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Abstract

Programming language interpreters, proving
theorems of the form A = 2?, abstract data
types, and program optimization can all be rep-
resented by a finite set of rules called a rewrite
system. In this paper, we study two funda-
mental concepts, uniqueness of normal forms
and confluence, for nonlinear systems in the ab-
sence of termination. This is a difficult topic
with only a few results so far. Through a novel
approach, we show that every persistent sys-
tem has unique normal forms. This result is
tight and a substantial generalization of previ-
ous work. In the process we derive a necessary
and sufficient condition for persistence for the
first time and give new dasses of persistent sys-
tems. We also prove the confluence of the union
(function symbols can be shared) of a nonlin-
ear system with a left-linear system under fairly
general conditions. Again persistence plays a
key role in this proof. We are not aware of any
confluence result that allows the same level of
function symbol sharing.

1 Introduction

Two of the most challenging and important problems
in rewriting are proving the Unique-Normal-Form and
Church-Rosser (also called confluence) properties for
non-left-linear (nonlinear, for short) systems, particu-
larly in the absence of termination. There is consid-
erable progress on proving Church-Rosser theorems for
left-linear systems (systems in which the left-hand sides
(lhs's) of the rules contain at most one occurrence of
any variable) [Church and Rosser, 1936; Rosen, 1973;
O'Donnell, 1977; Huet, 1980]. In contrast, for nonlinear
systems there are only a handful of general results and
almost all of them require termination [Newman, 1942,
Knuth and Bendix, 1970: Huet, 1980; Middeldorp and
Toyama, 1991; Rao, 1993J. We know of only four works
that do not require termination [Klop, 1980; Chew, 1981;
Toyama, 1987; Oyamaguchi and Ohta, 1992].

In 1980, Klop proved the Church-Rosser property
for the disjoint sum of an orthogonal (i.e., left-linear
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and nonoverlapping; see next section for precise defini-
tions) combinatory reduction system and a single non-
linear rule of various specific forms (e.g., D(x,x) ->
x and D(x,x) -4 E(x)). In 1987, Toyama proved
that the disjoint-sum of two Church-Rosser rewrite sys-
tems is Church-Rosser. In 1992, Oyamaguchi and
Ohta showed the Church-Rosser property for non-E-
overlapping right-ground (i.e., right-hand sides con-
tain no variables) rewrite systems. A weaker result
than Church-Rosser, viz., uniqueness of normal forms
for strongly nonoverlapping,1 compatible systems was
shown by Chew in the 1981 STOC [1981] (see also [Klop
and de Vrijer, 1989] for some unique-normal-form results
for A-calculus + specific rules). A strongly nonoverlap-
ping system is one that remains nonoverlapping even
when the variables in the Ihs's are renamed to make the
rules left-linear. The non-E-overlapping requirement is
stronger than Chew's strongly nonoverlapping require-
ment and is in a sense the strongest version of nonover-
lapping requirement possible.

In this paper, we attack these two fundamental prob-
lems and prove the following results:

« Every persistent system has the unique normal form
property. Roughly speaking, persistence means that no
rule can be applied inside the template (non-variable
part) of an |hs. Persistence is a substantially weaker
requirement than the strong-nonoverlap requirement,
hence this result is a substantial generalization of Chew's
result [Chew, 1981]. (To keep the technical details un-
derstandable we do not permit root overlaps. This gen-
eralization will be discussed in detail in the full version.)
The approach used in proving this result is also novel
and should be outlined.

We introduce the idea of constraints and their sat-
isfiability in a rewrite system. We then characterize
nonoverlaps and persistence as certain kinds of unsat-
isfiable constraints. We then prove that these kinds of
constraints remain unsatisfiable even when certain kinds
of rules are added to a persistent system and exploit
this fact to first prove a slightly weaker uniquely nor-
malization property and then the unique normal form
property (UN). This stepwise approach makes for eas-
ier understandability. Our approach also yields a neces-

1 Chew allows root overlaps provided they are compatible,
eg., x+0->xand 0+ x-» xrootoverlap in 0 + 0.



sary and sufficient condition for persistence for the first
time, which we then use to give several syntactically-
checkable sufficient conditions for persistence. Some of
these dasses are new, not known previously to be per-
sistent. These results are significant generalizations of
some of the results in [Verma, 1991], where a sufficient
condition for persistence, based on proving unique nor-
malization (plus other technical conditions), was given.
Our results are interesting from another viewpoint also.
Persistence was introduced by us in a different context
[Verma, 1991), viz., for generalizing to nonlinear systems
the congruence-closure normalization algorithm of Chew
[Chew, 1980], which in turn generalizes the congruence-
closure algorithm of [Downey et a/., 1980; Kozen, 1977;
Nelson and Oppen, 1980] to rules containing variables.
Recently, we showed that persistence also plays a cen-
tral role in transforming certain kinds of rewrite systems
into constructor-based rewrite systems [Thatte, 1988;
Verma, 1995]. Therefore, our results in this paper pro-
vide substantial new evidence for the fundamental role
of persistence in rewriting.

