
D e t e r m i n i n g w h a t t o l ea rn t h r o u g h component - task m o d e l i n g * 

Bruce Krulwich 
Center for Strategic Technology Research 

Andersen Consulting LLP 
100 S. Wacker Drive, Chicago, DL 

krulwich @ andersen.com 

ABSTRACT 
Research in machine learning has typically addressed the 
problem of how and when to learn, and ignored the 
problem of formulating learning tasks in the first place. 
This paper addresses this issue in the context of the 
CASTLE system,1 that dynamically formulates learning 
tasks for a given situation. Our approach utilizes an 
explicit model of the decision-making process to 
pinpoint which system component should be improved. 
CASTLE can then focus the learning process on the 
issues involved in improving the performance of the 
particular component. 

1. Determining what to learn 
A theory of learning must ultimately address three issues: 
when to learn, what to learn, and how to learn. The 
overwhelming majority of research in machine learning has 
been concerned exclusively with the last of these questions, 
how to learn. This ranges from work in purely inductive 
category formation to more knowledge-based approaches. 
The aim of this work has generally been to develop and 
explore algorithms for generalizing or specializing category 
definitions. The nature of the categories being defined—i.e., 
what is being learned—is rarely a consideration in the 
development of these algorithms. For purely inductive 
approaches, this is entirely a matter of the empirical data that 
serves as input to the learner. In explanation-based 
approaches (EBL), it is a matter of the user-defined "goal 
concept"—in other words, input of another sort. In neither 
case is the formulation of the learning task itself taken to be 
within the purview of the model under development. 

Some work—in particular that in which learning has been 
addressed within the context of performing a task—has 
addressed the first question above, namely, when to learn. A 
common approach to this issue, known as failure-driven 
learning, is based on the idea that a system should learn in 
response to performance failures. The direct connection this 

The research presented here was carried out at The Institute for 
the Learning Sciences at Northwestern University, and is discussed 
in detail in the first author's Ph.D. thesis [Krulwich, 1993]. 
'CASTLE stands for Concocting Abstract Strategies Through 
Learning from Expectation-failures. 

Larry Birnbaum Gregg Collins 
The Institute for the Learning Sciences 

Northwestern University 
1890 Maple Ave, Evanston, IL 

{birnbaum, collins}@ils.nwu.edu 

establishes between learning and task performance has made 
this approach among the most widespread in learning to plan 
(e.g., Sussman, 1975; Schank, 1982; Minton, 1988; 
Hammond, 1989]. For the most part, however, even these 
models do not address the second question above, what to 
learn. In many cases, this is because the models are only 
capable of learning one type of lesson. What to learn is thus 
predetermined. 

For example, many systems that learn exclusively from 
planner success always learn the same thing, namely a 
generalized form of the plan that was created (e.g., [Mitchell, 
1990]). Similarly, many systems that learn from plan 
outcomes always learn the same type of planning knowledge-
-e.g., when it is feasible to make certain simplifying 
assumptions or to defer planning—from each situation (e.g., 
(Chien, 1990; DeJong el al, 1993]). Even systems that can 
learn more than one thing generally do so in a predetermined 
and inflexible fashion (e.g., [Hammond, 1989]). 

While this type of solution can often be effective for any 
individual application setting, it fails to provide an account of 
how a learning system could determine for itself what to 
learn, and do so in a manner that is flexible enough to take 
account of the internal and external context of learning. For 
a system that is capable of learning a wide variety of types of 
concepts, in a wide variety of settings, the number of hard
wired mapping rules required to do this would be very large, 
and the rules themselves would get very difficult to manage 
or reason about, and may even be impossible to formulate. 

More importantly, however, is the fact that hard-wired 
rules of this type do not provide a theory of determining what 
to learn. Just as a set of rules for actions can result in 
intelligent behavior without providing a foundation for the 
actions, hard-wired rules for determining what to learn can be 
effective but nonetheless do not necessarily provide a theory 
underlying these decisions. The point is that just as complex 
decisions about actions are very difficult to formulate using 
hard-wired rules, and thus require inference, so too complex 
decisions about what to learn require inference. 

2. An everyday example 
Consider the case of a person cooking rice pilaf for the first 
time. The last step in the directions says to "cover the pot 
and cook for 25-30 minutes." Suppose the person starts the 
rice cooking and then goes off to do something else—say, 

KRULWICH, BIRNBAUM, AND COLLINS 439 



clean up the house. In the interim, the pot boils over. When 
the person returns to the kitchen a half-hour later, the rice 
pilaf is ruined. 

