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Abs t rac t 
This paper introduces a methodology for prov­
ing termination of general logic programs, when 
the Prolog selection rule is considered. This 
methodology combines the approaches by Apt 
and Bezem [l] and Apt and Pedreschi [2], and 
provides a simple and flexible tool for proving 
termination. 

1 I n t roduc t i on 
General logic programs (glp's for short) provide formal­
izations and implementations for special forms of non­
monotonic reasoning. For example, the Prolog negation 
as finite failure operator has been used to implement a 
formulation as logic program of the temporal persistence 
problem in AI (see [9; 8; l]). Termination of glp's is a 
relevant topic (see [7]), also because the implementation 
of the operators for the negation, like Clark's negation 
as failure [5] and Chan's constructive negation [4], are 
based on termination conditions. Two typical examples 
of glp's which behave well w.r.t. termination are the so-
called acyclic and acceptable programs ([l], [2]). In fact, 
it was proven in [l] that when negation as finite failure is 
incorporated into the proof theory, a program is acyclic 
iff all sld-derivations with arbitrary selection rule of non-
floundering ground queries are finite. Floundering is an 
abnormal form of termination which arises as soon as a 
non-ground negative literal is selected. A similar result 
was proven in [2] for acceptable programs, this time with 
the selection rule restricted to be the Prolog one, which 
selects always the leftmost literal of a query. In [10] it 
was shown how one can obtain a complete characteri­
zation (i.e. to overcome the drawback of floundering) 
by considering Chan's constructive negation procedure 
instead of negation as finite failure. 

The notion of acceptability combines the definition of 
acyclicity with a semantic condition, that uses a model of 
the program which has also to be a model of the comple­
tion of its "negative part" (see Definition 3.2). Because 
of this semantic condition, the proof of acceptability may 
become rather cumbersome. Moreover, finding a model 
which satisfies the above requirement may be rather dif­
ficult. 

In this paper we refine the notion of acceptability, by 
using a semantic condition which refers only to that part 

of the program which is not acyclic. More specifically, a 
program P is split into two parts, say P1 and P2; then 
one part is proven to be acyclic, the other one to be 
acceptable, and these results are combined to conclude 
that the original program is terminating w.r.t. the Pro­
log selection rule. The decomposition of P is done in 
such a way that no relations defined in P\ occur in P2. 
We introduce the notion of up-acceptability, where P1 is 
proven to be acceptable and P2 to be acyclic, and the 
one of low-acceptability which treats the converse case 
(P1 acyclic and P2 acceptable). We illustrate the useful­
ness of this approach by means of examples of programs 
which formalize problems in non-monotonic reasoning. 

Even though our main results deal with Chan's con­
structive negation only, a simple inspection of the proofs 
shows that they hold equally well for the case of negation 
as finite failure. 

Our approach provides a simple methodology for prov­
ing termination of glp's, which combines the results of 
Bezem, Apt and Pedreschi on acyclic and acceptable pro­
grams, results widely considered as a main theoretical 
foundation for the study of termination of logic programs 
([7]). We believe that this methodology is relevant for at 
least two reasons: it overcomes the drawback of [2] for 
proving termination due to the use of too much semantic 
information, and it allows to identify for which part of 
the program termination does or does not depend on the 
fixed Prolog selection rule. 

The remaining of this paper is organized as follows. 
The next section contains some preliminaries; in Section 
3 we explain the notions of acyclicity and acceptability. 
In Section 4, the notions of up-/low-acceptability are 
introduced. In Section 5, we introduce a methodology 
for proving termination of glp's, based on these notions. 
Finally, in Section 6 we give some examples. For lack of 
space, proofs of the results have been omitted. They can 
be found in the full version of the paper. 

2 Pre l iminar ies 
We follow Prolog syntax and assume that a string start­
ing with a capital letter denotes a variable, while other 
strings denote constants, terms and relations. A (ex­
tended) general logic program, called for brevity pro­
gram and denoted by P, is a finite set of (universally 
quantified) clauses of the form H <— L1,..., Lm, where 
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m 0, H is an atom, and the Li's, called literals, are 
either atoms p(s), or negative literals or equali­
ties s = t, or inequalities where V quantifies 
over some (perhaps none) of the variables occurring in 
the inequality. Equalities and inequalities are also called 
constraints, denoted by c. An inequality is said 
to be primitive if it is satisfiable but not valid. For in­
stance, is primitive. In the following, the letters 
A, B indicate atoms, while C and Q denote a clause and 
a query, respectively. 

