
S t r a t i f i e d C a s e - B a s e d R e a s o n i n g : 
R e u s i n g H i e r a r c h i c a l P r o b l e m S o l v i n g E p i s o d e s 

L . K a r l B ran t i ng 
Department of Computer Science 

University of Wyoming 
P.O. Box 3682 

Laramie, WY 82071 
karl@eolus.uwyo.edu 

(307) 766-4258 / FAX: -4036 
Abs t rac t 

Stratified case-based reasoning is a technique in 
which abstract solutions produced during hier­
archical problem solving are used to assist case-
based retrieval, matching, and adaptation. We 
describe the motivation for the integration of 
case-based reasoning with hierarchical problem 
solving, exemplify its benefits, detail a set of 
algorithms that implement our approach, and 
present their comparative empirical evaluation 
on a path planning task. Our results show that 
stratified case-based reasoning significantly de­
creases the computational expense required to 
retrieve, match, and adapt cases, leading to 
performance superior both to simple case-based 
reasoning and to hierarchical problem solving 
ab initio. 

1 P rob lem and Proposed Solut ion 
Case-based reasoning (CBR) is a problem-solving 
paradigm that focuses on the retrieval, revision, and 
reuse of stored solutions to solve newly presented prob-
lems (Kolodner, 1993; Aamodt & Plaza, 1994). The rep-
resentation of cases can be simple (e.g., feature vectors) 
or complex (e.g., semantic networks). An advantage of 
simple representations is that retrieval and revision algo­
rithms for such representations have comparatively low 
computational cost. However, this low computational 
cost comes at the expense of limited representational 
power. For example, the relational knowledge required 
for such tasks as planning, design, and analogical rea­
soning is difficult to express in a feature-vector case rep-
resentation. However, more expressive case representa­
tions require more expensive retrieval and revision func­
tions. For example, when cases are represented as se­
mantic networks, case matching requires subgraph iso-
morphism determination, an NP-complete task (Garey 
k Johnson, 1979). 

In this paper, we propose using abstraction to com­
bat the complexity associated with expressive case rep-
resentations. We explain how abstraction can be used 
to reduce this complexity in Section 2 and describe an 
example task in Section 3. Section 4 then introduces 
a set of algorithms that implement our approach. We 

Dav id W . A h a 
Navy Center for Applied Research in AI 

Code 5510 
Naval Research Laboratory 

Washington, DC 20375 
aha@aic.nrl.navy.mil 

(202) 767-9006 / FAX: -3172 
evaluate their capabilities in comparison with simpler 
case-based and abstraction approaches in Section 5 and 
discuss related work in Section 6. 

2 Abs t rac t ion : Reducing C B R 
Complex i t y 

Two principal approaches exist for reducing the complex­
ity of indexing and matching complex cases on sequen­
tial machines.1 One approach is to precompute some 
portion of the match between cases (e.g., by organiz­
ing cases into a hierarchy partially ordered by subgraph 
relations (Levinson, 1991)). An alternative approach in­
volves using case abstractions for indexing and match­
ing. Previous use of abstraction in indexing has generally 
focused on thematic abstractions, such as goals (Ham­
mond, 1989) or expectation failures (Schank & Leake, 
1989). Use of abstraction in case matching has gener­
ally been limited to feature generalization (e.g., finding 
common ancestors of new-case and old-case features in 
a hierarchy that encodes subsumption relations on fea­
tures values (Porter et al., 1990)). 

This paper advocates a new approach for using ab-
straction in CBR. Underlying this approach is the ob­
servation that hierarchical problem solving2 gives rise to 
solutions at multiple levels of abstraction. If the solu­
tions produced by hierarchical problem solving at every 
level of abstraction are retained, then the more abstract 
solutions can assist in indexing, matching, and adapting 
less abstract solutions. We refer to a case whose repre­
sentation has multiple abstractions as a stratified case, 
and we define stratified CBR as the use of stratified cases 
in case-based problem solving. The potential benefits of 
this approach are: 

• Indexing and retrieval. A more abstract solution 
to a problem can provide an accurate index to less 
abstract solutions to the problem because it consists 

lSee (Kolodner, 1988) and (Kettler k Hendler, 1994) for 
related work on machines with parallel architectures. 

