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Abst rac t 

This paper advocates a microfeature based ap­
proach towards developing computational mod­
els for metaphor interpretation. It is argued 
that the existing models based on semantic 
networks and mappings of complex symbolic 
structures are insufficient and inappropriate for 
modeling metaphors. A connectionist model 
of metaphor interpretation based on microfea-
tures is presented, which tries to take into ac­
count some important issues, such as accurate 
capturing of similarity, automatic formation of 
features, contextual effects, elimination of long 
paths in conceptual hierarchies, salience im­
balance, and feature enhancement. Some of 
these issues have broad implications in cogni­
tive modeling. 

1 I n t roduc t i on 
Metaphor is an important cognitive phenomenon, and it 
is of great interest to AI, philosophy, psychology, linguis­
tics, and literary studies. In fact there has been a surge 
of interests in the past few decades in the philosophy 
and linguistics communities in the nature and the pro­
cess of metaphor interpretation; more recently, there are 
also increasingly more interests in the AI community in 
non-literal language and analogical reasoning, in both of 
which metaphor occupies a prominent place. Among the 
voluminous studies of metaphor, computational models 
are relatively few. Most existing computational models 
of metaphor are based on semantic networks and map­
pings of complex symbolic structures, or in other words, 
based entirely on the traditional symbolic AI methods. 
1 would like to argue that such symbolic models are in­
sufficient and inappropriate for modeling metaphor in 
general, on the basis of a number of important consider­
ations. I will instead propose a microfeature based (con­
nectionist) approach towards developing computational 
models for metaphor interpretation. 

2 Semantic Ne two rk Based Approaches 
Most existing models of metaphor interpretation take 
semantic network based approaches: they represent 
the requisite linguistic (and world) knowledge in some 

kinds of semantic networks with hierarchically struc­
tured concepts, and metaphor interpretation is accom­
plished through traversing and mapping the hierarchical 
conceptual structures in some ways. Similarities of words 
and other linguistic entities are computed from struc­
tural relations among entities within a hierarchy. Such 
models (especially, for example, Martin 1988 and Fass 
1991) achieved certain successes within limited domains 
and/or strictly controlled environments. However, there 
are many valid questions and objections to these models. 

Let us look into some representative existing models. 
Martin (1988) presents a system for dealing with con­
ventional metaphors, i.e., metaphors that reflect a core 
set of correspondences that can manifest in various ways 
(Lakoff and Johnson 1980). For example, "How can I 
enter Emacs?" or "I am in Lisp", where a computer pro-
gram is uniformly viewed as an enclosure. His system 
consists of large semantic networks with conceptual hi­
erarchies and a set of procedures that operate on them. 
When a verb (e.g. enter) is found to be incompatible with 
(violating some constraints of) the object (e.g. Emacs), a 
procedure is called to find a coherent mapping between 
the domain of the verb and the domain of the object, 
from a core set of conventional metaphors stored in the 
system; once such a mapping is found, the verb in the 
source domain is mapped into a corresponding concept 
in the target domain (i.e., a concept suitable for the ob­
ject, e.g. invoke Emacs). New variations of known con­
ventional metaphors can also be handled, through de­
tecting their similarity to existing ones by finding a path 
through the conceptual hierarchy between the new in­
stance and the known instances. For example, once the 
system knows "I am in Lisp", it can also make sense of 
"I am in Emacs" by finding the relation between Lisp 
and Emacs in the hierarchy (the sibling relation in this 
case, since they are both computer programs). 

Veale and Keane (1992) deal also with conventional 
metaphors. They divide the interpretation process into 
two steps: first a scaffold of core (semantic network) 
structures is constructed in accordance with some con­
ventional metaphors which is already known and stored 
in the system; then the structure is fleshed out with de­
tails, from general world knowledge and/or the context. 
What attributes to transfer from the source domain (e.g. 
physical enclosures) to the target domain (e.g. computer 
programs) and their respective pre-conditions for valid 
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transfers are specified a priori. 
Fass (1991) views metaphor as the existence of con­

straint violation as well as a set of correspondences be­
tween a source domain and a target domain. The repre­
sentation is based on a kind of semantic network, where 
graph search algorithms find different types of paths be­
tween different concepts represented in "semantic vec­
tors", which include constraints and preferences that are 
used to keep mappings coherent. 