Suppose that all aid-derivations of Q are finite and do 
not involve the selection of any negative literals. Then 
there is a finite number of computed answer substitu-

0; let . be the equality 
where is the substi­

tution written in equational form, and quantifies 
over the variables that do not occur in Q. Then the 
Clark's completion of P logically implies 
i.e., To resolve negative non-
ground literals, Chan in [4] introduced a procedure, here 
called sldcnf-resolution, where the answers for ->Q are 
obtained from the negation of FQ. However, this pro­
cedure is undefined when Q has an infinite derivation. 
Then, the notion of (infinite) derivation in this setting is 
not always defined. Therefore in this paper we refer to 
an alternative definition of the Chan's procedure intro­
duced in [10], where the subsidiary trees used to resolve 
negative literals are built in a top-down way, construct­
ing their branches in parallel. We shall also consider 
a fixed selection rule, where at every resolution step, 
the leftmost possible literal is selected, where a literal is 
called possible if it is not a primitive inequality. Intu­
itively, the selection of primitive inequalities is delayed 
until their free variables become enough instantiated to 
render the inequalities valid or unsatisfiable. We call 
with slight abuse Prolog selection rule this selection rule. 
Then sldcnf-trees with Prolog selection rule are called 
ldcnf-trees. 

To prove termination of logic programs, functions 
called level mappings have been used [l], which map 
ground atoms to natural numbers. Their extension to 
negated atoms was given in [2], where the level mapping 
of -A is simply defined to be equal to the level mapping 
of A. Here, we have to consider also constraints. Con­
straints are not themselves a problem for termination, 
because they are atomic actions whose execution always 
terminates. Therefore, we shall assume that the notion 
of level mapping is only defined for literals which are 
not constraints. However, note that the presence of con­
straints in a query influences termination, because for 
instance a derivation fails finitely if a constraint which 
is not satisfiable is selected. 

Definition 2.1 (Level Mapping) A level mapping is a 
function | | from ground literals which are not constraints 
to natural numbers s.t. 

In the following sections we introduce the notions of 
acyclic and acceptable program. 

3 Acycl ic and Acceptable Programs 
In this section, the definitions of acyclic and acceptable 
program are given, together with some useful results 
from [10]. 
Definition 3.1 (Acyclic Program) A program P is 
acyclic w.r.t. a level mapping if for all ground in­
stances H <— L\,..., Lm of clauses of P we have that 

With a query Q = L1,..., Ln we associate n sets \Q\i 
of natural numbers s.t. 

a ground instance of Li}. 
Q is called bounded w.r.t. | | if every \Q\i is finite. 

Bounded queries characterize a class of queries s.t. ev­
ery their sldcnf-derivation is finite. We have proven in 
[10] that if P is acyclic and Q is bounded then every 
sldcnf-tree for Q in P is finite; and that also the con­
verse of this result holds: call a program P terminating if 
all sldcnf-derivations of ground queries are finite. Then, 
for a terminating program P, there exists a level map­
ping | | s.t.: (i) P is acyclic w.r.t. | |; (ii) for every query 
Q, Q is bounded w.r.t. | | iff all its sldcnf-derivations 
are finite. Notice that when negation as finite failure is 
assumed, (i) holds only if Q does not flounder ([l]). In 
fact, simple programs, like 

terminate because floundering, but are not acyclic. 
For studying termination of general logic programs 

with respect to the Prolog selection rule, the notion 
of acceptable program ([2]) was introduced. Its defi­
nition is based on the same condition used to define 
acyclic programs, except that, for a ground instance 
H <— L1..., Ln of a clause, the test \H\ > \Li is per­
formed only till the first literal Ln which fails. This is 
sufficient since, due to the Prolog selection rule, literals 
after Ln will not be executed. To compute n, a class of 
models of P, here called good models, is used. A model 
of P is good if its restriction to the relations from Negp 
is a model of comp(P~), where P~ is the set of clauses 
in P whose head contains a relation from Negp, and 
Negp is defined as follows. Let Negp denote the set of 
relations in P which occur in a negative literal in the 
body of a clause from P. Say that p refers to q if there 
is a clause in P that uses the relation p in its head and 
q in its body, and say that p depends on q if (p, q) is in 
the reflexive, transitive closure of the relation refers to. 
Then Negp denotes the set of relations in P on which 
the relations in Negp depend on. 
Definition 3.2 (Acceptable Program) Let be a 
level mapping for P and let I be a good model of P. P 
is acceptable w.r.t. and / if for all ground instances 
H <— L1,..., Ln of clauses of P we have that 