» We prove that the union (generalization of disjoint
sum, function symbols can be shared) of a system R2
with a left-linear system R\ is confluent provided that
the union is semi-terminating (no sequence containing
infinite R2 reductions), persistent and rhs's of rules in
R1 do not share any function symbols with |hs's of rules
in R2. We are not aware of any confluence result which
allows this much function sharing. The closest result is
that of Klop's on CRS's. However, Klop's proof cannot
be used directly since it uses postponement of certain
kinds of reductions, which does not hold for us. More-
over, Klop gets persistence for free because of the speci-
ficity of rules in R2. Note that Toyama's proof technique
cannot be used since it uses the non-increasing nature
of ranks of terms, which does not hold for non-disjoint
sums. Recently, Rao [Rao, 1993] generalizing a result
of [Middeldorp and Toyama, 1991] proved a confluence
result for terminating systems that allows some sharing
provided that the union is a hierarchical combination
and constructor-based. In particular, no sharing of de-
fined symboals is allowed in the lhs's and only construc-
tors can be shared between Ihs of the higher system with
rhs's of the lower. We note that Rao's proof is somewhat
easier since his conditions ensure that the union is also
terminating and persistent. The full proof of our result
is fairly long. We sketch the important details here and
leave the rest to the full version. We then give several
sufficient conditions that can be checked syntactically,
which ensure that the union has the properties we need.

« Finally, we consider the confluence of one-rule sys-
tems. The motivation for studying properties of one rule
systems is Dauchet's interesting result: every (determin-
istic) turing machine can be simulated by a single left-
linear, nonoverlapping rule [Dauchet, 1992]. We show
that there is a single nonoverlapping rule that is not per-
sistent and not confluent. The smallest previous example
known to us contains 3 rules. We also state a confluence
theorem for single rule persistent systems (proof omitted
for space).

2 Preliminaries

To save space, we assume familiarity with basic no-
tions of rewriting (see [Dershowitz and Jouannaud, 1990;
Klop, 1992] for excellent surveys). Let V be a countable
set of elements called variables and T be a countable
set of function symbols with ENV = @. 7 is the set
of all terms of a first-order language constructed from
V and E. It is convenient to think of termws as or-
dered rooted trees. T(5) denotes that the terms are
constructed from function symbols in § (the set V of
variables is implicit). The root symbol of a term is:
root(ty= Fif t= f(t1,...,tn), and rooct(t} = tifte V.
Consider an extra constant O called a hole and the set
T = T(ZU{0}). Then C € T" is called a contezt on L.
We uge the notation C7,...,] for the context contatining
n holes (n > 0). A s a subterm of B if B = C[4] for
some context C.

The notion of a path or occurrence is used to refer to
subterms in a term as follows. A path is either the empty
string A that reaches the root or 0.4 {0 is a path and {
an integer) which reaches the ith argument of the root
of the subterm reached by o. ¢/o refers to the subterm
of t reached by o and t[o « 5] denotes the term obtained
by replacing the subterm tfo by a. o £ g whenever
Ipop=gq;if p# Aalso, then o < ¢. For any term ¢ its
set of occurrences is denoted O(t).

A substitution maps variables o terms. An snstance
{also called a redez} o{a) of a term & is obtained by sub-
stituting o(z) for every variable z in s. A rule is & pair
of terms I — r, such that [ ¢ V and every variable oc-
curting in r also appears in ! (the varisbles in a rule
are implicitly universally quantified). A system Ris a
finite set of rules. By substituting different terms for the
variables, we can produce many different rule instances
from the same rule. We say that a rule 4 =+ B is a rule
inatance of the rule ! = r if we can substitute terms for
the variables in | = r to get A =& B. As the variables
of each rule are universally quantified we shall assume
hereafter that any two distinct rules do not share any
variable. Terms s and ¢ are unifiable if and only if there
exists a ground term C which is an instance of both s
and ¢&. We say & overlapa t if and only if a gop-variable
subterm u {proper subterm, if # = {) of one of the two
terms unifies with the other term. (When checking for
overlaps it is best to relabel the variables in s and ¢ so
that they do not share any variables.) A set § € 7T is
nonoverlapping if and only if for all &, ¢ € 5, noi(s over-
lapa t). {Since s and ¢ could be equal, the definition of
nonoverlapping does not allow self-overlapping rules like
associativity.) We say that & and i root overlap if and
only if they are left-hand sides of two distinct rules in the
system and they can be instantiated to the same term.
A system R is nonoverlapping if and only if the set of
Ihs's is nonoverlapping and there are no root overlaps.

