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Abstract

Incremental concept learning algorithms us-
ing backtracking have to store previous data.
These data can be ordered by the "is more
specific than" relation. Using this order only
the most informative data have to be stored,
and the less informative data can be discarded.
Moreover, under certain conditions some data
can be replaced by automatically generated,
more informative data.

We investigate some conditions for data to be
discarded, independently of the chosen concept
learning algorithm or concept representation
language. Then an algorithm for discarding
data is presented in the framework of Itera-
tive Versionspaces, which is a depth-first algo-
rithm computing versionspaces as introduced
by Mitchell. We update the datastructures
used in the lterative Versionspaces algorithm,
while preserving its most important properties.

1 Introduction

Incremental concept leaming algorithms maintaining a
hypothesis consistent with all data (usually called ex-
amples or instances) have to store all previous data
as soon as any backiracking is involved. Excep-
tions are, e.g. the Candidate Elimination algorithm
[Mitchell, 1982], because it searches bi-directionally (i.e.,
specific-to-general and general-to-specific) and breadth-
first, or algorithms searching specific-to-general in a con-
junctive tree-structure language, as Incremental Non-
Backtracking Focusing [Smith and Rosenbloom, 1990].
[Hirsh, 1992] even prefers a representation storing all
negative examples together with S over storing S and
G in case G can grow exponentially or can be infinite.
[Bundy et a/., 1985] argues that for learning disjunctive
concepts all data will have to be stored anyway.

One of the goals of concept learing is compaction of
the information provided to the algorithm. Therefore, in
cases where all instances have to be memorized, prefer-
ably no redundant information should be stored. In this
paper, we remove redundant instances in a language in-
dependent way by partially ordering them, according to
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their information contents. In [Sebag, 1994] and [Sebag
and Rouveirol, 1994] this is done for negative examples
in a conjunctive tree-structure, resp. first order logic
language. According to the partial order, we only have
to store minimal and maximal instances, while forget-
ting the ones with less information content. However,
we have to take care that the search algorithm does not
lose any solutions, does not search previously discarded
parts of the search space again, and retains its most in-
teresting properties.

We develop this idea in the framework of the Iterative
Versionspaces algorithm (ITVS) [Sablon et a/., 1994].
Nevertheless, we argue that it has a much wider ap-
plication potential. The theory is formulated indepen-
dently from any concept leaming algorithm or search
strategy and independently from the chosen concept rep-
resentation language. The partial order on instances is
defined solely in terms of the "is more specific than"
relation. Identifying and removing redundant instances
can be used in any incremental algorithm that stores
all instances, and even in a preprocessing phase of a
non-incremental concept learning algorithm, to reduce
its actual processing time. The reason for studying this
problem in the context of ITVS, is that we believe the
datastructures and complexity measures of ITVS con-
tribute to understanding the nature and the complexity
of concept learning.

We ensure that the main properties of ITVS are re-
tained: a worst case space complexity linear in the num-
ber of instances, and a worst case time complexity of
testing a candidate hypothesis for maximal generality
or maximal specificness also linear in the number of in-
stances. The cost of extending the ITVS algorithm is
a global increase in time complexity quadratic in the
number of instances. The gain is twofold: firstly stor-
ing less instances will reduce the memory needed by the
algorithm. Secondly, in case the size of S or G is expo-
nential in the number of instances, the worst case time
complexity of the search is exponential in the number of
instances. With a branching factor 6, reducing the num-
ber of instances with a factor k, would then reduce the
time complexity with a factor b*.

The paper is organized as follows: Section 2 briefly
reviews the definitions and invariants of the datastruc-
tures used in ITVS. Section 3 describes the theoretical
background for discarding instances. In Section 4 we



give an algorithm for updating ITVS's datastruciures
consistently. In Section 5 we show that the moat impor-
tant properties of ITVS are preserved. Related work is
discuseed in Section 6. Finally we conclude in Section 7.

2 Iterative Versionspaces

In this section, we will briefly introduce some notation
and review the ITVS algorithm. For a more detailed
description of ITVS, we refer to [Sablon et af., 1994].