What should be learned from this sequence of events? 
Intuitively we can imagine a number of lessons that might be 
learned: 

• When a covered pot containing liquid is on the stove, 
keep an ear peeled for the sound of the lid bouncing or 
the sound of the water bubbling. 

• Do not put a covered pot with liquid in it over a high 
flame, because it will boil over. The flame should be 
turned down. 

• When cooking over a high flame, leave the pot 
uncovered or the lid ajar. 
Don't do loud things while cooking on the stove. 

• When cooking liquid in a covered pot, stay in the 
kitchen. 

• Don't cook over high flame when busy. 

While all of these lessons are sensible, they are very 
disparate, in that they address very different issues. The 
lessons concern different aspects of behavior, refer to 
different portions of the agent's plan, and are expressed in 
different vocabularies. It is difficult to imagine how any 
learning process that did not distinguish among these 
alternatives in some way would be capable of such diverse 
behavior. Rather, it seems more likely that before the agent 
can undertake the task of learning from the mistake, he must 
select a lesson (or set of lessons) to learn. In other words, 
given that the agent has decided to learn from the mistake, 
and given that he is capable of carrying out the learning task, 
he still has to first determine what to learn. 

We see, then, that the agent could learn several things in 
response to the rice pilaf boiling over. Which of the lessons 
the agent should learn, whether changes to the cooking 
methods, the idea of staying in the kitchen, or of tuning his 
perceptual apparatus, depend on the agent's perceptual and 
planning abilities, and on his knowledge of the domain. The 
key point is that many different lessons are possible. Any 
approach to determining what to learn must be flexible 
enough to account for this diversity. 

3. Modeling cognitive tasks 
What would an appropriate theory of determining what to 
learn look like? Imagine the thought processes going on in 
the agent's head (consciously or subconsciously) in viewing 
the situation and considering what lesson to learn: 

Question 1: Why was the rice ruined? 
Answer: The rice boiled over. 
Question 2: Could I have done something differently at the 
time I started the rice cooking to prevent the problem ? 
Answer: Yes, I could have lowered the flame or uncovered 
the pot. 

Question 3: Without doing this, could I have prevented it 
from boiling over? 
Answer: Yes, if I had heard it. 
Question 4: Could I have heard it boiling over? 
Answer: Maybe I could have, if I'd paid more attention. 
Question 5: Why couldn't I hear it boiling over? 
Answer: 1 was using the vacuum in the living room. 
Question 6: Could I have planned things differently to 
enable me to hear? 
Answer: Yes, I could have delayed vacuuming or stopped 
every few minutes to check the rice. 
Question 7: Why didn't 1? 
Answer: I didn't think about the inability to hear from the 
other room. 

The focus of this dialogue is on the decisions and actions of 
the agent that led to the rice burning, and particularly on what 
the agent could have considered or done to prevent the 
problem from arising. A self-dialogue of this sort is a means 
of analyzing the situation to explain what happened, and 
thereby focus learning from the experience [Chi et. al, 1989; 
Ram, 1989; Oehlmann et. al, 1993]. In this case the agent is 
performing self-diagnosis, trying to determine what 
mistake(s) he made that led to the rice burning. Put another 
way, the agent is considering possible lessons, and trying to 
determine which of them to learn. It is important to notice at 
this point that the dialogue is not specifically aimed at 
diagnosing the actions that the agent took to determine which 
action is to blame (although that may be involved as well). 
Rather, the dialogue is diagnosing the decisions that the agent 
made [Birnbaum et. al, 1990; Collins et al, 1993]. 

The key insight that will allow us to model this learning 
process is that each of the lessons that our agent can learn, 
and each of the questions in the hypothetical dialogue above, 
relates to a particular cognitive task that the agent was 
carrying out in the example: 

• Listen harder for bubbling: Perceptual tuning 
• Adjust the flame more carefully: Plan step elaboration 
• Leave the lid ajar: Plan step elaboration 
• Don't do loud things while cooking: Scheduling 

interleaving 
• Stay in the kitchen while cooking: Scheduling/ 

interleaving 
• Don't cook over high flame when busy: Scheduling/ 

interleaving 

By "cognitive tasks" we mean here the classes of decisions 
that the agent makes in the course of decision-making. In our 
example, these cognitive tasks include such things as plan 
step elaboration (e.g., such as deciding how high to adjust 
the flame on the stove) and perceptual tuning (e.g., deciding 
what to listen for, in this case the sounds of the rice bubbling 
over). These tasks are themselves general cognitive abilities 
that are used frequently in goal-based behavior. 