Definition 1 (rewrite relation) We use — to denote
rewrite relations, where s = g t (read s reduces to t) §f
and only if 3 ¢ rule { = r, an occurrence o € O(s), and
a substitulion o such that the subterm sfo = o(l) and
t=afo + afr)}.

Notation. The letters a,b,¢, etc., denote constants,
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v, Z,¥, 2 denote variables, and f, g, &, etc., denote func-
tion symbaols of nonzero arity. We use =g to represent
the least equivalence relation containing -+ 5. When the
set of rules K i clear from the context, we drop the
subscripts from —=. The reflexive-transitive closure of
— is denoted by = (i.e., a sequence of zero or more
reductions), We use p: A = B to give the name p to
the sequence of reductions from A to B {[p} denates its

length). The transitive closure of — is denoted by B\

{i.e., a sequence of one or more reductions). We use
~+ to indicate root reduction (ie., reduction of the en-
tire term) and =4 to indicate nonroot reduction (i.e.,
reduction at a proper subterm). Similarly, T repre-
sente a sequence of Zero or more nonroot reductions, etc.
For every natural number n, [n] denotes {1,2,...,n},
[0] = 6.

Lemma 2 ([Newman, 1942]) A noetherian reletion
is iocally confluent (LCR} if and only if it ia confluent.
{We aay that relation — i3 locally confluent if and only
VYA B,C A= B and A —+ C impliea 3 D such that
B % D and C = D. We say that relation ~+ is con-
fluent (CR) if and only if YA, B.CAS Band A S C
implies 3D such thet B S5 Dand C 53 D)

Definition 3 Let R be a rewrile system. Alermf is a
normal form if there is no term u such that t =5 u. A
term ¢ has a normal form if there s o normal form u
such that t 5 u. R (or g} is uniguely normalizing fis
UN-*) if for all terms A, B, C such that A2 B and
A% C and B, C are normal forma we hove B = (.
R for =+ g) has unigue normal forms fis UN) if for ail
normaol forma A, Buith A=g Bwehave A=B. R i
terminating if there are no infinife reduclion sequences
=t —....

The relation between the various properties CR, UN,
and UN™ is given in the next lemma.

Lemma 4 The following implications hold for every
system R: CR = UN = UN™. The reverse impli-
cations generally do not hold.

Proof: The proofs of both statements are standard (see,
for example {Klop, 1980]). We include examples to show
that the reverse implications do not hold always since
they are useful in grasping some of the implications of
our results.

UN™ # UN. Let R= {a = ba =+ c,c =+ ¢,d =
¢,d =+ e}. Ris UN™, but not UN sinceb=g e and b, e
are distinct normal forms.

UNACR Lt R={a3bbabarcc—e)l R
is UN (e, b and ¢ are not normal forms) but R is not CR
since b and ¢ do not have a common reduct. a

Two rewrite systerns Ry and R; (see [Toyama, 1987
for formal definitions) are disjoint if no function symbol
appears in a rule from R,; and a rule from R;. The dis-
joint sum is obtained by taking the union of two disjoint
systems. Note that this disjoint sumn is different from
Klop’s [Klop, 1980]. The disjoint sum of combinatory
reduction systems (in which terms are written in “com-
binater notation™) is defined as the union of two systems

364 AUTOMATED REASONING

with disjoint constant eymbols, but with the same appli-
cation function symbaol. Kiop pointed out that this sum
does not preserve confluence.

3 Persistence

In thie section we first define persistence and then give
a necessary and sufficient condition for it. From the
necessary and sufficient condition, we derive several
syntactically-checked sufficient conditions for it. Finally,
we use our characterization of persistence to prove that
every persistent system is UN. Intuitively, persistence
requires that the template of the lhs in a redex is un-
touched by nonroot reductions, and any root reduction
after a sequence of nonroot reductions starting from a
redex of 1 ({ & r € R) can only be applied with the
same rule. Hence ail the terms in the sequence of non-
root reductions are instances of the template of {. (This*
property is the inspiration for the term persistence.)