The language of hypotheses is denoted by £. We ae-

sume the single representation irick applies!, so that in-
stances aleo belong to £. Both relatione “is more specific
than® and the classical “ia covered by” on L can then be
denoted by one symbol <. We assume there is a max-
imal element T and a minimal element | in £. As in
[Mellish, 1991} ITVS accepts four kinds of instances:

» a positive lowerbound (or positive example) i must
be more specific than the target concept ¢, i.e.,
e

» anegative lowerbound {or negative example) ¢ must
not be more specific than the target concept ¢, i.¢.,
e

s a positive upperbound i must be mote general than
the target concept ¢, ie., ¢ < 4;

# & negative upperbound 1 must not be more general
than the target concept ¢, i.e., ~{ e X1 ).

The set of all instances at a given moment is denoted
by I. Positive lowerbounds and negative upperbounds
are referred to as s-bounds. Positive upperbounds and
negative lowerbounds are referred to as g-bounds. That
hypothesis ¢ is consistent with the instance i, is denoted
by ¢ ~ 1. For a given positive lowerbound, resp. neg-
ative upperbound, 7 and a hypothesis ¢, the complete
generalization operator Jub{ ¢, i ) (least upperbounds),
resp. mag{ ¢, i) (most apecific generalizations}, com-
putes the maximally apecific generalizations of ¢ consis-
tent with i. For a given positive upperbound, resp. nega-
tive lowerbound, ¢ and a hypothesis ¢, the complete spe-
cialization operator gib{ ¢, i) (greatest lowerbounds),
resp. mgs{ ¢, 1) (most general specializations), com-
putes the maximally general specializations of ¢ consis-
tent with i. & is the set of all maximally specific hy-
potheses consistent with I, G the set of all maximally
general hypotheses consistent with J. In order to repre-
sent the set of all consistent concept representations by
& and G , we assume that the admissability constraint
holds en £, i.e., every chain in L contaitis a maximal and
a minimal element [Mitchell, 1878].

ITVS is a bi-directional incremental depth-firat search

algorithm on £ using the following datastructures:

o ITVS stores one current maximally specific hypoth-
ezin & and one current maximally general hypothesis
¢, both consistent with all s-bounds and g-bounds;

s ITVS stores all s-bounds in an array I, and ail g-
bounds in an array I,. n, is the total number of
s-bounds, n, is the total number of g-bounds;

![Sablon, 1995] shaws that the presented results can be
generalised beyond the single represeatation trick.
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Figure 1 Maximal specificness on B,

ITVS stores specific-to-general backirack infor-
mation on the steck? B,, containing triplets®
( tnd , 8ing , alling ), called choicepoints {see Fig-
ure 1); ind is an index in I,, 8;n. 15 a hypothesis,
and alting is & non-empty list of hypotheses used
to backirack on s and to test maximal specificness
of #. Similarly, the stack B, contains choicepoints
{ ind , gind , 6lting ), where ind 18 an index in I,
¢ing 18 a hypothesis, and alt,,4 is a non-empty list
of hypotheaes used to backirack on g and to test
maximal generality of g.

Figure 1 shows a stack B, with three choicepoints. El-
ements of £ are drawn as squares, In each choicepoint
the squares on the left of 8,4 are already discarded al-
ternatives. afi;.s contains the alternatives atill to be
explored. s;,4 i8 the alternative currently explored: its
minimal generalizations arc in the next choicepoint.
The Candidate Elimination algorithm of [Mitcheil,
1982) is & bi-directional breadth-first algorithm which
computes and stores § and G comnpletely for every new
instance. ITVS being a depth-first algorithm only stores
one element s € § and one g € G, together with back-
track information B, and B,. When s (ot g} is incon-
gistent with a new instance, ITVS generalizes s (resp.
specializes g), or selects a next alternative on B, (resp.
on B;) and reprocesses all instances encountered since
the choicepoint of the alternative wes created. Therefore
ITVS stores all instances in I, and I,. By backtracking,
ITVS can reconstruct S and G for each new instance.
During the search the following invariantzs hold:

l.scSand g€ G

2. for all choicepoints ( indy , #1 , alt; Jon B,: #; <X =
and —{a; X s ) for every a; in aliy; s; and all
elements of alt; are maximally specific hypothe-
aes conaiatent with all g-hounds and the first snd;
s-bounds; for every choicepoint ( ind; , 82, alt; )

TWe employ the usual operations push, pop and is_empty
on stacks. Elemente are added on and removed from the fop
of the stack.

