
A M e t h o d o l o g y f o r P r o v i n g T e r m i n a t i o n o f G e n e r a l L o g i c P r o g r a m s

Elena March io r i
CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
e-mail: elena@cwi.nl

Abs t rac t
This paper introduces a methodology for prov­
ing termination of general logic programs, when
the Prolog selection rule is considered. This
methodology combines the approaches by Apt
and Bezem [l] and Apt and Pedreschi [2], and
provides a simple and flexible tool for proving
termination.

1 I n t roduc t i on
General logic programs (glp's for short) provide formal­
izations and implementations for special forms of non­
monotonic reasoning. For example, the Prolog negation
as finite failure operator has been used to implement a
formulation as logic program of the temporal persistence
problem in AI (see [9; 8; l]). Termination of glp's is a
relevant topic (see [7]), also because the implementation
of the operators for the negation, like Clark's negation
as failure [5] and Chan's constructive negation [4], are
based on termination conditions. Two typical examples
of glp's which behave well w.r.t. termination are the so-
called acyclic and acceptable programs ([l], [2]). In fact,
it was proven in [l] that when negation as finite failure is
incorporated into the proof theory, a program is acyclic
iff all sld-derivations with arbitrary selection rule of non-
floundering ground queries are finite. Floundering is an
abnormal form of termination which arises as soon as a
non-ground negative literal is selected. A similar result
was proven in [2] for acceptable programs, this time with
the selection rule restricted to be the Prolog one, which
selects always the leftmost literal of a query. In [10] it
was shown how one can obtain a complete characteri­
zation (i.e. to overcome the drawback of floundering)
by considering Chan's constructive negation procedure
instead of negation as finite failure.

The notion of acceptability combines the definition of
acyclicity with a semantic condition, that uses a model of
the program which has also to be a model of the comple­
tion of its "negative part" (see Definition 3.2). Because
of this semantic condition, the proof of acceptability may
become rather cumbersome. Moreover, finding a model
which satisfies the above requirement may be rather dif­
ficult.

In this paper we refine the notion of acceptability, by
using a semantic condition which refers only to that part

of the program which is not acyclic. More specifically, a
program P is split into two parts, say P1 and P2; then
one part is proven to be acyclic, the other one to be
acceptable, and these results are combined to conclude
that the original program is terminating w.r.t. the Pro­
log selection rule. The decomposition of P is done in
such a way that no relations defined in P\ occur in P2.
We introduce the notion of up-acceptability, where P1 is
proven to be acceptable and P2 to be acyclic, and the
one of low-acceptability which treats the converse case
(P1 acyclic and P2 acceptable). We illustrate the useful­
ness of this approach by means of examples of programs
which formalize problems in non-monotonic reasoning.

Even though our main results deal with Chan's con­
structive negation only, a simple inspection of the proofs
shows that they hold equally well for the case of negation
as finite failure.

Our approach provides a simple methodology for prov­
ing termination of glp's, which combines the results of
Bezem, Apt and Pedreschi on acyclic and acceptable pro­
grams, results widely considered as a main theoretical
foundation for the study of termination of logic programs
([7]). We believe that this methodology is relevant for at
least two reasons: it overcomes the drawback of [2] for
proving termination due to the use of too much semantic
information, and it allows to identify for which part of
the program termination does or does not depend on the
fixed Prolog selection rule.

The remaining of this paper is organized as follows.
The next section contains some preliminaries; in Section
3 we explain the notions of acyclicity and acceptability.
In Section 4, the notions of up-/low-acceptability are
introduced. In Section 5, we introduce a methodology
for proving termination of glp's, based on these notions.
Finally, in Section 6 we give some examples. For lack of
space, proofs of the results have been omitted. They can
be found in the full version of the paper.

2 Pre l iminar ies
We follow Prolog syntax and assume that a string start­
ing with a capital letter denotes a variable, while other
strings denote constants, terms and relations. A (ex­
tended) general logic program, called for brevity pro­
gram and denoted by P, is a finite set of (universally
quantified) clauses of the form H <— L1,..., Lm, where

366 AUTOMATED REASONING

m 0, H is an atom, and the Li's, called literals, are
either atoms p(s), or negative literals or equali­
ties s = t, or inequalities where V quantifies
over some (perhaps none) of the variables occurring in
the inequality. Equalities and inequalities are also called
constraints, denoted by c. An inequality is said
to be primitive if it is satisfiable but not valid. For in­
stance, is primitive. In the following, the letters
A, B indicate atoms, while C and Q denote a clause and
a query, respectively.