Definition 8 R {or —tg ) s persistent if for every
term A such thet (i) ASp B viel = r € R, (i)
AR A, and (i) A’ 25 B viel' = ¢ € K applied
atoe O(AY}, either (1) A' Dp B andl' 5" =1 r,
or (2) there 43 ¢ u € O{I),u < 0, and [ /u is a variable.
Note that persistence implies that the system must be
nonoverlapping, but the converse is false, eg,, let R =
{f(z,z) =+ a,f(z,9(z)) -+ a,b = g(b)}. The above
definition of persistence is a slight modification of the
definition in [Verma, 1991] to avoid root overlaps.

3.1 Necessary and Sufficient Conditions
We begin with some definitions.

Definition 8 An equetion is e pair of terms (a,t) wnth
implicitly universally guantified varicbles. We say that
an equation (8,t) is provable in a system R if s and ¢ are
joinable (reduce to ¢ common term) in K.

A constraint is a pair of terms (8,t) with implicitly ex-
istentially quantified variables. We say that a constraint
{s,t) is satiafiable in a system R, if there in a substitution
o such that {o(8),o(t)) i¢ provable in R. Substitution
o is then called o aatsafying substitution. A constraind
(5,t) is left-reducible if there is a substitution o such that
a(s) 2 a(t). We say that a(s) is a solution in this case.

We extend these definitions lo sels of egualions and
sets of conatraints, In general, each constraint/equation
may be seperately ezistentially/universally quentified,
but here we only need sets of consiraints that are quan-
tified at the top level {i.e., a set of variable sharing con-
aslraints, so the substitution must be conaistent for differ-
ent occurrences of the same variable).

Let R be a rewrite system and let { = r, ¥’ = ' be two
rules {not necessarily distinct) in R. Assume, for simplic-
ity, that distinct rules do not share any variables. Let
Unif denote the {(ordinary) unification algorithm and
Unif®™ denote the unification algorithm “without the
occurs-check” {for concreteness, let these algorithms be
the ones in [Dwork et of., 1984]). We say that a nonover-
lap of ! with & non-variable subterm u of I’ (proper sub-
term, if the two rules are the same) is due to occurs-check
{O-nonoverlap) if { and u unify with {/ni f°°(but not with



Unif). We say that a nonoverlap is due to inkome-
geneity (I-nonoverlap), if ! and u do not unify even with
Urif™. For an O-nonoverlap of { and u, Unif(I, u) gen-
erates a set of n > 0 constraints, where each constraint
e; in of the form {2;, Ci[2;, . .., zi]) (if one of the terms in
a constraint is a variable, in this paper we adopt the con-
vention of listing it first) with some nonempty context
C; not containing z; and whose template is (propetly)
included in the template of one of the terms (the z's
ate not necessarily distinct). We say that such a set of
n > 0 constraints is lefi-unreducible in R iff there is no
substitution ¢ such that a(z;) ~ 5z o(Cilz;,-.., %)) for
all i € |[n]. In other words, the set of constraints is not
left-reducible simultaneously.

Example. The nonoverlap of f(z,g(z)) and f(z,z) at
the root is due to the occurs-check, whereas all the non-
overlaps of h{z, g{z),a) and h(z, z,b) are due to inhomo-
geneity.

Theorem T A reumite aystem R is persistent if and only
if the following conditions hold: (i) R 1s noroverlapping,
and {ii) For each O-nonoverlap in R, the corresponding
set of constraints is lefi-unreduecible in .

Proof {sketeh): Necessity is obvious. For sufficiency, a
direct proof that the stated conditions imply persistence
is quite difficult. We prove the following stronger claim
that implies persistence. Let L(R) denote the set of dis-
tinet {distinct means distinct even after variable renam-
ing) Ihe’s of rules in R and let SL{R)} denote the set of
all distinct nor-variable sublerms of the terms in L(R).
{Note that since R is noroverlapping the lhs's of two
different rules must be distinct, but proper subterms of
lhs’s may not be.)

Claim 8 There is no term A such thatp: AZSH B =
o(l} and g: A 5 C = o!(I") for distinct 1,1’ in SL(R),
unleas | and ' overlap.

The proof is omitted to save space. Obviously persis-
tence follows from the claim, since the set of lhs's con-
tains neither root nor nonroot overlaps. u}
Remark. In general, checking the second condition of
Theorem 7 is easily seen to be undecidable even for a
certain fixed rewrite system. However, below are some
easily-checked syntactic conditions that imply the above
condition.

Corollary 9 1. Any nonoveriapping rewnite system in
which all nonoverlaps are due to infiomogeneily is
persistent.