*W.rt. [Sablon et al., 1994] choicepcints are extended
with sing, Te8p. find, necesunry for an efficient implementa-
tion of the algorithmn in Section 4 (sec alao footnote T).
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closer to the top of B,: ind; < indz, #; < 83,
sy < @ and —~( 6y < @2 ) for every a; in alty and
for every az in aliy;

3. for all choicepoints ( ind; , g, ,alt; Jon By: g < ¢y
and -{ g < a; ) for every a; in alty; g, and all
elemente of alf; are maximally general hypothe-
ses consistent with all s-bounds and the first #nd,
g-bounds; for every choicepoint ( indj , 97, all; }
closer to the top of B,: ind; < ind;, g3 < ¢ and
a3 < ¢ ~{ @3 % a1 ) for every a; in alty and for
every a; in ally;

4. Completeness of # and B,: for all ¢ € £, consistent
with I, s or an alternative on B,* is more specific
than ¢;

5. Completeness of g and By: for all ¢ € £, consistent
with I, g or an alternative on B, is more general
than c.

Note that if the top choicepoint of B, has index n,, 8q4
of the top must be equal to s. Also note that the alterna-
tives on B, are actually the roots of the search aubtrees
that are still to be scarched. ITVS teste for maximal
specificness of an hypothesis ay by testing whether or
not there is an alternative a; on B, which is more spe-
cific than as (see Figure 1}. In other words, this tests
whether the search subtree rooted by a3 is & subtree of
the tree rooted by a,. If it is, a3 is not further gen-
eralized at this moment [so it is not allowed in alta),
because either it is not maximally specific, or it will be
generalized later when all generalizations of 6; are be-
ing searched. Thus an optimal generalization operator®,
meaning that every hypothesis is generalized only once,
is implemented explicitly. All these arguments dually
kold for ¢ and B,.

An important theoretical result about ITVS is the fact
that ita worst case space complexity is linear in the num-
ber of instances, while the worst cast case time com-
plexity could be exponential (though only a linear fac-
tor worse than the Candidate Elimination algorithm, if
S and § are exponential in sige and have to be computed
for each new instance). Apother result is the fact that
the worst case time complexity of testing maximal speci-
ficness of s or maximal generality of g is also linear in
the number of instances.

3 Redundant instances

In this section, we will develop a theory to reason about
redundant instances. Due to space limitations proofs are
omitted and can be found in [Sablon, 1995).

We first define the information elemente we are fo-
cussing on. Theoremn 2 proves they arc redundant.

Definition 1 {s-prunable and g-prunable)
e i €], iss-prungble wrt 2 €1, iff

‘With “an alternative on B8," we mesn “sn element of
alling for a choicepoint ( ind , #ind , alting ) on B,”. Also,
with “all alternatives on B,” we mean “all elements of altipa
for all choicepoints { ind | 8ina , alting ) on B,".

BAp optimal generaliretion operator is dual to an optimal
refinement operator (see [Sablon et al., 1984]}.
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— 1y and i35 are both positive lowerbounds such
that §y < i3, or
— iy end iz ere doth negative upperbounds such
that iy < iz, or
— i1 14 o negative upperbound and iy is z positive
lowerbound such that i, ¢ ig.
® 33 €1, i5 s-prunable in I, iff 313 € I, suck hal 4y
35 5-pruncble w.r.t. 5;.
o iy €1, isg-prunable wri iz €1, iff
— %, and i3 are positive upperbounds such thai
‘.2 = 'ila or
— i, and iz are negotive lowerbounds such that
i! =% ila or
-~ iy is a negative lowerbourd and iy is o positive
upperbound such thal i; < 1.
o i € Iy iz g-prunable in I, off Jiz € I, such that?;
is g-prunable w.r.t. iz,

Theorem 2 Given c € L. Also given 11,42 € I; such
that iy s g-prunable w.r.t. i3, oriy, iz € I, such that 1y
s s-prunable w.r.d. iz, Then i3 ~ c tmplies i) ~¢c. 0

The proof of Theorem 2 is a repeated application of
the transitivity of =. As a consequence of Theorem 2, we
do not Lave to store aliinstances, but rather enly the non
s-prunable ones and the non g-prunable ones. In other
words, only the mezimally general positive lowerbounds
and negative upperbounds, and the mazimeally specific
positive upperbounds and negative lowerbounds are to
be stored. Whenever we detect that a previously stored
s-bound 4; ie s-prunable w.r.t. a newly provided one 3,
we replace 3y by iz in J,.