holds for is not a constraint, where 

P is called acceptable if it is acceptable w.r.t. some level 
mapping and a good model of P. 
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Let Q = L\,..., Ln be a query, let | | be a level map­
ping and let I be a good model of P. Then, with Q we 
associate n sets of natural numbers s.t. for 

instance of Q 

Then Q is called bounded if every is finite. 
Bounded queries characterize those queries s.t. all 

their ldcnf-derivations are finite. In [10], we have 
shown that similar results as those for terminating pro-
grams hold also for left-terminating programs, where a 
program is left-terminating if all ldcnf-derivations of 
ground queries are finite. 

4 Up - and Low-Acceptab i l i ty 
To prove that a program P is acceptable is in general 
more difficult than to prove that it is acyclic, because 
one has to find a good model of the program. Therefore 
in this section we introduce two equivalent definitions of 
acceptability, called up- and low-acceptability, which are 
simpler to be used, since one has only to find a good 
model of a subprogram, which is obtained discarding 
those clauses forming an acyclic program. Informally, 
to prove that a program is left-terminating, it is decom­
posed into two suitable parts: then, one part is shown to 
be acyclic and the other one acceptable. The following 
notion is used to specify the relationship between these 
two parts. Recall that a relation is said to be defined in 
a program if it occurs in the head of at least one clause 
of the program. 
Definition 4.1 Let P and R be two programs. We say 
that P extends R, written P > R, if no relation defined 
in P occurs in R. 
Informally, P extends R if P defines new relations pos­
sibly using the relations defined already in R, Then one 
can imagine the program P U R as formed by an upper 
part P and a lower part R, and investigate the cases 
when either the lower or the upper part of the program 
is acyclic. This is done in the following sections, by in­
troducing the notions of up- and low-acceptability. For 
a level mapping we shall denote by | |\R its restriction 
to the relations defined in the program R. 

In the following definition, the upper part of the pro-
gram is proven to be acceptable and the lower part to 
be acyclic. For two programs P, R, let P \ R denote 
the program obtained from P by deleting all clauses of 
R and all literals defined in R. 
Definition 4.2 (up-acceptability) Let | | be a level 
mapping for P. Let R be a set of clauses s.t. P = P1 U R 
for some P1, and let I be an interpretation of P \ R. 
P is up-acceptable w.r.t. | |, R and I if the following 
conditions hold: 
1) P extends R; 2) P\R is acceptable w.r.t. | ||P\R a n d 
1,3) Ris acyclic w.r.t. for every ground instance 

of a clause of P1, for is 
defined in R and is not a constraint, then 

A program is called up-acceptable if there exists R 
and I s.t. P is up-acceptable w.r.t. | |, R and /. 
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The initial situation is described by clauses (loc). The 
relation holds is used to describe when a fact is pos­
sible in a certain situation, while the relation legal-s 
specifies when a configuration is possible in a certain sit­
uation. It is easy to check that blocks-world is acyclic 
w.r.t. the following level mapping | |, where we use the 
function | | from ground terms to natural numbers s.t. if 
y is a list then \y\ is its length, otherwise |y| is 0. 

Planning in the Blocks World 
We consider now plan-formations in the blocks world, 

which amounts to the specification of a sequence of pos­
sible moves which yield a particular configuration. This 
problem can be solved by means of a nondeterministic 
algorithm ([12]): while the desired state is not reached, 
find a legal action, update the current state, check that 
it has not been visited before. The following program 
planning follows this approach, where the clauses of 
blocks-world which define the relation legal-s, whose 
union is denoted by r-blocks-world, are supposed to be 
included in the program, Note that here the initial con­
figuration is any situation which can be reached from 
the initialization (which is described by the clauses (loc) 
of blocks-world). Alternatively, as done in [12], one 
could let unspecified the initialization, which would be 
provided every time the program is tested. 
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