2. Any atrongly nonoverlapping system [see [Chew,
1381]) is persiatent.

§. Any nonoverlapping rewnite system in which no
function symbol appearing in the lhs of ary nonlin-
ear rule appears on the rhs of any rule is persistent.

4. Any nonoverlapping gquasi-terminating (see [Der.
showitz, 1987] for definition) is persistent.

5. Any left-linear nonoverlapping aystem is persistent.
Proof: Straightforward. o
Remarks. Note that except for quasi-termination all
the other conditions can be easily checked syntactically
given a rewrite system. The classes (1) and (4} of the

corollary are new classes for which persistence was not
known earlier. Note further that these applications are
not meant to be exhaustive,. They are included because
of their utility and because some of them have appeared
in the earlier fiterature in various contexta.
Examples. We give some simple examples to illustrate
these classes.
For 1. Let R = {f(z,2) = a, f(a,b) = b}. R has only
I-nonoverlaps and R is not strongly nonoverlapping.
For 2. Let R = V(x,z} ~+ e,g{z} = f(z,g(z)),c -
glc)} ([Klop, 1980]). Note that R is strongly nonover-
lapping and persistent (trivially) since every proper sub-
term (if it exists) of every lhs is a variable and the root
symbols of all Yhs’s are different. Note also that R is not
confluent since g{c) = gle) and g(c} = e but g(e) and e
are not joinable. Note however that R is UN.
For 8. Let R = {f{r,z) — a, f{z,g(z)) = b,c = h(c)}.
Note that if we change the third rule to ¢ = g(e) the
resulting system is not persistent and not confluent alzo.
For 4. Let R = {f(z,2) = f(a,a), f(z,9{z})} = B}.
For 5. Let R = {f(z,y) «* e,g(z) = f(z.g(z)),c =
g(c)}. Note that thie is the left-linear version of the
Example for 2. R is persistent and, of course, confluent.
‘We now prove the following important consequence of
persistence: every persistent system R has the unique
normal form property.

8.2 Unique Normal Form Property

Lemma 10 R 12 persistent if B = RU {h(z,2) =
a,h(Ny, N2} = b} is persisient, where Ny, Ny are iwo
distinct normal forms with respect to R, and h,a,b are
new function symbols not in the signature of B gnd not
i N, or N;.

Proof: Clearly, R' persistent implies R persistent. Now
suppose R is persistent. We note that R’ is also nonover-
lapping and that the new rules only have I-nonoverlapa
with R and with each other {N; and N, are distinct
terms and both contain no h's). So it suffices to show
that every set of constraints corresponding to an O-
nonoverlap that is left-unreducible in R is also left-
unreducible in R’. Suppose that there is a set of con-
straints that is left-reducible in R’ but left-unreducible
in R. Consider the case of one constraint z = C[z,..., 2].
Note that C is some nonempty context and all the func-
tion symbols of C' appear in the Ihss of some rules in R.
In particular, &, a and b do not appear in C. Let o be the
substitution such that p : ¢(z) = A S p C[4,.... 4]
If A contains no A's, then the constraint is also left-
reducible in R since the rhs’s of rules in R cannot intro-
duce any A in the term being reduced and hence the two
extra rules in B’ can never be applied in p. So suppese
that A contains some h-preredexes {terms h[...}}.
Therefore, let 4 = C’[4),...,A,] where the con-
text C' does not contain any symbols in {h,a,b} and
root(Ad;) € {h,a,b} for i € [n]. Clearly, ¢’ cannot
be empty. Also, note that the C” can be modified,
but it cannot be completely erased. Formally, every
term t in the reduction sequence p must be of the form
Ci[...) for a nonempty context C; not containing any
symbols in {h,a,b}. We call a reduction in p an ez-
ternal veduction if it occurs outside every subterm of
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the form h{...}, and internal otherwise. Define a trans-
formation T' on terms in T(F U {h,a,b},V) to T(F,V)
as follows: if ¢ = Cfty,... ,ta) (n = 0) where C' is a
(possibly empty)} context not contamining any symbals
in {h,a,b} and root{t;) € {ha,b} for i € [n}, then
T(t) = C[u, ..., u], where u € V is a fixed variable.
Claim: A =g B implies T(4) 3 g T(B).