440 COGNITIVE MODELLING 



Given this insight, we can reformulate the learning problem 
posed above. Determining lessons to learn from a problem 
means first determining which cognitive tasks are relevant, 
and then determining what can be learned from the 
experience about how those particular tasks can be better 
carried out. In other words, we have transformed the 
problem of determining what to learn to two subproblems: 
determining what task to repair, and determining what aspect 
of the situation relates to that task [Krulwich, 1991, 1993]. 

4. Modeling planner structure 
How can a computer system reason about its own decision
making and the cognitive tasks involved in that decision
making? The approach we will take is to design the system 
to facilitate this reasoning, by structuring its architecture in 
terms of components that carry out specific cognitive tasks 
[Collins et. al, 19911. In other words, we partition the 
system into chunks, each of which is responsible for a 
particular cognitive task, and treat each chunk as a 
component of the architecture. The behavior of the system, 
and the opportunities to improve it, can then be analyzed in 
terms of the behavior of components and the interactions 
between them.2 

The next step, which answers the question of what to learn, 
is to associate with each component information about its 
ideal (desired) behavior. The system can use this information 
to determine what can be learned from the situation about 
better carrying out the component's task. The perceptual 
tuning component, for example, will have an associated 
description of the task of adjusting the agent's perceptual 
apparatus in response to its goals and environment. In the 
rice pilaf example the system could realize, based on this 
information, that it can learn a lesson about attending to the 
rice while cleaning the living room. If this kind of 
information is provided for each component, the system can 
determine what to learn by retrieving the relevant information 
for each component potentially in need of repair. 

Given this component-based approach to modeling the 
planning process, how can a computer system diagnose 
which component is responsible for a failure? The process of 
self-diagnosis, as discussed above, is aimed not at diagnosing 
the agent's actions (at least not directly), but rather at 
diagnosing the decision-making constructs that gave rise to 
these actions. In other words, the over-arching question is 
not "What action of mine led to the problem?" but is rather 
"What deficiency in the way I make decisions led to the 
problem?" In contrast, previous research in learning to plan 
or solve problems in response to failures has generally been 
aimed at the first question, and has thus employed knowledge 
of the causal relations between the steps in the plan and the 
desired outcomes of those steps in diagnosis. When a plan 

2This approach is often taken in reasoning about physical devices 
[Davis, 1990, sec. 7.1]. 

failure occurs, this information is used to see what step in the 
plan resulted in the failure. 

To diagnose failures in terms of faulty planner 
components, however, an agent requires analogous 
information concerning the causal relations between the 
decision-making processes used in planning, the actions 
taken, and the expected results. In other words, diagnosing 
the failure of a plan (or, more generally, of an expectation 
about the plan's performance) in terms of decision-making 
constructs requires information about the causal relations 
between the two. More concretely, the agent must reason 
explicitly about his justification for his actions in terms of his 
own reasoning mechanisms [Birnbaum et. al, 1990]. We 
consider our agent to know, or to be able to reconstruct, the 
reasons that he thought his decision-making was sound, and 
how his decision-making mechanisms led to the failure. 
Introspective dialogues such as the one we saw above 
correspond to the agent's examination of this justification, 
and his consideration of where the faults lie. 

5. Flexible learning in the CASTLE system 
We have seen that an intelligent agent must be able to 
dynamically determine what to learn, and that this process 
can require a significant amount of inference. By viewing the 
planning process as being composed of a variety of cognitive 
tasks, we transformed the problem of determining what to 
learn into two sub-problems: determining what cognitive task 
is at fault, and determining what could be learned to improve 
that task. What we still need to specify is how this process is 
initiated in the first place. Our approach is for the system to 
maintain and monitor explicit expectations that reflect the 
assumptions made during planning [Schank, 1982; Doyle et. 
al, 1986; Ortony and Partridge, 1987]. These expectations 
carry with them justification structures that relate them to the 
decision-making processes and otherwise-implicit 
assumptions that underly their being expected in the first 
place [Birnbaum et. al, 1990]. The failure of an expectation 
thus can directly lead to diagnosis of the relevant portions of 
the system's planning architecture. 