2 In hierarchical problem solving, search is performed in an 
abstraction of the original search space. The solution in the 
abstract space is then used to guide problem solving in the 
original space. Where applicable, this technique can lead to 
significant reductions in search time (Sacerdoti, 1974; Holte 
et al., 1995; Knoblock, 1994; Bacchus k Yang, 1994). 

384 CASE BASED REASONING 



of the most important aspects of the less abstract 
solutions. 

• Matching. Retaining case abstractions permits 
cases to be compared in an abstract space in which 
matching may be much less expensive than at the 
ground level of abstraction. 

• Adaptation. An abstraction of a stored case may 
be much easier to reuse than the ground-level case 
itself. Stratified cases can be reused at the most 
specific level of abstraction at which they can be ap­
plied to the given problem without requiring adap­
tation of less abstract, non-matching facts. 

Since stratified CBR involves reusing hierarchical 
problem solving episodes, its applicability is limited to 
domains in which there is an abstraction hierarchy suit­
able for hierarchical problem solving. However, several 
techniques that automatically derive abstraction hierar­
chies have recently been developed, and the development 
of new techniques is the focus of an active research com­
munity (Knoblock, 1994; Christensen, 1990; Bacchus & 
Yang, 1994). 

3 The Rou te -F ind ing Task 
We chose a route-finding task to demonstrate the util­
ity of stratified case-based reasoning because this task 
is an important area of activity in robotics and is 
amenable to hierarchical problem solving. Our task-
involves finding an optimal or near-optimal path be­
tween a given pair of start and goal positions through 
a field containing obstacles. We chose to work with 
fields described by N x N arrays of positions, where 
N is a power of 2. This allowed us to define a sim­
ple abstraction hierarchy in which an abstract posi­
tion at Level 1 position (R, C) (zero indexing) ab­
stracts over the following four ground-level positions: 

Figure 1 shows a situation in which S and G denote 
the start and goal positions. The figure on the left is a 
ground level field containing 64 positions, where the grey 

positions denote obstacles, while the field on the right is 
its Level 1 abstraction. 

The goal of this task is to locate a route connecting 
the start and goal positions. We modeled this as the task 
of constructing a sequence of straight and curved track 
segments, or traversal operators, such that the start and 
goal positions lie at the ends of the connected track. We 
associate with each position the set of operators that can 
be used to traverse it. Thus, each unblocked position at 
the ground level is associated with all possible operators, 
which are shown in Figure 2. Each blocked position is 
associated with the empty set of traversal operators since 
traversal through them is impossible. 

Determining the available operator set for each ab­
stract position involves determining (1) what operators 
are available for each of the four positions it abstracts 
and (2) which of the six operators, if any, are still possi­
ble after joining these four lower-level positions. For ex­
ample, while all six traversal operators are available for 
the top-left abstract position, the only operators avail­
able for the position to its right are {A,C, F} (i.e., the 
others are unavailable because no traversal through this 
abstract position can reach the position below it). 

We restricted our consideration to fields whose ob­
stacle configurations guarantee that hierarchies created 
using our abstraction operators satisfy the downward 
refinement property (Bacchus & Yang, 1994) (i.e., ev­
ery abstract solution can be refined to a concrete solu­
tion, if a concrete solution exists).3 Thus, we considered 
only fields for which hierarchical problem solving reduces 
search. 

The stratified CBR approach to this problem is to re­
tain and reuse the solution paths found at every level 
of abstraction in hierarchical search. Retaining abstract 
solutions decreases the cost of finding the most similar 
stored solution path because the distance from the new 
start and goal to these paths can be accurately measured 
at the highest levels of abstraction, where search is much 
less expensive (i.e., since the fields are smaller in size). 

4 A lgo r i t hms 
This section introduces two non-CBR algorithms and 
five CBR algorithms (Table 1) that can be applied to 
the route-finding task. Each of the CBR algorithms re-

3 The downward refinement property is satisfied for our ab­
straction operators if (1) all adjacent obstacles are arranged 
in rectilinear regions and (2) whenever the length of a se­
quence of adjacent obstacles is at least the size of an abstract 
region at some level of abstraction, then its width is at least 
the region size minus 1. 

BRANTING AND AHA 385 



trieves and reuses previously stored solutions while prob-
lem solving. They can be distinguished by (1) whether 
they access cases stored at only the ground level or at all 
abstraction levels, and (2) whether they support perfect 
or partial matching. 