Proof of claim. If the reduction from A to B ia an inter-
nal step, then by the construction of R', T{A4) = T'(B),
which is very important in the sequel. If the reduction
step is external, then A = C[4,,... Ap), where C is a
nonempty context not containing {h,a,b} and there is
an occurrence 0 € O(C) such that Cfo # 0, Afe = o(i)
for some substitution & and rule ! = r in R {note R and
not R'). Also, B = Alp « o(r)] = C'|Ai,,-... 4],
where i; € [n] and C' is a possibly empty context
not containing symbols in {h,a,b}. Now the template
of I must be contained in C since rules in R do not
contain any function symbols from {h,s,b}, and vari-
ables in { cover subterms of the form A; (if any are
dominated by occurrence o). Now T(4) = Clu,...,u].
Clearly, T{d)/o = o'(l), where o'(z) = T{o(z)) and
T(A)e + o'(r)] = C’|u, ..., u] = T(B) and we are done.
al

By the above claim and a simple induction we have
the following claim: T{A) g C[T(A),...,T(4)] via
the external reductions in p. But, this contradicts the
assumption that the constraint was left-unreducible in
R and the proof is complete. (]

Theorem 1% Every persistent aystemm H 11 uniguely
normalizing UN™.

Proof: Suppose that R is not uniquely normalizing.
Then, 3 A such that A 7+ B and A 5 C, where B,C
are distinct normal forms. Let R’ = RU {k(z,z) —
a,h(B,C} — b}, where h,a,b are new function sym-
bols not in the signature of K and not in B, . Now
h{A, A) =g h(B,C) so R is not persistent. There-
fore, by Lemma 10, R is not persistent, which contradicts
the assumption. la

Theorem 12 Every persisteni system R has the unique
normal form property (UN).

Proof: Suppose that R is persistent but does not have the
unique normal form property. Then, there are distinct
R-normal forms A and B such that A =g B. Consider
a shortest proof of A =5 B. It is of the form g : A, =
A=p A2 =g ... = B = A, for some n > 1, where
each =g step is either <+ p or +—g. Since A and B are R-
normal forms the first step in g is + and the last step in
gis <. Call aterm A; inga peak if A;_y + 4; = 4,4,
ing Call aterm A; in g a valley if 4;), = A; «
A;;41. Because the arrows at the ends are in opposite
directions and towards A and H, there is at least one
peak in q. Let A;,,..., 4;  be all the peaks in ¢; and let
Ay = 4;,,...,4;,.,, = Ap be all the valleys in q. Here
m>0andl=1 <1 < Jz... €im < 41 = n. Note
that the terms at both ends are alse considered valleys.
Therefore, we can write g as:

A=A,',:—A(l:}A,',4‘—Ai,...;—A.'” a1 =
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Let hym be a new function symbol of arity 2m and a, b
be two new constants not in the signature of R and not
in A or B. Consider the system

E =R U {h@m(“l!zhzls e vzm—lsxm—I!B) -+ G}
U {Agm{21,21,.. s ZmyEm) = b},
By a similar argurnent as in the proof of Lemma 10, we
have that R is also persistent since R is persistent, But,
consider the term H = hom(Ai, Aify-.0,din, Ai, )
Clearly, H is an instance of the second mew rule,
Now, by the reductions in ¢, we have H g H' =
hom(A, A, Ajy,.. . Ay, Aj,, B). But, since H' is an
instance of the first new rule in 7', we have that R’ is
not persistent. This contradicts our assumption that R

is persistent and the proof is complete. D
As a consequence of Theorem 12 we have that all the ,
classes of Corollary 9 are UN.

4 The Church-Rosser property of the
Union

Let R; be any left-linear system. Let R; be any system
such that every function symbol appearing in the lhs of
any rule in Ry does not appear on the rhs of any rule
in R; (we call this Ir-disjoint; similarly one can define
ll-disjoint, etc}. Further, assume that R = R, UR; is
persistent and satisfies the following finiteness condition
calted semi-termination.

{F) There is no sequence of R-reductiens from any
term ¢ containing an infinite number of R» reduction
steps.

Note that (F) immediately implies that Ry is termi-

nating, but termination of Rz is not sufficient for sermi-
termination of R as shown below,
Example. Let By = {a@ = b}, Ry = {h(z,z) =
h(a,b)}. Now R, and R; are both terminating (in fact,
simply terminating, i.e., their termination can be estab-
lished by simplification orderings; see |[Dershowitz, 1987
for a definition), but R has the following cyclic deriva-
tion: A(a,b) —+g h(b b} = h{a,d). The example can be
easily modified so that R is not even quasiterminating.
Note that all conditions except (F) are eatisfied.

We now prove that B is confluent and then give suf-
ficient conditions that ensure persistence and finiteness
of R. Observe that Tovama’s [Toyama, 1987] technique
cannot be used since it depends on the non-increasing
property of ranks w.r.t. reductions, which does not hold
for us. We need the following lemmas for the proof of
confluence.

