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Abs t rac t 

This paper reports on an implementation of 
Kanerva's Sparse Distributed Memory for the 
Connection Machine. In order to accomplish a 
modular and adaptive software library we ap­
plied a plain object-oriented programming style 
to the Common Lisp extension *ltsp. Some 
variations of the original model, the selected 
coordinate design, the hyperplane design, and 
a new general design, as well as the folded 
SDM due to Kanerva are realized. It has been 
necessary to elaborate a uniform presentation 
of the theoretical foundations the different de­
signs are based on. We demonstrate the sim­
ulator's functionality with some simple appli­
cations. Runtime comparisons are given. We 
encourage the use of our simulation tool when 
outlining research topics of special interest to 
SDM. 

1 I n t r o d u c t i o n 
Uncertainty, vagueness and associativity have been a 
challenge for symbolic knowledge processing in AI. Apart, 
from efforts to model these properties inside symbol-
based AI, the development of hybrid systems by inte­
grating AI methods with connectionist memory mod­
els can be of certain benefit for e.g. inference or nat­
ural language processing. The advantages of both ap­
proaches should be combined: symbolic AI makes use 
of explicit methods and knowledge and thus leads to a 
certain amount of comprehensibility, whereas neural net­
works are capable of modeling knowledge which is diffi­
cult to express explicitly. In addition they offer an easy 
way to apply case-inherent statistics. The connectionist 
paradigm, in particular, could gain new significance by 
this confluence. 

One of the most clear and sound connectionist mod­
els is the Sparse Distributed Memory, as introduced by 
Pentti Kanerva [1988; 1992]. SDM is rooted in a math­
ematical idea complying with a convenient deduction of 
quantitative properties. It has also been described as 
a general random access memory (cf. [Kanerva, 1988], 
ch. 2), such that an easy hardware realization could be 

* Previously at Univ. of Erlangen-Niirnberg. 

expected. On this basis a further description of SDM 
could be developed, using formal neurons. 

From results of physiologically motivated brain re­
search it has been argued that SDM models the physical 
structure of parts of the cerebellar cortex of mammals, 
as well as its functionality, the control of learned motor 
activity. SDM was designed to resemble some specific 
qualities of human cognition: dynamic recollection, dis­
tinct degrees of uncertainty in concept recognition, as­
sociativity in recalling memory contents, and the faculty 
for building abstractions. 

SDM's technical properties, e.g. capacity, recognition 
rate, and convergence, have been investigated well. Now 
even the hardware restrictions, which for some time 
made the realization of SDM simulators of appropriate 
time efficiency impossible, have disappeared 

We introduce a tool for experiments with SDM, run­
ning on a Connection Machine 2 [Hillis, 1985]. Compared 
to other simulators it has some specific advantages: 

• There are in principle no hardware restrictions on 
the size of simulated SDMs, because data can be 
swapped between main and background memory of 
the CM 2. 

• Data types are chosen in order to optimize execution 
time and reduce memory waste (sec. 3, 5). 

• The software is engineered: it is modular, adaptive 
and extensible. 

• Modules for the most important architectures of 
SDM-like memory models are predefined. 

Flexible investigation tools are required to compare 
the behavior of differently designed SDMs. We found 
some attempts to develop simulators for SDM of which 
the closest one to our approach is that of Rogers [1989]. 
The main reason for providing an implementation of our 
own has been that all of them are neither capable to 
simulate SDMs of an appropriate size nor in a tolerable 
time [Matz, 1993]. 

2 The M e m o r y M o d e l 
The SDM memory model is based on a small subset of 
the space {0, l } n . Elements of this subset, the so-called 
hard locations, can be regarded as registers. The SDM is 
built up from three major parts concerning storage, the 
addressing mechanism and control (fig. 1): the address 
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module, containing address matrix and Hamming reg­
ister, the contents module (selection register, contents 
matrix and summation register) and external registers 
for address, input and output. All of them employ bi­
nary counters, except the contents matrix which is built 
from integer counters. Counters can be considered as 
(weighted) connections in a neural-network-like repre­
sentation of SDM. SDM's functionality is given by three 
operations: the addressing of hard locations, and the 
writing and reading of data. Addressing serves to mark 
a subset of registers (rows) of the contents matrix as ac­
tive. The input register is added to the active memory 
locations by writing ("]"s cause the particular counters 
to increase, "0"s to decrease by one). The reading oper­
ation stores the column-wise sums of active registers in 
the summation register which in turn is matched against 
an external threshold. Resulting values are stored in the 
output register ("1" if greater than or equal to, "0" if 
less than the threshold). 