This leads us to a fairly straightforward learning process. 
The planner considers the current situation and the active 
goals, and outputs a plan, along with a set of expectations to 
monitor. The failure of one of these expectations leads to 
diagnosis, which uses associated justification structures that 
represent part of the system's explicit self-model. The 
diagnosis process concludes which component is at fault, and 
how it should in fact have behaved. This information is 
passed to the repair module, which uses a model of the 
component's cognitive task to construct a repair. 

We have implemented this approach in a system called 
CASTLE [Krulwich, 1991, 1993], CASTLE operates in the 
domain of chess, and learns new rules for a variety of 
cognitive tasks. 

Consider the example shown in figure 1. In board (a) the 
opponent (playing white) chooses to move the queen to the 

KRULWICH, BIRNBAUM, AND COLLINS 441 



right, to a square from which it can subsequently be moved to 
pin the computer's rook against the king. The computer 
(playing black) doesn't detect any strategies (offensive or 
option-limiting) that the opponent can execute, so it goes 
ahead with its own plan to capture the opponent's pawn. In 
board (c) the opponent moves its queen to pin the computer's 
rook, and the computer finds itself in board (d) with its rook 
pinned and a pawn (or the queen itself) able to make the 
capture in two moves. 

The expectation that failed in this example relates to an 
assumption that is implicitly made by all intentional systems, 
that in general there will exist reasonable options—plans— 
that can be carried out for any goal that arises. This 
assumption underlies CASTLE's belief that it will be able to 
achieve its goals over the course of the game. One 
instantiation of this assumption, which CASTLE can directly 
monitor, is that the natural prerequisites to carrying out the 
plan, namely the ability to move pieces, will in general be 
met. In other words, the system's pieces will have mobility. 
Since the opponent presumably would like to limit the 
system's options, CASTLE uses its option-limiting planning 
rules during the plan recognition phase to check whether the 
opponent has the ability to limit CASTLE's options. If so, 
CASTLE will try to counterplan. If not, CASTLE will 
assume that its pieces will remain mobile until the subsequent 
turn. This process serves two purposes. First, any plans of 
the opponent's to limit CASTLE's options will hopefully be 
anticipated and countered. Second, if CASTLE fails to detect 
an opportunity for the opponent to limit the system's options, 
and the opponent takes advantage of the opportunity, 
CASTLE could learn a new option limiting planning rule in 
response to the failure. This is exactly what happens in the 
pin example. 

This expectation failure invokes CASTLE's diagnosis and 
repair mechanisms. The diagnosis engine traverses the 
justification for the expectation, shown in figure 2, and 

determines that there must have been a plan executed by the 
opponent to limit the computer's options that was not 
generated by a method in the option-limit planning 
component. This fault description is then passed to 
CASTLE's repair module. 

Once CASTLE has isolated the fault as a lack of an option-
limiting planning rule, the repair mechanism takes over and 
first generates an explanation of why the opponent's move 
constituted an option-limited plan. To do this, the system 
retrieves a component specification that represents the 
purpose of the component being repaired. An explicit model 
of planning and execution is used to construct an explanation 
of how the component should have behaved in the example. 

The component specification for the option-limiting 
planning component says roughly that an option-limiting plan 
is a single move that disables more than two opponent moves 
by the same piece for the same reason. This specification is 
used to generate the explanation shown in figure 3. The 
explanatory model specifies that a precondition for a move is 
that there is no opponent piece with a possible king threat 
through the square being vacated. The effect of the queen 
move, that the queen is now at its new location, conflicts with 
this precondition, because the queen in its new location does 
in fact have a possible king threat through the rook's location. 
This conflict explains why the queen's move disables six 
previously possible rook moves. 

The learned rule for the pin as an option-limiting plan is 
shown in figure 4. The rule says roughly: To compute a plan 
to limit the opponent's options, determine a piece to move, 
and a location to move to, and an opponent piece, such that 
the moved piece can attack the king with a move blocked 
only by the opponent piece. This rule correctly predicts the 
opponent's ability to pin the computer's rook in the situation 
in figure 1(a), and can also be used offensively by CASTLE's 
planner to devise plans to limit the opponent's options. 