Lemma 18 For all A,B,C such that A 54 g, B and
ASp C, there ezists D, E such that C 245, D and
B S D.
Proof (aketch): An easy argument using the confluence
of R, shows that it is sufficient to prove the following:
for all 4,B,C such that A 4, B and A 4, C, there
exists D such that € =45, D and B S p D (actually we
show something stronger, viz., B =4g, - ~+p, D). O
We classify the set of function symbele that appear
in R into linear and nonlinear as follows: if a function



symbol f appears in the Ihs of any rule in Ry, then f is
nonlinear and linear otherwise, For the next lemma, we
need the following definition of the norm of a term.

Definition 14 ([Klop, 1980]} The nonlinear height of
a term t (notation |t|,,) is the mazimum numéber of non-
lincar symbols on any path from the root of t to o lesf.
The norm of ¢, denoted || t [} = maz{jul, | t & u}.

Lemma 15 (1) || | is finite for every t. (2} tu
implies |’ t ||[ 2 [full. (8) Ifu is a subterm of ¢, then
full s t]. In parhcular if root(t) is nonlinear and
u i o proper sublerm, then || (|lu} < || {|It).

Proof: Part (1) Follows from the Ir-disjoint and finite-
ness {F) conditions. Part {2) follows from the definition
of norm and transitivity of 23 . Part (3) is straightfor-
ward. a]

Lemma 18 jf A &g, B, ASg, C' ond C' =g, C,
then there is a D such that B 3 D and C S D.

Proof (sketch): By induction on the norm. By Lemma 13
we have D' and E such that ¢’ Svp, DY, D' S4p, E and
B lm, E. Also, all the reduction steps from €' te D'
are covered by the steps from I to E. We consider
three cases: (1) the reduction step Rs from C' to C is
independent of all the steps from D' to E, (ii} Rs is
covered by a step from D' to E, and (iii) Rs covers some
(possibly all) of the reductions steps from D' to E. Case
(1) is easy. For cases (i:) and (iif) we use persistence and
the induction hypothesis to find the desired term [}, ©

We now define the nonlinear derivation height {nota-
tion DH,) of a term.

Definition 17 DH,(t) = maz{n | u,t Dp u with n
Ry -reductions }.

Lemma 1B (1) DH,(t) is finite for everyt. {8) Ift 95
u, !he(ﬂ)DH,.{t) > DH,(u). Ift 95, u, then DH,(t) >
DH.{u).

Proof: Use the definition of DH,, transitivity of =,
and the {r-disjoint and finiteness (F) conditions. o

Theorem 19 If R, sa ieft-linear, R = R; U H; ts
Ir-disjoint, persistent and semi-terminating, then R 1is
Church-Rosser.

Proof: We prove that CR{A) by induction on DH,(A).
The base case is DH,(A) = 0. In this case, the
only derivations possible from A consist sole.ly of H;-
reductions. Since R is persistent so is R; and since ev-
ery left-linear persistent system is confluent [0'Donnell,
1977; Rosen, 1973; Huet, 1980], the claim holds for the
base case. Assume C'R(A) for DH,(A) < m (m > 0).
We show the following claim:

Claim. A g, B, A 55, €', and C' S, C implies
there is & D such that B &4z D and C S, D for the
case DH,{A) < m.

Proof of claim: I there are zero reductions from C'
to €, then we use Lemma 13 to get the desired term
D. Otherwise, let C' —+ 5, C” be the first Ry-reduction

atep. By Lemma 16 we have a D' such that B 2 D' and
C" % D'. Now, DHa(C") < DHA{C") < DHa(A) by

Lemuna 18, therefore by the induction hypothesis for the
theorem, i.e., CR{C"), we have & D) such that D' = D
and C S D. O

Induction Step: We now prove CR(A) when DH,(A) =
m. So suppose that A 3z B and A S C. If all
the reductions in either 4 =5 B or A 235 C are R)-
reductions, then we are done by Lemma 13. Other-
wise we have the following situation: 4 <3z, C' —p,

C*5C, and A Sp B, B' 5p, B" and B" %3 B,
where C' = C” and B’ = B" are the first reduc-
tions from HR2 on the respective derivations. Now, we
have the following derivations. By confluence of R,
(see base case) we have a D' such that B' S1p, D’ and
C' 45, D'. By Lemma 13 we have 8 D" such that
D' Spg, - Spg, D" and C" Sz, D". By the above
claim, we have an E such that B 23z E and D¥ 25 E.
By Lemma 18, DH,.(B") < DH,(B") < DH,(A) and
DH,(C") < DH,(C') < DH,(A). Therefore, by the
induction hypothesis of the theorem, ie., CR(B”} and
CR(C"), we have a D such that B S D and C S4p D
and the proof is complete.