The shortcomings of these models are as follows: 
• In semantic networks, conceptual hierarchies require 

hand-coding, In any domain of realistic sizes, this 
poses a serious problem for practical reasons — the 
difficulty of knowledge acquisition in system build­
ing. 

• A more serious problem is that such semantic net­
works are often made up of ad hoc concepts and 
hierarchies, that is, hierarchies specifically designed 
for one particular kind of circumstance or only for 
the purpose of getting one particular result (in the 
current context, for generating plausible interpreta­
tions of test examples of metaphors). 

• A related problem is the fixedness of such hier­
archies. Conceptual hierarchies are explicitly and 
manually constructed a priori. However, in cogni­
tion, at least some concepts (if not all) can be more 
flexible; that, is, they can have one or the other 
superordinate concept, depending on (1) the cur­
rent context (e.g., contextual priming; cf. Barsalou 
1989), (2) the current goals (cf. Schank 1977), and 
(3) even personal, idiosyncratic connections (i.e., 
individual differences; cf. Barsalou 1989). Thus a 
more flexible representation is required. 
It may be argued that this problem can be remedied 
by introducing some new components to a semantic 
network that can modify the connections on the fly 
in accordance with various factors. Although this 
is theoretical possible, semantic networks are noto­
riously complex and difficult to modify, even stati­
cally, let alone dynamically. Therefore, it seems that 
some fundamentally different approaches are called 
for. 

• With semantic networks, it may also be difficult to 
find certain information, and complex search algo-
rithms are required. Such algorithms typically trace 
links in various ways. One ramification of this is 
that time required to process the relations between 
two concepts is proportional to the length(s) of the 
path(s) between the two concepts, which does not 
seem plausible cognitively. This is especially troubl-
some, considering the ad hoc-ness of the conceptual 
hierarchies as mentioned before. 

There are some more specific issues that are directly re­
lated to metaphor interpretation: 

• Similarity in these models, which is necessary for 
determining the relation between two concepts, is 
determined mainly from the sibling relation between 
the concepts involved. This may not be flexible 
enough. For example, whales are closer in a con­
ceptual hierarchy to bears (both can be represented 

as siblings, with mammals as their parent), but in 
a metaphor whales may be closer to sharks instead, 
based on some of their attributes prominent in the 
context. In other words, similarities in metaphor 
may not reflect, or be restricted to, conceptual hier­
archical structures, especially when such structures 
are artificially and inflexibly constructed. 

• Another way of capturing similarities is to have ex­
plicit links in semantic networks that directly indi­
cate pair-wise similarities (cf. Eskridge 1993). The 
problem with such an approach is the complexity of 
representation: everything is somehow similar to ev­
erything else in some ways, and therefore there may 
need to be pair-wise connections between (almost) 
every pair of concepts. The number of similarity 
links is thus 2*C2

n = n*(n — 1), where n is the to­
tal number of concepts. This is much too complex 
representationally, and is even more so dynamically 
(for search algorithms to go through). 

• Most importantly, metaphor cannot be simplisti-
cally construed as constraint violation, structural 
mapping, or selective inference — there is more to 
it. In interpreting metaphors, certain subtle senses 
are brought up from metaphoric interaction (Black 
1955). Such senses are not apparent from mapping 
structures across domains; consequently they are 
not dealt with in many existing models. An example 
will help to illustrate the issue: in Martin's model, 
the metaphoric use of the word enter as in "How 
can I enter Emacs?" is mapped to invoke based on 
the structural correspondence of [agent of entering 
= agent of invoking] and [the place to enter = the 
program to invoke]. However, what is missing is the 
sense inherent in the metaphor of getting into an 
enclosure of some sort, and therefore the model also 
misses the sense that an agent is now able to access 
everything inside but is insulated somewhat from 
everything outside. These senses are strong in the 
word enter, but not in the word invoke. Through 
metaphor, a new sense is added (transferred) to the 
target domain, from the interaction with the source 
domain. 
An even more illustrative example is from Ortony 
(1989): "Billboards are warts." In this metaphor, 
one of the prominent features in the source domain, 
the ugliness of warts, is transferred to the target 
domain to achieve the effect of "billboards are as 
ugly as warts". And in this process, the ugliness 
of warts is becoming even more prominent in the 
source domain. 