442 COGNITIVE MODELLING 



6. Related work 
How do other programs determine what to learn? In most 
cases there is only one type of concept to learn, so the 
determination is made in a fixed way by the program's 
control structure. CBG [Minton, 1984], for instance, learns a 
forced-move sequence schema whenever it loses a game. 
Theo-Agent [Mitchell, 1990] similarly learns a stimulus-
response rule whenever its planner produces a new plan. 

CHEF [Hammond, 1989] uses a fixed scheme of this sort 
to learn more than one type of construct. Whenever plan 
transformation is complete, CHEF stores the resulting plan 
back into its case library. Whenever a bug is found during 
simulation that was not anticipated earlier, the system learns 
a bug anticipator rule. Finally, whenever a bug is repaired, 
the system learns a generalized bug repair rule. The first 
thing to note is that the three types of things that CHEF can 
learn correspond to three components of a case-based 
planner, namely case retrieval, indexing, and adaptation 
(respectively). CHEF's relatively simple approach to the task 
of determining which of these three things to learn is highly 

effective for a number of reasons. First, there are only three 
types of things to learn, and they are highly distinctive. 
There is not much chance of confusing which category is 
applicable, as there might be if more subtle distinctions (e.g., 
between different types of indices relevant to different 
aspects of the planning process) were considered. Second, 
CHEF's plan simulator returns a complete causal analysis of 
the bugs that arise, so there is no need for complex inference 
to determine which of its components needs to be repaired, as 
there might be if CHEF were to learn in response to problems 
that arose later in time during plan execution. If either of 
these two conditions did not hold, a more complex approach 
would probably be needed. 

SOAR (e.g., Newell, 1990]) uses a similar scheme to learn 
chunks (production rules) after resolving impasses. In 
SOAR's case, however, the chunks fit a variety of purposes 
because they are learned in response to impasses in different 
stages of decision-making. SOAR's impasses thus serve the 
same purpose as CASTLE's expectation failures. In the 
absence of explicit reasoning about what to learn, SOAR 
relies on its knowledge representations to direct the learning 
of new rules. In other words, decisions about when and what 

KRULWICH, B1RNBAUM, AND COLLINS 443 



to learn are tied directly to the representation of problems 
and sub-problems, and thus to the expressiveness of the 
system's vocabulary. The lack of explicit control over 
learning often leads to the creation of undesirable chunks, 
and the only solution within the SOAR philosophy has been 
to limit the expressiveness of the system's vocabulary [Tambe 
and Rosenbloom, 1988]. In contrast, CASTLE's approach is 
to reason explicitly about what rules should be learned, in a 
sense taking the opposite approach of extending the system's 
vocabulary. It may be possible to extend SOAR to carry out 
explicit reasoning of this sort as another heuristic search 
problem, but this has not been investigated.3 

PRODIGY [Minton, 1988] is probably the closest in spirit 
to CASTLE, in that it performs dynamic inference to 
determine what to learn in a given situation. The system has 
a set of example recognizers that look for conditions 
indicating that a node in a problem-solving trace is an 
instance of a particular type of concept. For example, if a 
node refers to a choice of an operator to apply, and the 
choice ended up failing, an example recognizer will signal 
the node as an example of an operator that should not have 
been chosen. This node, along with the concept it is believed 
to be an instance of, is passed to an EBL mechanism which 
constructs a new search control rule. 

This process appears to satisfy the criteria discussed above 
for analytical approaches to determining what to learn. 
Moreover, this "pattern-matching" approach to determining 
what to learn seems quite appealing, because it appears to 
require fairly little inference (certainly less than CASTLE's 
diagnostic approach), and because it works using clear 
declarative knowledge about each of its types of rules. 

In practice, however, assessment of PRODIGY'S approach 
is more complicated, in part because the system additionally 
requires the use of procedurally encoded example selection 
heuristics to "eliminate uninteresting examples" [Minton, 
1988, sec. 4.2]. While the rationale to these heuristics 
sounds innocuous, they in fact embody quite sophisticated 
reasoning. Some of these rules select interesting examples 
for particular rule types (one per rule type), others are used to 
search for specific conditions that make learning a particular 
type of rule beneficial, and others are used for determining 
"interestingness"of a number of rule types. All of these are 
separate from the initial example recognition process. 
Additionally, these functions maintain a history of the 
process of searching for examples to learn that is used in 
subsequent example selection. 