4.1 Non-CBR Algori thms 
We considered two non-CBR algorithms for the route-
finding task. The first is best-first search (A*) using 
manhattan distance as the heuristic estimation of dis­
tance from the current position to the goal position. The 
second is hierarchical A*, which uses A* to find a path 
from the start position to the goal position in the high­
est level abstraction of the given field. At each lower 
level of abstraction, search by A* is restricted to posi­
tions falling within the solution path at the next higher 
level of abstraction. 

The cases used by the CBR algorithms described be-
low are generated by hierarchical A*. Given an abstrac­
tion hierarchy for a particular field and start and goal 
positions, hierarchical A* generates a path connecting 
the start and goal positions at every level of abstraction. 
Each solution at a given level of abstraction is treated as 
a separate case. A refinement of a case (i.e., a solution 
at the next lower level of abstraction) is termed a child 
of the case, and a case is termed the parent of its refine­
ments. Since distinct positions at the ground level may 
be identical at more abstract levels, distinct cases at a 
lower level may have identical parents. Cases can there­
fore be organized into a forest of taxonomic trees. A case 
library consists of a taxonomic forest of cases sharing a 
common abstraction hierarchy but distinct pairs of start 
and goal positions. 

4.2 Ground level CBR algorithms 
The simplest of the CBR algorithms is GROUND COVER 
(Table 2), which searches the case library for ground 
solution paths that include the new start and goal po­
sitions. If any are found, then it returns a randomly-
selected shortest solution path. Otherwise, it invokes A* 
to find a solution. 

The second ground level CBR algorithm is GROUND 
CLOSEST (Table 3), which also searches the case library 
for ground solution paths that include the new start and 

goal positions. If none are found, then GROUND CLOS­
EST adapts each ground case (i.e., uses A* to locate the 
shortest paths joining the new start and goal positions 
with the stored case's solution) and returns the shortest 
adapted solution. Thus, this algorithm supports partial 
matching. To prevent retrieval from increasing in pro-
portion to the size of the case library, GROUND CLOS­
EST uses a modification of A* that prunes each node n 
for which f(n) is greater than the cheapest adaptation 
found so far. Thus, GROUND CLOSEST performs best-
first search for the shortest adaptation paths within each 
case, but branch-and-bound search through the case li­
brary for the case with the shortest adaptation paths. 

4.3 Stratified CBR algorithms 
The three stratified CBR algorithms can reuse case so­
lutions stored at any abstraction level. Each of these 
algorithms starts by retrieving from the case library the 
set of most specific matching cases (i.e., lowest-level cases 
whose solutions include abstract positions that abstract 
the given start and goal positions). This search begins 
at the root of the case library, recurses with its children 
(i.e., top-level abstractions of solved cases), and contin­
ues recursing until it reaches the ground level (in which 
case the segment of a solution connecting the new start 
and goal positions is returned) or cases that no longer 
cover both the start and goal positions. 

In the latter case, the first algorithm, COVER (Ta­
ble 4), randomly selects one of the most specific match­
ing cases and performs hierarchical A* starting at the 
next lower level of abstraction, restricting search to posi­
tions falling within the solution path in the most specific 
matching case. 

In contrast, the second algorithm, CLOSEST (Ta­
ble 5), supports partial matching between new problems 
and previous solutions. Starting with the most specific 

386 CASE BASED REASONING 



matching cases (or the most abstract cases, if no cases 
match) CLOSEST finds the refinements of each case 
(i.e., the case's children), adapts each refinement (i.e., 
uses A* to find the shortest adaptation paths from the 
start and goal positions to the solution path at that level 
of abstraction, restricting search to positions in the par­
ent case's adaptation paths), and selects the refinements 
having the shortest adapted solution paths.4 CLOS­
EST recursively calls these three steps until the ground 
level is reached, at which time it randomly selects and 
returns an adapted case. 

The final algorithm, CLOSEST THRESHOLD (Table 6) 
attempts to recognize situations in which adapting an 
existing case will be more expensive than problem solv­
ing ab initio. CLOSEST THRESHOLD behaves identically 
to CLOSEST if there are matching cases. However, if 
there are no matching cases, then CLOSEST THRESHOLD 
uses A* to find the shortest path from the start to the 
goal position at the highest level of abstraction. If there 
are top-level cases whose adapted solution paths are no 
longer than the path length found by A*, then CLOSEST 
THRESHOLD treats these cases in the same manner as 
CLOSEST. If there are no such cases, then CLOSEST 
THRESHOLD uses hierarchical A* rather than CBR. 