3 A Micro feature Based Approach 
Now I want to argue that a radically different approach, 
a microfeature based approach, can better deal with 
these problems, and can thus produce better computa­
tional models of metaphor interpretation. 

Let us look into microfeatures. Many connectionist 
models emphasize "distributed" representation that em­
ploys fine-grained meaning elements, microfeatures, for 
capturing the meaning/semantics of concepts, in addi-
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tion to, or instead of, explicit, conceptual links. Such 
microfeatures can either be extracted manually from 
(macro-level) domain theories, such as in Sun (1995), 
or acquired through applying learning algorithms that 
automatically develop a fine-grained internal (uninter-
pretable) representation. 

Representations with microfeatures have some inter­
esting properties that are especially relevant in the cur­
rent context. Firstly, with such representations, we do 
not have some of the ad hoc-ness of hand-coded hierar­
chies, because we no longer make arbitrary design de­
cisions. Secondly, because the representation is "flat­
tened" (i.e. there is no path to trace), the problem of 
the complexity of search algorithms and the time needed 
to traverse links is no longer existent. Thirdly, microfea-
ture representations tend to be more context sensitive, 
and are thus more flexible. Fourthly, similarities are 
easy to compute with microfeature representations; vari­
ous similarity measures can be implemented with slightly 
different node activation functions and link weights (see 
Sun 1995 for details), without either explicit similarity 
links or explicit conceptual hierarchies. Lastly, although 
there is no explicit hierarchies, hierarchies can neverthe­
less be embodied in microfeatures and used in inference, 
as demonstrated by Sun (1993). 

The question now is exactly how we use microfeature 
based representations for metaphor interpretation in a 
computational architecture. One possible candidate ar­
chitecture is CONSYDERR (Sun 1995), a connectionist 
architecture that utilizes both localist and distributed 
representation and embodies all of the aforementioned 
properties of microfeature based representation. It is 
meant to be a comprehensive model of robust common-
sense reasoning, and as such, it should be able to handle 
metaphor and non-literal language as well. 

The most important idea behind CONSYDERR is 
the two-level dual-representation scheme, that is, there 
are two parts (levels) in the model: one is localist, repre­
senting concepts as individual nodes, and the other is dis­
tributed, representing concepts as microfeatures (hence 
the dual representation). There are two-way connec­
tions between each pair of corresponding representations 
across levels. The working of the model is divided into 
three phases. In the top-down phase, the computation 
is as follows: 

where aj is any node in the top level (the concept level, 
or CL) and xi, is its microfeature (in the microfeature 
level, or CD). In the settling phase, the computation is 
as follows: 

and 

where Wk's and wk's are intra-level links weights, and 
Ik's and ik's are the activations of related nodes. 1 In 

This phase will not be used in the present work. 

the bottom-up phase, the computation is as follows: 

where aj is any node in the concept level, is its mi­
crofeature set, and is the size of the microfeature 
set. Through the interaction of the two levels, many 
difficult patterns in commonsense reasoning can emerge 
naturally (Sun 1995). 

Now the question is as follows: How can we utilize this 
model to implement a microfeature-based computational 
model of metaphor? There are some existing theories 
that we may draw upon regarding detailed metaphoric 
interaction. 2 Ortony (1979) posited a theory of 
metaphor based on salience imbalance and attribute en­
hancement: as touched upon before, a metaphor en­
hances, or highlights, some attributes in the target do-
main that are highly salient in the source domain but are 
far less salient in the target domain; therefore something 
new will be produced in the target domain as a result of 
the metaphor (so in some sense, we can say that some 
highly salient attributes get transferred from the source 
domain to the target domain). 