With selected coordinate design, hyperplane design 
and several intermediate designs certain modifications 
of the original SDM have been accomplished [Jaeckel, 
1989a; 1989b]. In principle these variants differ from 
Kanerva's basic model only in the methods of selecting 
sets of active registers. In Kanerva's SDM the address 
matrix is a uniform randomly initialized, constant binary 
matrix of dimensions m x n. During addressing for each 
row of the address matrix the Hamming distance (de­
fined below) to the address register has to be calculated. 
Locations that settle within a given radius are selected. 

Choosing coordinates in {0,1}" corresponds to the se­
lection of columns from the address matrix. The selected 
coordinates SDM provides, for each row of the address 
matrix, a different set of constant size containing ran­
domly selected coordinates. Activation is effected for 
those locations that have matching values in their se­

lected coordinates, when compared to the address regis­
ter. This is to simulate a sparse matrix. The interme­
diate design also consists of sets of selected coordinates, 
but addressing is done as in basic SDM. Thus Kanerva's 
SDM and the selected coordinates SDM both can be 
specified from the more general intermediate design. 

Another class of SDM is introduced by the hyperplane 
design. Addresses and data are assumed to contain "Is" 
with a probability of 0.1. This small proportion of ac­
tive connections is physiologically motivated. As before, 
a set of selected coordinates exists for each register, but 
now this set is meant to enumerate exactly all activated 
connections ("Is" in the address-register). Thus all se­
lected coordinates of activated locations must reference 
a " 1 " in the corresponding coordinate of the address reg­
ister instead of matching "0"s and "l"s. This makes an 
explicit address matrix redundant. * 

The hyperplane design can be regarded as a counter­
part to the selected coordinates design. A corresponding 
variant of the basic SDM is easily defined: the adapted 
Kanerva design expects a probability of 0.1 for neural 
activity in address matrix and data. No further changes 
are made. Finally the intermediate hyperplane design 
functions as a counterpart to the intermediate design 
comprising hyperplane and adapted Kanerva. 

To reduce complexity we have defined the generalized 
design, comprising all of the SDM variants mentioned 
above. For this purpose it was necessary to formalize the 
different models in a uniform manner, so that all of them 
can be derived by an appropriate choice of parameters 
[Turk, 1993]: 

Addressing operations serve to activate a precisely 
predictable number of registers in a reproducible way. 
Close addresses must effect a larger intersection of ac­
tive registers than distant ones. Though Jaeckel [1989a; 
1989b] based the measure on the logical and, we will 
here use measures1 based on the logical nand, the zero 
distance 
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erarchies. Classes have been realized as generic func­
tions which return a specific instance depending on their 
actual parameters. The resulting object is represented 
by a closure which contains all necessary methods and 
variables. Thus any number of SDMs can coexist in 
the front-end storage without influencing each other.5 
We have defined a SDM class by the generic function 
create-sdm which accepts parameters for distance mea­
sure, individual name, and values m, h, k, and pone 
among others. As the addressing operation suffices to 
specify different SDM variants (sec. 2), furthermore a 
class for addressing strategies corresponding to the par­
ticular model is needed as an argument. Two such classes 
exist: one for addressing with the generalized SDM and 
another one containing optimized methods for Kanerva's 
base model. 

SDM objects are able to dispatch messages for ini­
tialization, addressing, writing, and reading, as well as 
for adjustment of the activation radius and access to 
computational results. The handling of SDMs of un­
restricted size is made possible by methods for swapping 
to and from the background memory. This includes file 
handling and memory allocation. Activation is initiated 
by the transfer of the simple messages : store and :load. 
Input, output, and address registers have to be handled 
externally. A typical session involves three steps: the 
creation of an SDM object by application of the corre­
sponding class, assignment of values to the external reg­
isters and communication in order to initiate the desired 
operations. We have grouped all definitions concerning 
the simulation of simple SDMs together into the Com­
mon Lisp package SDM. 

SDM models are characterized by the compositional-
ity principle. It enables the division of a large SDM into 
parts in order to make a sequential processing possible. 
A vertical cut through the contents matrix and I/O reg­
isters could be carried out, if certain effect on common 
register selection were taken into account. Nevertheless 
we have decided to apply a horizontal cut through ad­
dress and contents matrices in order to obtain smaller 
complete SDMs as parts. Taking the desired simulation 

5In fact this was the reason why the use of an object-
oriented programming style was adopted. The employment of 
an elaborated oo development tool, for instance the Common 
Lisp Object System, would be of certain benefit in future 
releases. 
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of folded SDMs into account this seems to be a more in­
tuitive partitioning. Fig. 1 can now be viewed as one (of 
many) inner SDM combined with the external registers 
(dashed box). The particular SDM partitions are inde­
pendent with one exception: reading out an overall sum 
requires one extra step to add up the inner summation 
registers. 