4To prevent the performance of CLOSEST from degrading 
when there are large numbers of redundant cases (i.e., cases 
with equally short adapted solutions), CLOSEST performs 
two additional types of pruning. First, among cases with 
the shortest adapted solution paths, CLOSEST retains only 
those for which the sum of the lengths of the paths from 
the start and goal positions to the previous solution path are 
least. Second, below the highest level of abstraction, if there 
are multiple cases for which the paths from the start and goal 
positions to the previous solution path intersect the previous 
solution path at identical positions (i.e., multiple cases for 
which the reusable segments of the old solution paths are 
indistinguishable), then only one such case is retained. 

5 Emp i r i ca l Evaluat ion 
Previous work has demonstrated the advantages of hi­
erarchical problem solving over non-hierarchical meth-
ods(e.g., Holte et al., 1995; Knoblock, 1994; Bacchus 
& Yang, 1994). We focus here on demonstrating the 
utility of reusing the abstract solutions generated by a 
hierarchical problem solver. Therefore, this section de­
scribes empirical comparisons of case-based vs. non-case-
based approaches for hierarchical problem solving. We 
also include comparisons with non-hierarchical methods, 
both case-based and otherwise, to verify that the more 
storage-intensive hierarchical approaches deliver better 
performance. 

5.1 Hypotheses and experimental variables 
The empirical hypotheses explored in this section are: 

1. Reusing stored case solutions decreases search costs. 
2. Reusing abstract case solutions decreases costs more 

than reusing only ground-level solutions. 
3. Partial matching yields lower search costs than per­

fect matching. 
4. Preventing expensive partial matching (via thresh­

olding) yields the best performance on this task. 
We will compare the five algorithms described in Sec­
tion 4 against A* and hierarchical A*. The primary de­
pendent variable of interest is work effort as measured 
by the number of nodes expanded by A* in the course 
of executing each algorithm.5 We will also not discuss 
the lengths of the algorithms' solutions since they were 
all very similar.6 The independent variables are 

1. the size of the case base, 
2. the number of abstraction levels, and 
3. the distribution of selected problems (i.e., start and 

goal positions). 
5 We ignore the additional computational costs incurred 

by the hierarchical and case-based algorithms. The one-time 
cost of building a hierarchy is 0(N x O), where N is the num­
ber of ground level positions and O is the number of traversal 
operators. This cost is amortized over each set of training and 
testing problems drawn from a single ground level field and 
obstacle configuration. The cost of case retrieval is reduced 
to a constant by hashing cases on their abstraction level, start 
position, and goal position. 

6In Experiment 2, their averages varied from 154.8 (A*) 
to 157.3 (Ground Closest). 

BRANTING AND AHA 387 



We expected that the benefits of case-based reasoning, 
as measured by decreased search costs, would increase 
as the library size increases. Similarly, we expected the 
cost of searching to decrease as the number of abstrac­
tion levels increases. Therefore, we expected the utility 
of stratified CBR to increase with the number of abstrac­
tion levels. Finally, we expected problem distribution to 
affect problem-solving behavior.7 Therefore, we experi­
mented with distributions that vary the average solution 
path length. 

5.2 Experiments 
We varied one of the independent variables listed above 
in each of three experiments. The settings for the other 
two variables were held constant at default values (see 
Table 7). All the reported results refer to averages over 
sets of 100 testing problems. Each set is decomposed 
into ten subsets often problems. Each subset refers to a 
different layout of obstacles, where the layouts are con­
strained as described in Section 3. Each algorithm was 
applied to the same set of training and test sets. 

Varying the number of cases 
We varied the number of stored cases while fixing the 
field size to be 32 x 32 and the number of abstraction 
levels to three. The problems were selected so that the 
start and goal positions were on "opposite ends" of the 
field, meaning that the value of one randomly selected 
dimension (e.g., row) was chosen randomly and the other 
(e.g., column) was fixed to maximally distance the two 
positions. 