So far we assume all instances are provided to the con-
cept learning algorithm, However, under certain condi-
tions new instances with an information content equiv-
alent to the provided onee can be automaiically crealed.
Moreover, the automatically created instances enforce
that more provided instances will become s-prunable or
g-prunable, so that less instances have to be stored, i.e.,
data is compacted without loss of information content.
We will now deacribe some conditions under which such
instances can be automatically generated.

Lemma 3 Given c € £, Also given

3.1 two positive lowerdounds 1
l‘ﬂbrij ,ig}:{i}, or

3.2 two positive wupperbounds i
gh‘:(:; ,1:3 ):{%}.

Thene ~1i iffc ~ i and ¢ ~ i3, o

and iz suck that

ond 33 such that

This means that whenever two positive lowerbounds
have a unique least upperbound they may be repiaced by
this least upperbound without loss of information, and
whenever two positive upperbounds have a unique great-
est lowerbound, they may be replaced by this preatest
lowerbound. Note that in a conjunciive tree-structure
language and in Inductive Logic Programming using 8-
subsumpiion lub and gib are always unique.

Theorem 4 Given i) € I and ¢ new instance i3, fulfill
ing Condition 3.1 or Condilion 3.2. The sel of hypothe-
sea constatent with I U { i } is the sel of Aypotheses con-
sistent with I U { i3 }. Moreover, iy is s-prunable w.r.1.



i under Condition 3.1, and g-prenable w.ri. i under
Condition 3.2, ]

In particular, in the case of a positive lowerbound iz,
for instance, i can be provided to ITVS instead of i;
without losing any solutions. Then i; becomes redun-
dant. Whenever a least upperbound i replaces a positive
lowerbound 2y, all other s-bounds will have to be checked
whether they are not s-prunable, or whether they have
more than one least upperbound with 4. Unfortunately,
the result of replacing instances repeatedly depends on
the order in which the instances are provided.

Negative insiances cannot be generalized or special-
ized in the same way. However, a special kind of negative
instances can be transformed to positive instances.

Definition 5 (A general notion of near-miss) 4
near-miss® w.r.i. ¢ € £ s o negative lowerbound 1, such
thet{zemga{ T ,in )|c %z} iscaingleton {5 }.
Because of the single representation trick, positive lower-
bounds are also in £. Given a near-miee 3, w.r.t. a pos-
itive lowerbound iy, the target concept must be more
general than i, to be consistent with i, but also more
specific than the corresponding 4y, to be consistent with
t,. In other words, i, is a positive upperbourd con-
ptraining the search space in the same way as 1,, does. If
we replace each near-miss w.r.t. a positive lowerbound
by its equivalent positive upperbound, we can apply The-
arem 4 when appropriate. [Sablon, 1995] also formulates
a dual result for s-bounds.

This definition of near-miss is consistent with the usua!
definition in a conjunctive tres-structure language, since
mga{ T , i, ) will only be a singleton if 4, and s differ in
only one attribute. Theatem 4 explains that providing
the only consistent maximally apecific hypothesin s as
positive lowerbound is equivalent to providing all actual
positive lowerbounds. In this case all near-misses can
be replaced by exactly one positive upperbound, since
the corresponding positive upperbounds have only one
greatest lowerbound (glb). This corresponds to the re-
gult of [Smith and Rosenbloom, 1990),

4 The algorithm

In the previous section we have determined which in-
stances are redundant. We will now modify ITVS such
that no redundant instances are stored. This will be
enforced by the following two extra invariants:

6. no element in I, is s-prunable , and
7. no element in I, is g-prunable.

Given these invariants, how to update ITVS’s dates-
tructures once a redundant instance is detected? We
describe an extension of ITVS to discard s-prunable in-
stances. Pruning ¢-prunable instances from I, is done
dually. Also, replacing instances using Theorem 4 is not
discussed because of space limitationa.