In conjunction with the capability of swapping, mem­
ory partitioning allows for SDMs of arbitrary size. The 
package BIG contains functions necessary to handle sets 
of inner SDMs. Global load-operate-store cycles are 
built, managing step-by-step access to an array of sin­
gle SDM objects. Thus it is possible to simulate SDMs 
of a size Kanerva [1988] stated as necessary to achieve 
certain theoretical properties (orthogonality of memory 
contents, convergence of sequential reading, memory ca­
pacity). The collection of different SDM types into a 
large hybrid SDM is also provided. This permits a SDM 
which employs different addressing methods at the same 
time, collecting sets6 of similarly addressed registers, 
only if these sets are of a relevant size. Experiments 
in the combination of the advantages of different SDM 
models still remain to be carried out. 

One further package (FOLD) provides the simulation 
of folded SDMs (sec. 2) using similar means of combina­
tion as above. 

The usefulness of a SDM simulation depends very 
much on a correct value for the actual activation ra­
dius. Even small deviations from the optimal value may 
result in pathological states with all or none of the regis­
ters activated. The package PROB contains a collection 
of functions for an approximative calculation of the cu­
mulative Binomial distribution of large numbers. They 
should be applied to calculate appropriate radii in ad­
vance. 

A detailed description of functions as well as applica­
tion examples can be found in [Turk, 1993]. 

5 S imu la t ion Examples 
The intended system behavior can be demonstrated by 
two simple examples. A few intuitive patterns have been 
predefined such that similarity can be seen immediately. 
We have made no attempt to meet statistical properties, 
e.g. parity of "l"s and "0"s, or to maximize orthogo­
nality. The icons are called caterpillar, pine and the 
Roman numbers one to six. 

The first experiment employs an SDM of type n = 
1,024 dimensions, m = 32,768 hard locations, k - 102 
selected coordinates, an activation radius of h — 85 and 
a probability of pone = 0.3 for the appearance of "l"s in 
address matrix and data. The metric in use is defined 
by the zero distance. We added 20% of random noise 
to ten instances of the caterpillar icon. The resulting 
patterns are stored auto-associatively into the SDM: 

6There is no order in the implementation of hard loca­
tions, since they are randomly selected in all SDM variants 
mentioned above. 

What we obtained can be defined as the generation of an 
abstraction, since the original pattern caterpillar was in 
fact unknown. 

The second experiment demonstrates the discrimina­
tion of sequences in a 4-folded SDM. The characteris­
tics are n = 1,024 dimensions, m = 8,192 hard loca­
tions per fold, k - 1,024 selected coordinates, h — 480 
as the activation radius and a probability for a single 
" 1 " of 

Pone = 0.5 in address matrix and data. We 
define the Hamming distance as the metric in use and 
hence are dealing with a SDM of type K. The hetero-
associative loading of both sequences [caterpillar, one, 
two, three, four] and [pine, one, two, three, five] to 
an unfolded SDM results in inseparable memory con­
tents. Reading four times gradually at the address 
caterpillar leads to nearly the same pattern as it does 
for the address pine: a combination of four and five. 
The 4-folded SDM we employ here, is capable of discrim­
inating the above sequences correctly. This can be seen 
from the results obtained: 

[Turk, 1993] provides complete traces. 
The CM 2 at our disposal was equipped with 16 K one-

bit processors, each with 32 K bit of local storage. Tab. 3 
shows timing measurements of different SDM sizes wrt. 
allocation, addressing, write- and read-access. In the 
first row timing values for an SDM running on the *lisp 
simulator, a CM 2 simulator for Sparc stations, can be 
found. Our experiences show that the *lisp simulator 
is inadequate even for development purposes. Sorted by 
SDM magnitude, compiled ("comp") and non-compiled 
code is compared. It can be seen that compilation results 
in shorter execution times (up to a factor of five). Execu­
tion times of the front-end which runs the Common Lisp 
process, decrease even more (not contained). Meticulous 
declarations are necessary to provide the *ltsp compiler 
with sufficient information.7 

Rogers [1989] tested his simulator with a K'-type SDM 
of size n = 256 and m = 8,192. We obtained slightly 

7We would have liked to present a comparison to the 
CM 5, but unfortunately we could not manage to get access 
to a CM 5 running *lisp. 
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better results than the reported three write-read-cycles 
per second. 