Figure 3 summarizes the results. Since A* and hi­
erarchical A* do not use stored cases, their results re­
main constant. The five CBR algorithms all outper­
formed A*. GROUND COVER'S work effort decreased lin­
early with library size, indicating that it found almost no 
stored matching problems for small-sized case bases but 
occasionally found such matches for larger case bases. 
GROUND CLOSEST outperformed GROUND COVER for 
larger case bases, which indicates the benefits of adapt­
ing stored solutions when they are sufficient in number 
and similarity to new problems. 

The performance improvement delivered by the three 
stratified CBR algorithms was dramatic. COVER'S av­
erage work effort decreased linearly with library size, in-

Past cases with short solution paths at the ground level 
are less likely to contain segments useful for subsequent prob­
lems. Similarly, the benefit of case reuse is less likely to out­
weigh the overhead of retrieval and adaptation in new prob­
lems involving start and goal positions that are near to each 
other, since such problems can be inexpensively solved ab 
initio. 

dicating the utility of reusing stored solutions at differ­
ent abstraction levels. This approach significantly out­
performed GROUND COVER (p < 0.025 for 50 training 
cases), indicating that the stratified approach is bet­
ter than the non-stratified CBR approach for this task. 
Similarly, CLOSEST significantly outperformed GROUND 
CLOSEST (p < 0.1). Finally, CLOSEST significantly out­
performed COVER (p < 0.05), indicating that partial 
matching is preferable to perfect matching on this task. 
However, no significant difference was found (i.e., for 
50 training cases) suggesting that the thresholding algo­
rithm outperforms CLOSEST. Thus, these results sup­
port our first three hypotheses, but not. our fourth. 

Varying the number of abstraction levels 

In this experiment, we fixed the size of the ground level 
field to be 64 x 64 and varied the number of abstraction 
levels. The results for A* and the non-stratified CBR 
algorithms remain constant since they are not effected 
by stored cases at varying abstraction levels. 

In contrast, Figure 4 shows that the search costs of the 
hierarchical problem solver and the stratified CBR algo-
rithms decrease with the number of abstraction levels. 
COVER, as expected, performs slightly better than hi­
erarchical A* because it reduces search whenever it finds 
a perfect (abstract) match and otherwise does not in­
cur additional search costs. The partial matching strat­
ified CBR algorithms perform poorly when only a few 
abstraction levels are used because adaptation is costly 
when the positions along a solution path lie far from the 
start and goal positions. However, they perform signifi­
cantly better than the other algorithms (i.e., at least at 
the p < 0.1 level) when four abstraction levels are used 
since adaptation is much less costly in the higher abstrac­
tion levels. Although CLOSEST outperformed CLOS­
EST THRESHOLD, their differences were not significant. 
These results again support the first three hypotheses 
described in Section 5.1 and contradict the fourth. 

388 CASE BASED REASONING 



Varying the problem distribution 
In Experiment 3, we varied only the way in which prob­
lems (i.e., pairs of start and goals positions) were se­
lected. We used the opposite ends strategy in the other 
experiments, which chooses positions that are maximally 
distant in the space along one axis and randomly selected 
on the other axis. This is a favorable bias for stratified 
CBR since it guarantees long solution paths, which in­
creases the probability of reuse. We add two strategies 
here that decrease this probability: random., which se­
lects positions randomly, and opposite sides, which se­
lects positions randomly but guarantees them to be on 
opposite sides of one of the two dimensions. These three 
strategies differ in the degree to which they prevent the 
selection of nearby start and goal positions. Random al­
lows selection of such pairs. Opposite sides prevents this 
to some degree, and opposite ends prevents this entirely. 

Figure 5 summarizes the results for this experiment. 

As expected, search costs rise for A* and Hierarchical 
A* as the average minimum solution length increases 
(i.e., it was 34.2, 42.9, and 61.4 for random, opposite 
sides, and opposite ends respectively). This increase also 
yields abstract solutions that require less search to adapt 
(i.e., since they cover more of the space), which explains 
why CBR performance improves as solution length in­
creases. The stratified CBR algorithms again outper­
formed the ground CBR algorithms, and the stratified 
partial matching algorithms outperform COVER. 