In TTVS, when 4y 1s s-prunable w.ri. i, a naive
method to update B, would be replace iy in I, by i and
to reprocess all s-bounds with an index in I, larger than

8Criginally introduced by [Winston, 1975).

the index of ;. However, this reprocessing could lead to
recomputing and generalizing previously discarded ele-
ments of £, Therefore, we will updaie all alternatives on
B,, instead of recomputing them, while respecting B,
invariants. A dual argument holds for B,.

Further on we also need the following lemmas:

Lemma 6 Given ci,¢2 € L with o) < c3 and a positive
lowerbound ¢
Vesclubfep ,i): 32, €iublcy , i )imy < 2. o

Lemma 7 Given ¢1,¢3 € £ with ¢y % ¢z end 2 negative
upperbound ¢:
Vzpemsg{ecg ,i):3z, €msgfe; ,1}:21 X2 O

Theee lemmas asgure that generalization in some sense
preserves the property of being more general. Analogous
lemmas exist for glb and mgs (see [Sablon, 1985]},

We will now deacribe how we extended ITVS to satisfy
Invariant 6 and Invatiant 7. When a new s-bound is
provided to the original ITVS, this s-bound is added
to 1,, then g and B, are updated, and then s and B,
are updated. W.rt. the original ITVS only the latter
operation (i.e., the call generalize{ 5 , B, , 8ing ) in line
(©on page 399 of [Sablon et al, 1994} should be replaced
by & call to Algorithm 1 with the same arguments.

Given the s-bound i:

1 Search I, from 1 to n, for the first instance I, [n,]
that is s-prunable w.r.t. 7, or such that i is
s-prunable w.r.t. I,[n.]

2 If no such instance can be found,
then handle i as before in I'TVS

3 Otherwise, remove ¢ fremm I,, and:

4 Ifiis s-prunable, then do nothing
5 Otherwise, J,[n.] must be s-prunable. Then:
6 Replace I,[n.] by ¢
T Generalize B, as in Algorithm 2
This yields #, B, and ind, the index up to
where # is consistent with all s-bounds
8 Find 5 consistent with I and corresp.
B, with the call generatize( s, B, , ind )

9 Retutn 5 and B,

Algerithm 1 Handling a pew s-bound

Algorithm | first checks whether Invariant 6 on I, is
still satisfied (Step 1). If it is (Step 2), TTVS continues
as before (i.c., with the call generalize( s, B, , 04 );
pcc above). If i is s-prunable, it is just removed from I,
{Step 3 and Step 4). Otherwise it is also remaved from
I,, and then replaces I,[n.] (Step 6). Then B, must be
updated to satiafy Invariant 2 and Invariant 4 of Section
2 (Step 7). This is explained in Algorithm 2. The result
is 2 new maximally specific concept. representation s, the
updated B,, and an index ind such that s is consistent
with all g-bounds and with the first ind s-bounds. Fi-
nally, a new maximally specific concept representation
consistent with ol instances must be computed using
the procedure generalize of [Sablon et al., 1994). This
call will satisfy Invariant 1. In Algorithm 1 and Algo-
rithm 2 neither g, nor B, nor I, nor n, are changed, so
Invariant 3 and Invariant 5 are preserved all the time.
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1¢ Initialize B, to an empty atack
11If B, is empty, or else if the top
choicepoint of B, does not have index n,,
then push { n, , s, {] ) onto By
12 Pop all { ind | 8ing , &lting } with n; < ind from
B,, and push them on B),
13 Initialise new 4nd and =) as n,
14 Initialise prune B, as false
15 Repeat
16 Pop ( ind , 8ing , 6lting ) from By
17 Generalize s;,4 minimally to be
consistent with i; aseign to gens,
the list of generalizations z much that:
18z ~ I, and
19 ~3Jg in altns: 8 < 2, and
20 ~3g on B,: a < &, and
21{s X zor3aon By: a < z)
22 Generalise the elementa of alt;,; minimally
to be consiatent with i; assign to
gensy the list of generalizations z such that:
23 there exists no other auch generalization
2', such that ' < #, and
24z ~ I;, and
25-3aon B,: a £ z, and
26-Jeingent;ia <z
27 If gens, is empty, then
28 Let prune_B), be true
29 Move all I [newsnd + 1],..., L[n,]
not s-prunable to I{n] +1],..., L[k]
and let n} be equal to &
30 Otherwise (i.c., gens; i3 not empty):
31 Move all I,{new.ind + 1}, ..., Lfind]
not s-prunable to [,[n} +1],..., L [#]
and let n) be equal to &
32 Take the first posaible choice of:
» Remove an element new_ s, q from gens,y
and then let alt;ng be gens; U genag
# Remove an element new s,,4 from gens;
and then let ait;, ; be gensy U gensg
e Pop ( ind | 3in4 , 6lting ) from B, and
then remove a new _sinq from alling
o Fail and halt
33 Let new_ind be equal to ind
34 If alt;, 4 ia not empty,
Then push ( ind , new. sinq4 , alting ) onto B,
35 Until By, is empty or prune B,
36 Let n, be equal to n]
37 Return new 8,4, B, and new_ind
Algorithm 2 Generalizing B,
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Figure 2 Two conascutive choicepointa of B,

