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Abs t rac t 

Incremental concept learning algorithms us­
ing backtracking have to store previous data. 
These data can be ordered by the "is more 
specific than" relation. Using this order only 
the most informative data have to be stored, 
and the less informative data can be discarded. 
Moreover, under certain conditions some data 
can be replaced by automatically generated, 
more informative data. 
We investigate some conditions for data to be 
discarded, independently of the chosen concept 
learning algorithm or concept representation 
language. Then an algorithm for discarding 
data is presented in the framework of Itera­
tive Versionspaces, which is a depth-first algo­
rithm computing versionspaces as introduced 
by Mitchell. We update the datastructures 
used in the Iterative Versionspaces algorithm, 
while preserving its most important properties. 

1 I n t roduc t i on 

Incremental concept learning algorithms maintaining a 
hypothesis consistent with all data (usually called ex­
amples or instances) have to store all previous data 
as soon as any backtracking is involved. Excep­
tions are, e.g., the Candidate Elimination algorithm 
[Mitchell, 1982], because it searches bi-directionally (i.e., 
specific-to-general and general-to-specific) and breadth-
first, or algorithms searching specific-to-general in a con­
junctive tree-structure language, as Incremental Non-
Backtracking Focusing [Smith and Rosenbloom, 1990]. 
[Hirsh, 1992] even prefers a representation storing all 
negative examples together with S over storing S and 
G in case G can grow exponentially or can be infinite. 
[Bundy et a/., 1985] argues that for learning disjunctive 
concepts all data will have to be stored anyway. 

One of the goals of concept learning is compaction of 
the information provided to the algorithm. Therefore, in 
cases where all instances have to be memorized, prefer­
ably no redundant information should be stored. In this 
paper, we remove redundant instances in a language in­
dependent way by partially ordering them, according to 

their information contents. In [Sebag, 1994] and [Sebag 
and Rouveirol, 1994] this is done for negative examples 
in a conjunctive tree-structure, resp. first order logic 
language. According to the partial order, we only have 
to store minimal and maximal instances, while forget­
ting the ones with less information content. However, 
we have to take care that the search algorithm does not 
lose any solutions, does not search previously discarded 
parts of the search space again, and retains its most in­
teresting properties. 

We develop this idea in the framework of the Iterative 
Versionspaces algorithm (ITVS) [Sablon et a/., 1994]. 
Nevertheless, we argue that it has a much wider ap­
plication potential. The theory is formulated indepen­
dently from any concept learning algorithm or search 
strategy and independently from the chosen concept rep-
resentation language. The partial order on instances is 
defined solely in terms of the "is more specific than" 
relation. Identifying and removing redundant instances 
can be used in any incremental algorithm that stores 
all instances, and even in a preprocessing phase of a 
non-incremental concept learning algorithm, to reduce 
its actual processing time. The reason for studying this 
problem in the context of ITVS, is that we believe the 
datastructures and complexity measures of ITVS con­
tribute to understanding the nature and the complexity 
of concept learning. 

We ensure that the main properties of ITVS are re­
tained: a worst case space complexity linear in the num­
ber of instances, and a worst case time complexity of 
testing a candidate hypothesis for maximal generality 
or maximal specificness also linear in the number of in­
stances. The cost of extending the ITVS algorithm is 
a global increase in time complexity quadratic in the 
number of instances. The gain is twofold: firstly stor­
ing less instances will reduce the memory needed by the 
algorithm. Secondly, in case the size of S or G is expo­
nential in the number of instances, the worst case time 
complexity of the search is exponential in the number of 
instances. With a branching factor 6, reducing the num­
ber of instances with a factor k, would then reduce the 
time complexity with a factor bk. 

The paper is organized as follows: Section 2 briefly 
reviews the definitions and invariants of the datastruc­
tures used in ITVS. Section 3 describes the theoretical 
background for discarding instances. In Section 4 we 
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Although the worst case time complexity has increased 
w.r.t. ITVS's, it has only increased with a quadratic 
term, while, if the size of S or G is exponential, reduc­
ing the number of 5-bounds, resp. g-bounds, would also 
reduce Bearch time with an exponential factor. 

6 Related W o r k 

The ideas extend the work of [Sebag, 1994], [Sebag and 
Rouveirol, 1994] and [Smith and Rosenbloom, 1990] in 
a language independent framework. In [Sebag, 1994], 
which is restricted to conjunctive tree-structure lan­
guages, negative lowerbounds are converted into pos­
itive upperbounds, and only those nearest to the tar-
get concept (i.e., the most specific ones) are stored. In 
Sebag and Rouveirol, 1994] this is extended to nega­

tive lowerbounds in ILP, which are represented by in­
tegrity constraints and ordered by 0-subsumption. In 
our framework we can generalize the notion of a nearest 
miss (which is introduced in [Sebag, 1994] and defined 
as a negative lowerbound which is not 5-prunable) to all 
negative instances neither 5-prunable nor g-prunable. 

Two aspects of INBF [Smith and Rosenbloom, 1990] 
can be compared to ours. In the specific-to-general 
search INBF drops all positive examples, because no 
backtracking is needed in searching specific-to-general in 
a conjunctive tree-structure language. Using Theorem 4, 
our approach would also drop all positive lowerbounds, 
except one (which would then coincide with s), because 
any two positive examples will have only one least upper-
bound. In the general-to-specific search INBF processes 
and then forgets all near-misses w.r.t. s. Its maximally 
general hypothesis upper is only kept consistent with all 
positive examples and all near-misses, so no backtrack­
ing is needed. Our notion of a near-miss generalizes this 
approach, by converting all negative lowerbounds to pos­
itive upperbounds, and considering their greatest lower-
bound (i.e., upper) as a positive upperbound. 

[Hirsh, 1990] informally describes a technique of "skip­
ping data that do not change the versionspace" in the 
context of the Incremental Versionspace Merging algo-
rithm. Intersecting a versionspace VS1 with VS2, and 
then with a subset VS2' of VS2 will always yield the lat­
ter intersection. Consequently the first intersection oper­
ation was not necessary. In our framework, we more for­
mally describe the approach using the notions 5-prunable 
and g-prunable, we relate these notions to the concept 
of near-misses and to INBF, and provide a framework to 
automatically generate new information elements. 

7 Conclusion 

We have introduced the notions of 5-prunable and g-
prunable instances and a generalized notion of near-miss. 
Using these we identified redundant instances. We also 
introduced automatically created instances, that made 
other instances redundant without any loss of informa­
tion. This resulted in data compaction. Furthermore, as 
in [Smith and Rosenbloom, 1990], this paper shows that 

near-misses (and their dual counterpart) play a very im­
portant role in converging towards the target concept. 

We have also shown how 5-prunable and g-prunable 
instances can be discarded in the framework of Iterative 
Versionspaces, without losing the most important prop-
erties of the ITVS algorithm. 
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