5.3 Summary 
The results of our experiments provide initial support 
for the first three hypotheses stated in Section 5.1. The 
CBR algorithms outperform the non-CBR algorithms 
on which they are based (i.e., especially for the op­
posite ends problem distribution), which supports the 
claim that solution reuse can decrease search costs. The 
stratified CBR algorithms outperform the ground level 
CBR algorithms, which supports the claim that the 
reuse of abstract case solutions further improves perfor­
mance. The partial matching algorithms (i.e., CLOS­
EST and GROUND CLOSEST), outperform the perfect-
matching CBR algorithms (i.e., COVER and GROUND 
COVER). Finally, the results of CLOSEST THRESHOLD 
reflects how it mediates between these two extremes, but 
it does not outperform CLOSEST, contradicting our 
fourth hypothesis (i.e., that thresholding yields the best 
results). However, we conjecture that, for case libraries 
for which the adaptation cost of the best case is suffi­
ciently high, thresholding will be beneficial. 

6 Discussion and Related W o r k 
The distinguishing characteristic of stratified case-based 
reasoning is its reuse of stored solutions at all abstraction 
levels. Holte et al.'s (1995) alternating opportunism al­
gorithm similarly uses hierarchical refinement to reduce 
search costs. It caches, in each state in the search space, 
information that simplifies A* search (i.e., g(n) and h(n) 
values). Their approach is complementary to ours in 
that it reduces search effort from a state-oriented rather 
than a solution-path perspective. 

CBR adaptation methods are typically either trans­
formational, which retrieve solutions and apply adapta­
tion operators to revise them to solve a new problem, 
or derivational, which replay the derivations of problem-
solving episodes (Carbonell, 1986). Stratified CBR em­
ploys a transformation approach that uses more abstract 
solutions to index and guide the adaptation of less ab­
stract solutions. Since stratified CBR partitions cases by 
level of abstraction rather than by stages of goal reduc­
tion, it is applicable to tasks that use problem-solving 
methods other than goal reduction. Moreover, we hy­
pothesize that in tasks that use goal reduction stratified 
CBR will often order goals by degree of constraint more 
effectively than derivational analogy, because abstrac­
tion is often more indicative of degree of constraint than 
order of appearance in a goal-reduction graph. 

The PRIAR (Kambhampati, 1994) framework for 
plan modification embodies many stratified CBR char­
acteristics. PRIAR retrieves solutions with minimum 

BRANTING AND AHA 389 



predicted adaptation costs and uses causal dependency 
structures to guide adaptation via a minimum-conflict 
search strategy. These structures function as partially-
ordered abstraction hierarchies for decomposing actions. 
Retrieved abstract solutions are not guaranteed to be 
refinable and can be extended during adaptation (i.e., 
with additional planning). Previous work on PRIAR 
has focused on its semantics and its applicability rather 
than on isolating the contribution of resuing abstract so­
lutions. Haigh et al. (1994) integrate derivational anal­
ogy with a limited (i.e., two abstraction levels) stratified 
CBR approach. Their work focused on a route planning 
task rather than on isolating the contributions of strat­
ified CBR. Hanks and Weld (1995) describe a similar 
general framework that permits adaptation of abstract 
plans. However, unlike stratified CBR, this approach 
does not use more abstract solutions to index less ab­
stract solutions. 

Explanation-based learning (EBL) (Mitchell et al., 
1986) resembles stratified CBR in that a macro derived 
by EBL algorithms from a proof of concept membership 
constitutes an abstraction of the proof (i.e., a general­
ized example). However, EBL systems typically allow 
reuse at only a single level of abstraction for each gener­
alized example, whereas stratified CBR allows reuse at 
any level of abstraction. 

We believe that the stratified CBR approach could be 
beneficially incorporated into EBL algorithms, into hi­
erarchical reinforcement learning approaches (Kaelbling, 
1993), and into other Al approaches involving hierarchi­
cal problem solving. We view it as a general contribution 
to Al research on abstraction and envision its incorpo­
ration into many multi-strategy systems. 

7 Conclusion 

This paper has described stratified case-based reasoning, 
an application of case-based reasoning to hierarchical 
problem solving. An empirical evaluation in a route-
finding task demonstrated that this approach can lead to 
significantly lower computational costs than either hier­
archical problem solving ab initio or ground-level CBR. 
Moreover, the evaluation showed that reusing abstract 
solutions yields better performance than reusing only 
ground level solutions, that the performance benefit of 
stratified CBR increases with the size of the case base 
and with the number of abstraction levels, and that par­
tial matching outperforms perfect matching. 