In general terma, Algorithm 2 works as follows: it first
popa the choicepoints of B, that are to be generalistd
from B, and pushes them onto a temporary stack By.
It then generalizes these choicepoints one by one w.r.t.
the new inatance i. The result is a new B, satisfying
Invariant 2 and [nvariant 4. Simultaneously, all instances
i’ s-prunable w.r.t. ¢ are removed from I,, by shifting
the instances following i towarda the front. We will now
discuss Algorithm 2 in more detail.

Step 10 to Step 14 consist of initializations. By con-
gista of all choicepointes of B, with index larger than or
equal to n. in reversed order (Step 12). Also, it is en-
sured that the bottom choicepoint on By has 5 a8 5;,,4
(Step 11) to bandle # as any other #,4, and to be cer-
tain that Bj is not empty. For each ind, new ;4 will
replace ;.4 on the generalized B,; new_ind is the index
in I, up to where elements of I, have been checked for
not being s-prunable, and up to where new_s,,4 is con-
sistent with all s-bounds; n!, is the index up to where I,
contains the non s-prunable instances of I,[1..n.]. Ini-
tially, new_ind = n} = n, (Step 14), since I,[n;] was the
first s-prunable instance in 1, (see Algorithm 1). Finally,
prune_By will be true iff the reat of By cannot be gen-
eralized consistently; prune_ By ia initialized to false.

Let {ind; , 5, alt; ) and { ind2 , 53, alty ) be two
consecutive choicepoints such that ind; < ind;, 52 and
the elementa of alt; are more general than #;, maximally
specific and consistent with all g-bounds and with I,{1]
to I,]indy]. This situation ia presented in Figure 2. The
squares depict the state of the twe choicepoints before
Algorithm 2, The dashed arrows represent <. The cir-
cles are generalizations of the aquare they are connected
to. The numbers ingide the circles are labels.

We explain what happens inside the repeat-loop
{Step 15) when choicepoint { ind; , 53 , alt; ) is popped
from B, (Step 18). Suppose that choicepoint
{ ind; , 5, , alt; ) haa already been generalized: the new
2, ia labeled 1, the elements of the new alt; are labeled
2 and 3. First 5, is generalized (Step 17): gens, should
contain all maximally apecific consistent generalizations
of a3, not reachabie from an alternative on B, and not yet
explored or discarded before. First ofl minimal general-
izations consistent with ¢ are computed: if ¢ is a positive
lowerhound it ia the set Jub{ a2 , ¢ ); if § is & negative up-
perbound it is the set mag( o3, i ). On Figure 2 these



generalizations are labeled 4 and 5. From this set of
generalizations, generalizations that are not consistent
(Step 18), or not maximally specific, as well as those
still reachable from some alternative in alf; or on B,,
are remnoved. The latier two conditions are implemented
as in ITVS by Step 19 and Step 20 {see Section 2). Thie
shows the usc of an optimal generalization operator ie
atill possible in the extended ITVS, Finally, since all el-
ements in gena; are generalizations of s7, and since all
alternatives more general than s ard still to be explored
are the alternatives on By, together with &, Step 21 ge-
lects only those generalizations more general than s or
than some alternative on B). The list of seected ele-
ments is assigned to gens;. In gens; all elements are
more general than the hypothesis labeled 1, since cach
of the generalizations of s; is more general than some
generalization of »; {Lemma 6 and Lemma 7) and since
the ones more general than the elements labeled 2 (which
are on B, already) are not selected for gens,.