There are, however, many unanswered questions and 
unspecified details that need to be looked into. For one 
thing, the idea of "attributes" needs to be better char­
acterized: What constitutes an attribute? How can we 
ascertain if a concept has a certain attribute or not? 
What is the proper granularity of such attributes? and 
so on. Another related question is how attributes of 
different concepts are compared: How corresponding at­
tributes are found (Tourangeau & Sternberg 1982), and 
how similarities between these attributed are determined 
(as touched upon in Ortony 1979 under the rubric of at­
tribute inequality), since slightly different attributes can 
be matched, or one can be converted into another as ap­
propriate when transfers occur. If we start to allow cer­
tain structures among attributes in order to handle such 
matches, then we open the door back to the full-fledged 
semantic networks, which has already been shown as in­
appropriate. 

Another particularly important issue in relation to 
this theory is what attributes should or should not get 
transferred from the source domain to the target do­
main, since surely not all the highly salient attributes 
in the source domain can be transferred. So the ques­
tion is how the selection can be done. One question that 
I raised earlier in relation to semantic network based 
approaches is also relevant here and is not dealt with in 
Ortony's theory: How does the context affect the salience 
of attributes of a concept and thus affect the outcome of 
metaphoric interaction? Certainly the claim that the 
salience of each attribute will stay the same always, re­
gardless of circumstances, is an indefensible position. 

The solution below, albeit a little simplistic, captures 
the basic ideas discussed above. In CONSYDERR, a 

2The interaction of the two semantic domains of the two 
terms involved is hypothesized by Black (1955) to be the 
main factor underlying metaphor interpretation. This work 
is based on the belief that the process can be captured in 
micorfeatures. 
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layer of nodes (CL) is established for representing con­
cepts in a domain, including physical objects and their 
properties (e.g., big, billboard, etc. as in "the billboards 
are big"), and another layer (CD) is established for rep­
resenting microfeatures that may be needed in processing 
the meaning of metaphoric (and non-metaphoric) state­
ments. The weight on a link from a concept node to 
a microfeature node represents the salience of that mi-
crofeature in relation to the concept. What we want to 
achieve is the following: When a predicate metaphor, 
such as "Billboards are warts", is presented to the con­
cept layer by the activation of the nodes for "billboard" 
and "wart", these activated nodes in turn activate the re­
lated microfeature nodes in CD, and then, through non­
linear interaction in the microfeature layer, a proper in­
terpretation emerges in the form of proper activations 
(that is, those and only those microfeatures involved 
in the final interpretation remain activated); these ac­
tivated microfeatures will then go back up to activate 
the proper nodes in the concept layer that represent the 
proper interpretation of the metaphor ("ugly" in this 
case). See Figure 1 for a sketch of the model. 

1 will start tabula rasa, without hand-coding any a pri­
ori knowledge of microfeatures and concepts. Thus the 
knowledge must be acquired through learning. I first 
fully connect the two layers with small random initial 
weights, in order for them to develop proper connectiv­
ity patterns through data presentation using connection-
ist learning procedures. Although there is apparently no 
readily applicable learning algorithm for such a two-layer 
three-phase model, we can "unfold" the model to come 
up with an equivalent three-layer model by duplicating 
the concept layer and having the duplicated layer carry 
the bottom-up weights (while the original concept layer 
retain its top-down weights). The input activations in 
the training data will be applied to the original concept 
layer and the output activation representing the right 
interpretation of the input will be applied to the dupli­
cated concept layer. See Figure 2. Since the metaphoric 
interaction is rather complex (Ortony 1979, Black 1955) 
a linear combination operation may be insufficient. To 
improve the processing power, I adopt a sigmoidal acti­
vation function instead of the operations specified ear­
lier. Now the backpropagation algorithm can be ap­
plied directly to update the two sets of weights, until 
the correct interpretation is obtained for each training 
case. Proper microfeatures are developed in the mean­

time. The weights acquired in the end represent the 
salience of the respective microfeatures formed in the 
CD layer. 

