracted from the sequent
part of the proof. The instantiated amplification for our
example is shown in the following picture:

A(b) Aa(b)
A(FB)) As(F(F(BD))

AN A

346  AUTOMATED REASONING

Thus, in this amplification n = 3, 2, = b, 72 = f(F(b))
and 73 = f(b). Note that this tree can be easily changed
into a tablean proof of .

5 Conclusion

The equality elimination method is a general method of
reasoning in first-order logic with equality. It is based
on the following general version of Herbrand theorem
[Degtyarev and Voronkov, 1995]: a formula « is prov-
able iff there is a matrix M of 4 and a substitution &
such that every path through .Me contains an instance
of a solution clause. Equality elimination was origi-
nally introduced in [Degtyarev and Voronkov, 1994a] as a
method of handling equality in logic programs. Later, it
has been applied to the tableau method [Degtyarev and
Voronkov, 1994b] and the connection method [Degtyanev
and Voronkov, 1995]. In [Degtyarev et al, 1995] a combi-
nation of equality elimination and basic folding has been
introduced which allows to transform equational logic
programs into recursive logic programs without equal-

ity.
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Subformula least coljunctive superformula  set of y-names
el A{z) A [B{z) v ALz, y))) A 3zD(2)) V £ [
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Figure 1: Least conjunctive superformulas and y-names.
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