Then all elements of ali; are generalized (Step 22):
gensy should contain all maximally specific consistent
generalizations of the clements of altz, not reachable
from another alternative on B,. First all minimal gener-
alizations consistent with 3 are computed: if ¢ is a posi-
tive lowerbound it is the union of all sets {ub( a , 7 ), with
a € altz; if 7 is a negative upperbound it is the union of
all scts meg{ a, i), with ¢ € alt;. On Figure 2 this
union consists of the circles labeled 6. From this union,
generalizations that are more general than ancther such
generalization (Step 23), not consistent (Step 24), of not
maximally specific, as well as those still reachable from
some other alternative in gens; or on B,, are removed.
The latter two conditions are again implemented as in
ITVS by Step 25 and Step 26. The selected elements are
assigned to gensy. Like for gens,, all elements of gens;
are more general than the hypothesis labeled 1.

Then, if gens; 18 empty, every generalization of 5
consistent with i is8 more general than an alternative on
B,. Therefore it is not necessary to generalize the other
alternatives on By, since they are all generalizations of
52, 80 prune_By is set to irue {Step 28). All remaining
non #-prunable inatances of I, are shifted in I, towarda
the front (Step 29}.

Otherwise, if gens, 18 not empty, of all instances
L[new_ind + 1] up to I,[indi] only the ones not s
prunable are shifted in I, towards the front, thue re-
moving the s-prunable ones (Step 31}.

Then a new value for new_s;ng must be chosen. If
gena) is not empty, one element of gens; is chosen. If it
is empty, an element of genss is chosen. In both cases,
the rest of gensy U gens; contains alternatives to be ex-
plored later, and is assigned to alt 4. If gens; and gens,
are both empty, a choicepoint ( ind , 8in4 , aitind ) is
popped from B,, and one of the elements of alting is
chosen a8 new_sing. If gensy, gens; and B, are all
empty, no hypothesis consistent with all instances ex-
ista. Consequently, I'TVS fails and halts. In all three
non-failing cases, new s, 4 and all elements in alt;,4 are
then consistent with all g-bounds, and consistent with
L[1] up to I,[ind]. Since ind is the index up to where
new_Snq4 ia consistent with all s-bounds, and the num-

ber up to where the elementa of I, are checked for being
s-prunable, ind must be the new value of new ind.

By induction, Invariant 2 holds after the loop. After
the loop n; is assighed to n, (Step 38), since it is the in-
dex up to where I, contains all non s-prunable s-bounds.
Finally, new _8:n4, consistent with new_ind 5-bounds, the
updated B, and new_ind are returned.

[Sablon, 1895) proves that Invariant 4 is also preserved,
i.e., that no solutions are lost during the update of B,.

5 Discussion

First note that Invariant 6 and Invariant 7 are expressed
solely in terms of I,, resp. I, and are therefore indepen-
dent of any search strategy or concept language: they
only constrain the set of instances that is stored.

We now diacuss the cost of extending ITVS with Al-
gorithm 1 and Algorithm 2.

Theorem B The original ITVS and the extended ITVS
have the same worst case space complezity: they are lin-
ear in the number of inslances. u ]

In the case of s-bounds, the proof actually shows the
following: suppose i) — iz — %3 is a eequence of s-bounds,
where i) is s-prunable w.r.t. i3, and not s-prunable w.r.t.
i;. When provided to the extended ITVS, this sequence
Eives cxactly the same B, as when the sequence i3 — i3
were provided to the original ITVS?, Consequently, both
algorithms have the same worst case space complexity.

For the warst case time complexity, we count the num-
ber of « tests (see also [Mitchell, 1982]).