Remarks. The above result can be generalized in sev-
eral different ways, we omit proofs of the generalizations
for lack of space. First, the definition of nonlinear sym-
bols can be narrowed to exactly the symbols in Ihs's of
nonlinear rules of Ry~ Second, we can drop the finiteness
requirement and prove CR(A) for only those terms A for
which DH,,(A) and || A || are both finite. Third, we do
not really need full persistence of R, a slightly weaker
form is sufficient. This is important because it permits
some kinds of harmless root and nonroot overaps in R.
Finally, note that this proof shows some similarities to
Klop's proof. However, as noted earlier Klop's proof
cannot be used since it uses postponement of nonlinear
reductions, which does not hold for us and also persis-
tence is immediate there.

We now give sufficient conditions that ensure persis-
tence and semitermination of the union. First, we note
that nonoverlapping and semitermination imply persis-
tence.

Lemma 20 If the Ir-disjoint union R of a left-linear
system R;and any system R, is nonoverlapping and
semi-terminating, then R is persistent.

Proof: A left-linear rule can have only I-nonoverlap with
another (not necessarily left-linear) rule. Therefore, the
O-nonoverlaps of R are exactly those of R,. We show
that the satisfiability of any constraint contradicts semi-
termination of R. Since the O-nonoverlaps are between
rules of R, each constraint is of the form (z,C|[z,...,z])
for a nonempty context C not containing z. “Futher,
C consists of function symbols appearing in lhs's of R».
Let t be any solution of a constraint. Then, p : a{z) =
t =g CH,...,t1.All the reductions in p cannot be from
R; since Ihs's of rules from R, do not share any function
symbols with rhs's of rules from R\. Hence, there must
be at least one R, reduction in p. But then we can
construct a sequence containing infinitely many R, steps
from t, contradicting the semi-termination of R. o

VERVA 367



Theorem 21 The following conditiona are sufficient for
the persistence and semi-lermination of o noncveriap-
ping system R. R, is linear fi.c., lefi-linear & right-
lincar), and (1) No function symbol that appesrs in the
ihs of any rule in Rz appears in the rhs of any rule, or {£)
All By rules are height decrecaing, t.e. ht{(l) > ht{r) for
alll = r € Ry, or (3} All B; rules are nonlinear-height
decreasing, i.e, [I}n > Jr|n for every rulel 5 r € Ry,

5 Confluence of a Single Rule

We give an example to show that a single nonoverlap-
ping rule need not be confluent nor persistent. Con-
sider the nonoverlapping rule, f(z, f(z,y,9(2)),2) =
9(f(a, fla,a,9(a}),a)) and let T be the term
Fla, f(8,a,9(a)),a). Cleacly, T = g{T). Now consider
the term U = f(b, f(T, f(s,5,9(a)),g(T)),b). Clearly,

vo ¢(T) and U 5 F(b, f{¢{T), }{a,a,g(a)), g(T)), b}

™3 f{b,g(T),b). Now it is easily seen that f(b,g(T),b)
and ¢{T) do not have a common reduct, since the rule
can never be applied to g{T) at the root level. For
the eame reason the rule cannot be applied at the root
level to f(b, g(7"),b) also since the inner term g(T) can
never be reduced to a term of the form f{..). The
smallest, previously known to us, non-cenfluent nonover-
lapping rewrite systems have three rules [Huet, 1980;
Klop, 1980]. However, we have the following result:

Theorem 22 FEvery singie persistent rule is confluent.

6 Conclusions

In this paper we have studied two fundamental concepts,
uniqueness of normal forms and confluence, for nonlinear
systems in the absence of termination. This is a difficult
topic with only a few results so far. Through a novel ap-
proach, we have shown that every persistent system has
unique normal forms. This result is tight and a substan-
tial generalization of previous work. In the process we
derived a necessary and sufficient condition for persis-
tence and gave several new dasses of persistent systems.
We also proved the confluence of the union of a nonlin-
ear system with a left-linear system under fairly general
conditions. Again persistence plays a key role in this
proof. There are several promising directions for future
work. First, we note that the finiteness requirement can
be weakened somewhat although it cannot be dropped
completely. The proof of this is likely to be difficult but
fruitful since it might lead to new techniques for deal-
ing with unions (or decompositions) rather than disjoint
sums. Second, our work here suggests some natural gen-
eralizations to deal with non-persistent systems. Any
progress along these two lines will obviously be of con-
siderable importance to rewriting and its applications.
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