An example test domain is as follows. There are two 
sets of concepts: one set includes five facial objects and 
the other includes four land objects (see Figure 3). Each 
object has a number of properties, which should be acti­
vated properly upon the presentation of a corresponding 
objects. All the properties together form another set of 
concepts. Each of the above three sets is represented by 
a corresponding collection of concept nodes in the CL 
layer of the model. The interpretation of the meaning 
of each object concept is based on the properties listed 
in Figure 4. Metaphoric statements are constructed sys­
tematically from applying a concept from one set of ob­
jects to another concept from the other set, such as 

Billboards are warts 
Warts are billboards 
Noses are gates 
Gates are noses 

including all the possible combinations (there are 2 * 4 * 
5 = 80 of them). A subset of these constructed state­
ments is used for training, and the rest for testing. With 
the resulting network, given the sentence "Billboards are 
warts", the node in the subject segment of the concept 
layer representing "billboard" is activated and the node 
in the predicate segment representing "wart" is also acti­
vated; with these input activations, during the top-down 
phase, some of the microfeatures in the bottom layer are 
activated in response to the top-down activation flow; 
then in the bottom-up phase, those activated microfea-
tures in turn activate the proper nodes in the property 
segment of the top layer, which in this case include, most 
prominently, "ugly". Therefore the resulting interpre­
tation is "billboards are ugly", among some other less 
prominent properties. See Figure 5 for more examples 
of metaphor interpretation. 

There is another issue that is worth mentioning. Con­
text can force changes in feature salience; that is, a mi­
crofeature that is very prominent in one context can be 
negligible in another. I need a way to modulate microfea-
ture salience (i.e., weights), which can be accomplished 
by including an extra set of nodes (a context module) in 
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the concept layer, which receives inputs and sends out 
signals that change the weights on the link connecting 
concepts and their corresponding microfeatures. In other 
words, these signals are used to manipulate or modu­
late microfeatures on the fly (Sun 1995). This change 
(or modulation) is done by higher-order links (three-way 
connections) of concepts and microfeatures; that is, the 
link weight between a concept and a microfeature is: 

where wc is a modulation signal from the context mod­
ule. See Figure 6. The same idea in developing training 
procedures is again applied, by unfolding the architec­
ture into multiple layers and by handling the updating 
of high-order weights (details omitted). 

4 Fur ther Steps 
This model produces the desired outcomes, through han­
dling the metaphoric interaction by two sets of non-linear 
(sigmoidal) operations successively applied, which have 
been shown to be able to approximate any measurable 
function and are thus sufficient for the purpose. How­
ever, we may want a more linear and more precise char­
acterization. 

In the interest of specifying the detailed operations of 
metaphoric interaction, I propose to use a process that 
involves enhancement. That is, we selectively enhance 
the links between the target concept and some of its 

microfeatures (this is similar in a way to "slippage" as 
proposed by Hofstadter). In accordance with the the­
ory of salience imbalance (Ortony 1979), these micro-
features selected to be enhanced are among those that 
have strong links with the source concept (i.e., highly 
salient for the source concept) but weak links with the 
target concept. After the enhancement, there will be 
some highly salient microfeatures shared by both the 
source concept and the target concept (so these micro-
features have been transferred), which is not the case 
before the enhancement (provided that the statement to 
be interpreted is metaphoric; Ortony 1979). 3 

To perform enhancement, let us go back to the original 
CONSYDERR architecture: without the sigmoidal op­
erations, the concepts/microfeatures relations are once 
again transparent. Enhancement can then be accom­
plished by setting up links with high weights between the 
target concept and the microfeatures that have strong 
connections with the source concept, with each weight 
proportional to (a function of) the corresponding weight 
between the microfeature and the source concept and the 
original weight between the microfeature and the target 
concept. That is, 

when and are of t he same sign, where 
and are parameters, i is the currently activated tar­
get concept, k is the currently activated source concept, 
and j is the microfeature in question. These parameters 
can be chosen in such a way that (1) the first fraction 
will have a steep slope (when is large), because only 
those microfeatures of the source concept that are highly 
salient can get transferred, and (2) the second fraction 
will have a gentle and low slope (when is small and 
n is used to compress its range), because we want the 
amount of transfer to correspond, to a small degree, to 
the original weight between the target concept and the 
microfeature in question since that weight represents a 
propensity of the target concept to obtain that micro-
feature. (Therefore, we have 

With this update rule, if the source weight and 
the target weight are both high, then the target 
weight will basically remain the same, as it should be 
in case the statement is a literal comparison; if both are 
low, there will be very little enhancement as expected; 
if the target weight is high and the source weight is low, 
there will be little enhancement; if the source weight is 
high and the target weight is low, there will be significant 
enhancement; in this last case, however, the higher the 
target weight the more enhancement there will be (up to 
a certain limit). 