Suppose that all aid-derivations of Q are finite and do
not involve the selection of any negative literals. Then
there is a finite number of computed answer substitu-

0; let . be the equality
where is the substi­

tution written in equational form, and quantifies
over the variables that do not occur in Q. Then the
Clark's completion of P logically implies
i.e., To resolve negative non-
ground literals, Chan in [4] introduced a procedure, here
called sldcnf-resolution, where the answers for ->Q are
obtained from the negation of FQ. However, this pro­
cedure is undefined when Q has an infinite derivation.
Then, the notion of (infinite) derivation in this setting is
not always defined. Therefore in this paper we refer to
an alternative definition of the Chan's procedure intro­
duced in [10], where the subsidiary trees used to resolve
negative literals are built in a top-down way, construct­
ing their branches in parallel. We shall also consider
a fixed selection rule, where at every resolution step,
the leftmost possible literal is selected, where a literal is
called possible if it is not a primitive inequality. Intu­
itively, the selection of primitive inequalities is delayed
until their free variables become enough instantiated to
render the inequalities valid or unsatisfiable. We call
with slight abuse Prolog selection rule this selection rule.
Then sldcnf-trees with Prolog selection rule are called
ldcnf-trees.

To prove termination of logic programs, functions
called level mappings have been used [l], which map
ground atoms to natural numbers. Their extension to
negated atoms was given in [2], where the level mapping
of -A is simply defined to be equal to the level mapping
of A. Here, we have to consider also constraints. Con­
straints are not themselves a problem for termination,
because they are atomic actions whose execution always
terminates. Therefore, we shall assume that the notion
of level mapping is only defined for literals which are
not constraints. However, note that the presence of con­
straints in a query influences termination, because for
instance a derivation fails finitely if a constraint which
is not satisfiable is selected.

Definition 2.1 (Level Mapping) A level mapping is a
function | | from ground literals which are not constraints
to natural numbers s.t.

In the following sections we introduce the notions of
acyclic and acceptable program.

3 Acycl ic and Acceptable Programs
In this section, the definitions of acyclic and acceptable
program are given, together with some useful results
from [10].
Definition 3.1 (Acyclic Program) A program P is
acyclic w.r.t. a level mapping if for all ground in­
stances H <— L\,..., Lm of clauses of P we have that

With a query Q = L1,..., Ln we associate n sets \Q\i
of natural numbers s.t.

a ground instance of Li}.
Q is called bounded w.r.t. | | if every \Q\i is finite.

Bounded queries characterize a class of queries s.t. ev­
ery their sldcnf-derivation is finite. We have proven in
[10] that if P is acyclic and Q is bounded then every
sldcnf-tree for Q in P is finite; and that also the con­
verse of this result holds: call a program P terminating if
all sldcnf-derivations of ground queries are finite. Then,
for a terminating program P, there exists a level map­
ping | | s.t.: (i) P is acyclic w.r.t. | |; (ii) for every query
Q, Q is bounded w.r.t. | | iff all its sldcnf-derivations
are finite. Notice that when negation as finite failure is
assumed, (i) holds only if Q does not flounder ([l]). In
fact, simple programs, like

terminate because floundering, but are not acyclic.
For studying termination of general logic programs

with respect to the Prolog selection rule, the notion
of acceptable program ([2]) was introduced. Its defi­
nition is based on the same condition used to define
acyclic programs, except that, for a ground instance
H <— L1..., Ln of a clause, the test \H\ > \Li is per­
formed only till the first literal Ln which fails. This is
sufficient since, due to the Prolog selection rule, literals
after Ln will not be executed. To compute n, a class of
models of P, here called good models, is used. A model
of P is good if its restriction to the relations from Negp
is a model of comp(P~), where P~ is the set of clauses
in P whose head contains a relation from Negp, and
Negp is defined as follows. Let Negp denote the set of
relations in P which occur in a negative literal in the
body of a clause from P. Say that p refers to q if there
is a clause in P that uses the relation p in its head and
q in its body, and say that p depends on q if (p, q) is in
the reflexive, transitive closure of the relation refers to.
Then Negp denotes the set of relations in P on which
the relations in Negp depend on.
Definition 3.2 (Acceptable Program) Let be a
level mapping for P and let I be a good model of P. P
is acceptable w.r.t. and / if for all ground instances
H <— L1,..., Ln of clauses of P we have that

holds for is not a constraint, where

P is called acceptable if it is acceptable w.r.t. some level
mapping and a good model of P.

MARCHIORI 357

Let Q = L\,..., Ln be a query, let | | be a level map­
ping and let I be a good model of P. Then, with Q we
associate n sets of natural numbers s.t. for

instance of Q

Then Q is called bounded if every is finite.
Bounded queries characterize those queries s.t. all

their ldcnf-derivations are finite. In [10], we have
shown that similar results as those for terminating pro-
grams hold also for left-terminating programs, where a
program is left-terminating if all ldcnf-derivations of
ground queries are finite.