Theorem 9 The worsi case time complezity of lhe e2-
tended ITVS has an ezire term of O n? ), where n is
the number of instances. o

On the one hand, no parts of the search space are ex-
plored more than once in the extended ITVS. On the
other hand, ae a consequence of Theorem 8, the worst
casc time complexity of the tests for maximal general-
ity and maximal specificness remain linear in the num-
ber of instances. Consequently, we only have to add
the overhead of testing instances for being s-prunable or
g-prunable, and the overhead of updating B, and B,.
In case no s-prunable instances are provided to the ex-
tended ITVS, it will have an overhead w.r.t. the original
ITVS of comparing each new s-bound to all previous
s-bounds, and comparing each new g-bound to all pre-
vious g-bounda. Furthermore, for detecting near-misses
and their dual counterpart, s-bounde are also compared
to g-bounds, and vice versa. If an instance is found to be
s-prunable, the major term in generalising B, is the com-
parison of each newly generated hypothesis in Step 22 to
all elements on B,, i.e., also a term of O n? ).

"Note that we reslly needed to extend the original repre-
sentation of ITVS with #ind to obtwin this result. If we would
not be able to generalise #ing in each choicepoint (aee Step 17
of Algorithm 2), but rather generalise only alting, and finally
generalise #, the worst case space complexity would be worse
than the one of the original ITVS. In that case ench alterna-
tive on B, would potentially be replaced by &, others (where
b, is the generalisation branching factor), in the worat case
leading to b7* alterastives on B,.
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Although the worst case time complexity has increased
w.rt. ITVS's, it has only increased with a quadratic
term, while, if the size of S or G is exponential, reduc-
ing the number of 5-bounds, resp. g-bounds, would also
reduce Bearch time with an exponential factor.

6 Related Work

The ideas extend the work of [Sebag, 1994], [Sebag and
Rouveirol, 1994] and [Smith and Rosenbloom, 1990] in
a language independent framework. In [Sebag, 1994],
which is restricted to conjunctive tree-structure lan-
guages, negative lowerbounds are converted into pos-
itive upperbounds, and only those nearest to the tar-
get concept (i.e., the most specific ones) are stored. In
Sebag and Rouveirol, 1994] this is extended to nega-
tive lowerbounds in ILP, which are represented by in-
tegrity constraints and ordered by O-subsumption. In
our framework we can generalize the notion of a nearest
miss (which is introduced in [Sebag, 1994] and defined
as a negative lowerbound which is not 5-prunable) to all
negative instances neither 5-prunable nor g-prunable.

Two aspects of INBF [Smith and Rosenbloom, 1990]
can be compared to ours. In the specific-to-general
search INBF drops all positive examples, because no
backtracking is needed in searching specific-to-general in
a conjunctive tree-structure language. Using Theorem 4,
our approach would also drop all positive lowerbounds,
except one (which would then coincide with s), because
any two positive examples will have only one least upper-
bound. In the general-to-specific search INBF processes
and then forgets all near-misses w.r.t. s. Its maximally
general hypothesis upper is only kept consistent with all
positive examples and all near-misses, so no backtrack-
ing is needed. Our notion of a near-miss generalizes this
approach, by converting all negative lowerbounds to pos-
itive upperbounds, and considering their greatest lower-
bound (i.e., upper) as a positive upperbound.

[Hirsh, 1990] informally describes a technique of "skip-
ping data that do not change the versionspace" in the
context of the Incremental Versionspace Merging algo-
rithm. Intersecting a versionspace VS7 with VS2, and
then with a subset VS2' of VS2 will always yield the lat-
ter intersection. Consequently the first intersection oper-
ation was not necessary. In our framework, we more for-
mally describe the approach using the notions 5-prunable
and g-prunable, we relate these notions to the concept
of nearmisses and to INBF, and provide a framework to
automatically generate new information elements.

7 Conclusion

We have introduced the notions of 5-prunable and g-
prunable instances and a generalized notion of near-miss.
Using these we identified redundant instances. We also
introduced automatically created instances, that made
other instances redundant without any loss of informa-
tion. This resulted in data compaction. Furthermore, as
in [Smith and Rosenbloom, 1990], this paper shows that
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near-misses (and their dual counterpart) play a very im-
portant role in converging towards the target concept.

We have also shown how 5-prunable and g-prunable
instances can be discarded in the framework of Iterative
Versionspaces, without losing the most important prop-
erties of the ITVS algorithm.
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