6 Related W o r k 
Palm [1980] described another associative memory 
model, the binary associative memory (BAM). This 
model was designed to enable easy capacity estimations, 
but it also forms the basis of the PAN IV simulator (cf. 
[Palm, 1994]).8 BAM can be compared directly with 
SDM, because its architecture is similar but simpler. 
BAMs consist of an initially empty binary contents ma­
trix the counters of which can be only activated. No 
address decoding is performed, the address register indi­
cates activation directly. Thus the number of hard loca­
tions is exactly the same as the dimension of the address 
space. BAM is an instance of SDM through definite ac­
tivation of a subset of registers in combination with a 
slightly modified write operation. 

Instead of the distributed representations in SDM, 
BAM stores exactly one representation for each asso­
ciation. As a result BAM has a higher storage capacity 
(which has been proved to be optimal) at the price of 
less robustness: permanent noise on input leads to an 
almost completely filled contents matrix during training 
phases. SDM instead manages to generate an abstrac­
tion, as demonstrated in sec. 5. BAM requires sparse 
coding even in normal use, whereas SDM input may or 
may not be coded sparsely (Kanerva vs. hyperplane de­
signs). The performance of SDM subsumes BAM in 
the fields of e.g. pattern completion, pattern recogni­
tion, and the storage of sequences, but SDM possesses 
additional capabilities in building abstractions. The ap­
plication of SDM to concrete programming problems is 
consequently more adequate than the use of BAM. It is a 
matter for further research to compare storage capacities 
under sparse coding for SDM. 

In this context the encoding problem should be men­
tioned: the convenience of metrics like the Hamming 
distance does not come for free. Applications of con-
nectionist memory models often involve an appropriate 
encoding of world knowledge. An isomorphic transition 
of relations of the conceptual domain into internal dis­
tances has to be found. The problem of variable binding 
that occurs, when neural processes are used to model log-

PAN IV is used in the WINA project — Wissensverar-
beitung in neuronaler Architektur — at the Univ. of Ulm. 

ical inference, is an example as pointed out by Dorffner 
[1991]. Simple lexical coding has turned out to be insuffi­
cient. One can expect harder problems from the essential 
transfer of functional dependencies from world level to 
representational level, than from simple storage. This is 
caused by apparent incompatibilities between the neces­
sity of unambiguous representations in certain cases and 
the desire for involving vagueness. The role of knowl­
edge encoding will become a major research topic in the 
future. We suggest reducing similarity measurements to 
contexts to gain an extended comparability of data. Con­
texts are defined by subspaces in form of non-randomly 
selected coordinates. The effect is similiar to the use of 
different measures. 

Encoding may also serve as an alternative way to han­
dle overlapping sequences. Folding requires a set of sep­
arated SDMs, whereas an architecture-independent rep­
resentation of sequences of arbitrary length is desirable. 
Encoding of system history as in [Jordan, 1986] com­
bines the adequacy of one single unfolded SDM with a 
more plausible handling of overlapping sequences: long 
overlaps are harder to discriminate than short ones. Ex­
periments on encoding are currently in preparation. 

7 Future W o r k on the Imp lemen ta t i on 
o f Symbol ic Structures w i t h S D M 

One of the major challenges facing connectionist ap­
proaches in typical computer science and artificial intel­
ligence applications is the representation and processing 
of data structures, e. g. of (dynamic) sequences or sets. 
Fodor and Pylyshyn [1988] have argued that connection­
ist representations lack combinatorial syntactic and se­
mantic structure. As Kanerva ([1988], ch. 8) pointed 
out, SDM is suited to store and retrieve sequences which 
in turn provide a basis for the implementation of com­
plex data structures — as is common practice in Lisp 
programming. Therefore the next research step will be 
the specification and implementation of sequences, sets 
and temporal relations on top of the basic SDM stor­
age model. With these means it will be possible to 
realize devices like finite automata. A particular chal­
lenge will be to provide the basic structures and op-
erations for constraint-based natural language process­
ing which has been a traditional domain for symbolic 
representations. Whereas most of those do not pro­
vide appropriate facilities to deal with vagueness and 
under-specificatiori, these issues are a particular strength 
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of SDM. Slack showed in a series of papers [1986; 
1990] how to represent the basic structures and opera­
tions of a chart parser and of constraint-based grammar 
formalisms in a distributed memory model which closely 
resembles SDM. He even argues that, in doing so, it is 
not only possible to explain certain linguistic phenom­
ena like unbounded dependency, but also that the use of 
distributed representations based on connectionist prin­
ciples might influence theories developed at the level of 
symbolic representation. The investigation of the pos­
sibility of implementing a chart parser for context free 
grammars or even an augmentation with a constraint-
based grammar formalism within SDM will not only pro­
vide valuable insights into bridging the gap between sub-
symbolic and symbolic representations, but also demon­
strate a close integration of both approaches. 
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