All in all, it seems clear that PRODIGY's determination of 
what to learn is far more complex than the simple recognition 
of patterns in the problem-solving trace. The process 

3This appraoch would seem consistent with SOAR's methodology 
of expressing all aspects of problem-solving in terms of searchbut it 
would raise the question of the source of SOAR's leverage, its 
architecture or its representational models. For this reason the 
approach might be said to undercut SOAR's goal of achieving 
intelligent behavior through a uniform architecture. 

employs a great deal of heuristic information about what will 
constitute a good search control rule, and this information 
enables PRODIGY to learn effectively. Were it not for these 
heuristics, the learning process would spend an inordinate 
amount of time learning pointless search control rules.4 

The point, however, is not that PRODIGY is in any way 
wrong to carry out complex reasoning of this sort to 
determine what to learn—indeed, the fundamental claim of 
this paper is that such inference is necessary. Rather, the 
point is that while PRODIGY relegates the complexities of 
example selection to procedurally-encoded heuristics, the 
research presented in this paper attempts to make such 
reasoning and information explicit. 

A number of recent research endeavors have taken an 
approach similar to CASTLE's in carrying out explicit 
inference to determine how to apply learning routines to a 
given situation. One significant initiative is in the area of 
multi-strategy learning [Michalski, 1993], in which systems 
have the ability to apply a number of learning algorithms to a 
problem, and use dynamic inference to determine which is 
best. This work is certainly similar in spirit to CASTLE, but 
it is important to note that it does not inherently address the 
issue of determining what to learn, rather it represents an 
inferential method of determining how to learn. 

A number of other research projects have addressed more 
specifically the issue of learning goals [Hunter, 1989; Cox 
and Ram, 1992; Leake and Ram, 1993; Michalski, 1993] 
The use of learning goals per se does not imply inferential 
determiniation of what to learn, because such goals are often 
treated simply as inputs to the system. Some of these 
projects, however, decide dynamically which learning goals 
to pursue, and as such directly address the issues we have 
been discussing in this paper. Several of these projects take 
approaches that are strikingly similar to CASTLE's, notably 
in the areas of story understanding [Cox and Ram, 1992] and 
case-based planning [Oehlmann et. al, 1993; Fox and Leake, 
1994]. 

7. Conclusions 
CASTLE's approach to modeling planning in terms of 
semantically meaningful components gives it the ability to 
reason dynamically about what to learn. CASTLE is 
currently able to learn twelve strategies, including forking, 
pinning, and boxing in, that relate to a variety of cognitive 
tasks [Krulwich, 1993]. This is possible because of the 
system's ability to reason explicitly about its tasks and 
subtasks. Previous research has determined what to learn in a 
fixed way, either by wiring the determination into the control 
structure of the program, or by providing complex ad hoc 
methods for making the determination. 

The guiding theme throughout this research has been the 
use of self-knowledge in learning to plan [Collins et. al, 

4 Thanks to Steve Minton for personal communication clarifying the 
issues involved in PRODIGY's selection heuristics. 

444 COGNITIVE MODELLING 



1993]. Several forms of self-knowledge have been 
delineated, including component specifications, justifications, 
and explanatory models, and learning algorithms have been 
developed and adapted to use this knowledge properly. The 
reification of this knowledge and methods for using it 
effectively form the bulk of the contributions made by the 
research. 

The CASTLE system, while demonstrating the viability of 
the approach, is only a first step in implementing a system 
that learns using self-knowledge, and there are many areas of 
open research in extending the application of these ideas. 
One such area is to apply the approach to more complex 
decision-making methods, such as non-linear planning, case-
based reasoning, or hierarchical planning, in which the 
approach consists of repeated application of a number of sub-
processes, each of which would be explicitly modeled. 
Another area is in more complex domains of application, 
such as robotic planning, complex route planning, or 
scheduling, which would again require extending the system's 
models. 

In a broader sense, the research suggests an agenda 
exploring the use of self-models in learning, planning, and 
understanding. The formulations of self-knowledge that are 
useful in learning should also give leverage into planning, 
execution, knowledge acquisition, communication, 
understanding, and design. 

Acknowledgements 
The research described in this paper was done in collaboration with 
Mike Freed. The Institute for the Learning Sciences was established 
in 1989 with the support of Andersen Consulting. The Institute 
receives additional support from Ameritcch and North West Water, 
corporate sponsors. 