With the enhanced top-down links from the target 
concept (and without the source concept), the three 

Figure 6: The Overall Architecture for Metaphor Inter­
pretation 

3According to Ortony (1979), if the source concept and 
the target concept originally share some highly salient fea­
tures, then the statement will not be metaphoric, but a sim­
ple literal comparison. Metaphors occur when none of those 
highly salient features of the source domain are highly salient 
features of the target domain. 
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phases of CONSYDERR are reenacted. From this 
three-phase cycle, some properties representing possible 
interpretations will be activated, in the end, in the prop­
erty segment of the CL layer. We then use the most 
strongly activated properties as the interpretation of the 
metaphor. 

5 Discussions 
Going back to the issues raised earlier, we see that the 
model fare well in all of these aspects: 

• First of all, with the microfeature based approach 
there is no need for complex search algorithms and 
the time needed to reach a conclusion is not depen­
dent on the path length between them. Simple mi­
crofeature transformation generates the equivalent 
of complex search behavior without actually per­
forming the search (see Sun 1993 for more details). 

• There is no hand-coding that creates arbitrary con­
ceptual hierarchies; rather, conceptual structures 
are embedded in microfeature representation and, 
more importantly, are extracted from data. 

• The microfeatures themselves are not arbitrar­
ily chosen either; they are formed automatically 
through learning correct mappings. 

• Because such automatic formation of microfeatures, 
they naturally capture the similarity of concepts, 
as demonstrated by the resulting correct interpre­
tations in the experiments. 

• Because of automatic formation of microfeatures, 
attribute inequality is avoided, since there will be 
automatic decomposition of attributes to micro-
features that capture similarities among attributes 
through distributed representation. 

• The models are capable of highlighting certain as­
pects of the target domain by transferring highly 
salient features from the source domain in metaphor 
interpretation. Thus, metaphors are not simply con­
straint violation, mapping between domains, or se­
lective inference (although these are all integral part 
of metaphor interpretation and are embodied in the 
model). 

• The effect of context is taken into consideration in 
the model; with microfeature, this effect can be re­
alized by context modules and high order links. 

There exist other related connectionist models (see, 
e.g., Eskridge 1993, Lange and Wharton 1993). These 
models are mostly localist, and as such, they are more 
akin to semantic network based approaches than to the 
microfeature based approach proposed in the present 
work. These models, however, do have some noteworthy 
features; for example, they allow very complex struc­
tures in their representations and they compute and uti­
lize complex structural correspondences (e.g., Eskridge 
1993). They are also capable of explicitly expressing 
goals and plans. I should note that these representa­
tions are possible in CONSYDERR, since it has a lo­
calist level (CL) that can readily implement the afore­
mentioned structures (as in Sun 1992). 

One advantage of the models proposed is that they em­
ploy the same mechanism for both metaphoric or literal 
statements. Metaphors are not viewed as an extrane­
ous process serving only ornamental purposes. Since the 
model presented here is a variation of CONSYDERR, 
which is a unified model of various kinds of common-
sense reasoning, ranging from inheritance reasoning (Sun 
1993) to evidential causal reasoning (Sun 1995) and to 
similarity-based induction (Sun 1995), the model is in­
tegrative and not ad hoc. Some of the issues addressed 
in this work are also applicable to other areas. 

Moreover, because of the possibility of incorporat­
ing structural correspondences and structural similari­
ties into CONSYDERR, it is possible to extend the 
proposed models of metaphor interpretation to deal with 
more sophisticated kind of analogy and analogical rea-
soning (involving complex relations). Some work is cur­
rently being carried out in this direction. 
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