Acknowledgement s 
Many thanks to Patrick Harrison for supporting this re­
search and for discussions leading to this paper. Rob 
Holte's input and feedback were also valuable. This re-
search was supported in part by a Visiting Summer Fac­
ulty Research Grant from the Naval Research Labora­
tory. 

References 
Aamodt, A., k Plaza, E. (1994). Case-based reasoning: 

Foundational issues, methodological variations, and sys­
tem approaches. AICOM, 7, 39-59. 

Bacchus, F., k Yang, Q. (1994). Downward Refinement and 
the efficiency of hierarchical problem solving. Artificial 
Intelligence, 71, 43-100. 

Carbonell, J. G. (1986). Derivational analogy: A the­
ory of reconstructive problem solving and expertise ac­
quisition. In R. S. Michalski, J. G. Carbonell, k 
T. M. Mitchell (Eds.), Machine Learning: An Artifi­
cial Intelligence Approach (Volume II). Los Altos, CA: 
Morgan Kaufmann. 

Christensen, J. (1990). A hierarchical planner that gen­
erates its own hierarchies. In Proceedings of the Eighth 
National Conference on Artificial Intelligence (pp. 1004-
1009). Boston, MA: AAAI Press. 

Garey, M. R., k Johnson, D. S. (1979). Computers and 
intractability. New York, NY: Freeman. 

Haigh, K. Z., Shewchuk, J. R., k Veloso, M. (1994). Route 
planning and learning from execution. In Working notes 
form the AAAI Fall Symposium "Planning and Learn-
ing: On to Real Applications" (pp. 58-64). New Or­
leans, LA: AAAI Press. 

Hammond, K. (1989). Case-Based Planning: Viewing 
Planing as a Memory Task, San Diego, California: Aca­
demic Press, Inc. 

Hanks, S., k Weld, D., (1995). A domain-independent al­
gorithm for plan adaptation. Journal of Artificial Intel­
ligence Research, 2, 319-360. 

Holte, R. C, Mkadmi, T., Zimmer, R. M., k MacDon-
ald, A. J. (1995). Speeding up problem-solving by ab­
straction: A graph-oriented approach (Technical Report 
TR-95-07). Ottawa, Canada: University of Ottawa, De­
partment of Computer Science. 

Kaelbling, L. P. (1993). Hierarchical learning in stochas­
tic domains: Preliminary results. In Proceedings of the 
Tenth International Conference on Machine Learning 
(pp. 167-173). Amherst, MA: Morgan Kaufmann. 

Kambhampati, S., (1994). Exploiting causal structure to 
control retrieval and refitting during plan reuse. Com­
putational Intelligence, 19, 212 244. 

Kettler, B., k Hendler, J. (1994). Evaluating a case-based 
planning system. In D. W. Aha (Ed.), Case-Based Rea­
soning: Papers from the 1994 Workshop (Technical Re­
port WS-94-01). Menlo Park, CA: AAAI Press. 

Knoblock, C. (1994). Automatically generating abstrac­
tions for planning. Artificial Intelligence, 64-

Kolodner, J. L. (1988). Retrieving events from a case mem­
ory: A parallel implementation. In Proceedings of the 
Workshop on Case-Based Reasoning (pp. 233-249). 
Clearwater, FL: Morgan Kaufmann. 

Kolodner, J. (1993). Case-based reasoning. San Mateo, CA: 
Morgan Kaufmann. 

Levinson, R. (1991). Pattern associativity and the retrieval 
of semantic networks (Technical Report UCSC-CRL-91-
14). Department of Computer Science, University of 
California, Santa Cruz. 

Mitchell, T., Keller, R., k Kedar-Cabelli, S. (1986). 
Explanation-based learning: A unifying view. Machine 
Learning, 1, 47-80. 

Porter, B. W., Bareiss, E. R., k Holte, R. C, (1990). Con­
cept learning and heuristic classification in weak-theory 
domains, Artificial Intelligence, (45), 229-263. 

Sacerdoti, E. (1974). Planning in a hierarchy of abstraction 
spaces. Artificial Intelligence, 5, 115-136. 

Schank, R., k Leake, D. (1989). Creativity and learning 
in a case-based explainer. Artificial Intelligence, (40), 
353-385. 

390 CASE BASED REASONING 