References 

Birnbaum, L., Collins, G„ Freed, M., and Krulwich, B., 1990. 
Model-based diagnosis of planning failures. In Proceedings of the 
1990 National Conference on Artificial Intelligence. 
Chi, M., Bassok, M., Lewis, M., Reimann, P., and Glaser, R., 1989. 
Self-explanations: How students study and use examples to solve 
problems. Cognitive Science, 13:145-182. 
Chien, S., 1990. An explanation-based learning approach to 
incremental planning. Ph.D. thesis, University of Illinois at 
Urbanna-Champaign. 
Collins, G., Birnbaum, L., Krulwich, B., and Freed, M. 1991. Plan 
debugging an intentional system. In Proceedings of the 1991 
International Joint Conference on Artificial Intelligence. 
Collins, G., Birnbaum, L, Krulwich, B., and Freed, M., 1993. The 
role of self-models in learning to plan. In Foundations of 
Knowledge Acquisition: Machine Learning, pages 83-116. Kluwer 
Press, Boston, MA. (Also technical report #24, The Institute for the 
Learning Sciences, 1992.) 
Cox, M., and Ram, A., 1992. Multistrategy learning with 
introspective meta-explanations. In Proceedings of the 1992 
Machine Learning Conference. 

Davis, R., 1990. Representations of commonsense knowledge. 
Morgan Kauffman, San Mateo, CA. 
DeJong, G., Gervasio, M., and Bennett, S., 1993. On integrating 
machine learning with planning. In Foundations of Knowledge 
Acquisition: Machine Learning, pages 83-116. Kluwer Press. 
Doyle, R., Atkinson, D., and Doshi, R., 1986. Generating 
perception requests and expectations to verify the execution of 
plans. In Proceedings of the 1986 National Conference on 
Artificial Intelligence, pages 81-87. 
Fox, S. and Leake, D., 1994. Using introspective reasoning to 
guide index refinement in case-based reasoning. In Proceedings of 
the 1994 Conference of the Cognitive Science Society. 
Hammond, K., 1989. Case-based planning: Viewing planning as a 
memory task. Academic Press, San Diego, CA. Also Yale 
technical report #488. 
Hunter, L., 1989. Knowledge-acquisition planning: Gaining 
expertise through experience. Ph.D. thesis, Yale University. 
Krulwich, B., 1991. Determining what to learn in a multi-
component planning system. In Proceedings of the 1991 Cognitive 
Science Conference, pages 102-107. 
Krulwich, B., 1993. Flexible learning in a multi-component 
planning system. Ph.D. thesis, The Institute for the Learning 
Sciences, Northwestern University. Technical report #46. 
Leake, D., and Ram, A., 1993. Goal-driven learning: Fundamental 
issues and symposium report. Tech. report 85, Indiana University. 
Michalski, R., 1993. Machine Learning, special issue on 
Multistrategy Learning, 11(2/3). 
Minton, S., 1984. Constraint-based generalization: Learning game-
playing plans from single examples. In Proceedings of the 1984 
National Conference on Artificial Intelligence. 
Minton, S., 1988. Learning effective search-control knowledge: 
An explanation-based approach. Ph.D. thesis. School of Computer 
Science, Carnegie Mellon University. Technical report CMU-CS-
88-133. Also published by Kluwer Academic Publishers. 
Mitchell, T., 1990. Becomming increasingly reactive. In 
Proceedings of the National Conference on Artificial Intelligence. 
Newell, A., 1990. Unified Theories of Cognition. Harvard 
University Press, Cambridge, MA. 
Ochlmann, R., Sleeman, D., and Edwards, P., 1993. Learning plan 
transformations from self-questions: A memory-based approach. In 
Proceedings of the 1993 National Conference on Artificial 
Intelligence, pp. 520-525. 
Ortony, A., and Partridge, D., 1987. Surprisingness and 
expectation failure: What's the difference? In Proceedings of the 
1987 International Joint Conference on Artificial Intelligence. 
Ram, A., 1989. Question-driven understanding: An integrated 
theory of story understanding, memory, and learning. Ph.D. thesis, 
Yale University. 
Schank, R., 1982. Dynamic Memory. Cambridge University Press, 
Cambridge, England. 
Sussman, G., 1975. A Computer Model of Skill Acquisition. 
Tambe, M., and Rosenbloom, P., 1988. Eliminating expensive 
chunks. Technical report CMU-CS-88-189, School of Computer 
Science, Carnegie Mellon University. 

KRULWICH, BIRNBAUM, AND COLLINS 445 