4 Up - and Low-Acceptab i l i ty
To prove that a program P is acceptable is in general
more difficult than to prove that it is acyclic, because
one has to find a good model of the program. Therefore
in this section we introduce two equivalent definitions of
acceptability, called up- and low-acceptability, which are
simpler to be used, since one has only to find a good
model of a subprogram, which is obtained discarding
those clauses forming an acyclic program. Informally,
to prove that a program is left-terminating, it is decom­
posed into two suitable parts: then, one part is shown to
be acyclic and the other one acceptable. The following
notion is used to specify the relationship between these
two parts. Recall that a relation is said to be defined in
a program if it occurs in the head of at least one clause
of the program.
Definition 4.1 Let P and R be two programs. We say
that P extends R, written P > R, if no relation defined
in P occurs in R.
Informally, P extends R if P defines new relations pos­
sibly using the relations defined already in R, Then one
can imagine the program P U R as formed by an upper
part P and a lower part R, and investigate the cases
when either the lower or the upper part of the program
is acyclic. This is done in the following sections, by in­
troducing the notions of up- and low-acceptability. For
a level mapping we shall denote by | |\R its restriction
to the relations defined in the program R.

In the following definition, the upper part of the pro-
gram is proven to be acceptable and the lower part to
be acyclic. For two programs P, R, let P \ R denote
the program obtained from P by deleting all clauses of
R and all literals defined in R.
Definition 4.2 (up-acceptability) Let | | be a level
mapping for P. Let R be a set of clauses s.t. P = P1 U R
for some P1, and let I be an interpretation of P \ R.
P is up-acceptable w.r.t. | |, R and I if the following
conditions hold:
1) P extends R; 2) P\R is acceptable w.r.t. | ||P\R a n d
1,3) Ris acyclic w.r.t. for every ground instance

of a clause of P1, for is
defined in R and is not a constraint, then

A program is called up-acceptable if there exists R
and I s.t. P is up-acceptable w.r.t. | |, R and /.

358 AUTOMATED REASONING

MARCHIORI 359

The initial situation is described by clauses (loc). The
relation holds is used to describe when a fact is pos­
sible in a certain situation, while the relation legal-s
specifies when a configuration is possible in a certain sit­
uation. It is easy to check that blocks-world is acyclic
w.r.t. the following level mapping | |, where we use the
function | | from ground terms to natural numbers s.t. if
y is a list then \y\ is its length, otherwise |y| is 0.

Planning in the Blocks World
We consider now plan-formations in the blocks world,

which amounts to the specification of a sequence of pos­
sible moves which yield a particular configuration. This
problem can be solved by means of a nondeterministic
algorithm ([12]): while the desired state is not reached,
find a legal action, update the current state, check that
it has not been visited before. The following program
planning follows this approach, where the clauses of
blocks-world which define the relation legal-s, whose
union is denoted by r-blocks-world, are supposed to be
included in the program, Note that here the initial con­
figuration is any situation which can be reached from
the initialization (which is described by the clauses (loc)
of blocks-world). Alternatively, as done in [12], one
could let unspecified the initialization, which would be
provided every time the program is tested.

360 AUTOMATED REASONING

References
[1] K. R. Apt, M. Bezem. Acyclic Programs. New Genera­

tion Computing, Vol. 9, 335-363, 1991.
[2] K. R. Apt, D. Pedreschi. Proving Termination of Gen­

eral Prolog Programs. In Proc. TACS'91, LNCS 526,
pp.265-289, 1991, Springer Verlag.

[3] K. R. Apt, D. Pedreschi. Modular Termination Proofs
for Logic and Pure Prolog Programs. In G. Levi, editor,
Advances in logic programming theory. Oxford Univer­
sity Press, 1994.

[4] D.Chan. Constructive Negation Based on the Com­
pleted Database. In Proc. of the 5th Int. Conf. and
Symp. on Logic Programming, pp. 111-125, 1988.

[5] K.L. Clark. Negation as Failure. In H. Gallaire and J.
Minker eds., Logic and Databases, pp. 293-322. Plenum
Press, NY, 1978.

[6] N. Dershowitz. Termination of Rewriting. Journal of
Symbolic Computation, 3, pp. 69-116, 1987.

[7] D. De Schreye, S. Decorte. Termination of Logic Pro­
grams: The Never-Ending Story. Journal of Logic Pro­
gramming, 19,20, 1994.

[8] C. Evans. Negation as Failure as an Approach to the
Hanks and McDermott Problem. Proc. of the 2nd Int.
Symp. on AI, pp. 23-27, 1990.

[9] R. Kowalski, M. Sergot. A Logic Based Calculus of
Events. New Generation Computing, 4, pp. 67-95, 1986.

[10] E. Marchiori. On Termination of General Logic Pro­
grams w.r.t. Constructive Negation. Journal of Logic
Programming, 1995, to appear.

[11] N.J. Nilsson. Principles of Artificial Intelligence.
Springer-Verlag, 1982.

[12] L. Sterling and E. Shapiro. The Art of Prolog. MIT
Press, 1994. 2nd edition.

MARCHIORI 361

