
A H y b r i d Ru le -based S y s t e m 

-- How Variables are Involved in Connectionist Rule-based Systems --

Fukumi Kozato 
Department of Electronic Engineering, Tokyo Institute of Polytechnics 

1583 Iiyama, Atsugi-shi, Kanagawa, 243-02, JAPAN 
tel & fax: 0462-42-9567, fukumi@ee.t-kougei.ac.jp 

Abstract 

Modeling of a connectionist rule-based systems (or 
Neuro-AJ hybrid system) discussed through the paper 
will be a fruitful step towards the practical modeling of 
human cognition. This paper investigates a plausible 
and useful integration method of symbolic Al 
techniques and connectionist models and proposes a 
practical implementation, mainly how variables can be 
included in the structured information provided as facts 
and rules in the system. 

1 Introduct ion 
Although connectionist models and symbolic AI techniques 
are often seen as rivals, the aim of this paper is to show 
the usefulness of a hybrid system of symbolic AI and 
connectionist models, namely a rule-based connectionist 
inference system. The system inherits aspects of two 
previously proposed hybrid systems 
[Kozato&DeWilde,91ab], and combines their advantages. 

The first system handles probabilistic knowledge 
represented only as propositions, whereas the second 
handles structured information or predicates in a very 
limited way. The system described here handles structured 
information with similarity between the individual 
components, involves lenient variable handling to allow 
flexible inferences, and possesses an efficient rule selection 
or search mechanism by evaluating several units of 
knowledge together. In addition to these functions, strict 
variable handling mechanism is also included. To yield 
these functions together, the system is designed as a 
combination of four different types of connectionist 
networks and a data buffer. The networks work in 
cooperation to derive new facts and the data buffer keeps the 
facts provided by the user or derived by the networks. 

1.1 Representing Information Units and Rules 
Each unit of knowledge provided by the user and the facts 
derived by the system are both represented as information 
units. An information unit consists of three information 
fragments: a subject concept, an object concept, and the 

relation. Strict (Syntactic) variables or just variables can be 
included in information units in the same manner as a 
subject or object concept. For example, a variable X is 
described in two forms: s:X which can be substituted with a 
subject concept and o:X with an object concept. An 
information unit with a variable looks as follows: 

like(s:X,o: bananas) 

A rule implemented in the system consists of a pair of 
premises followed by a conclusion. The premises and 
conclusions are expressed as information units. For 
example, a rule looks like the following: 

rulel: IF like(s:gorillas,o:X) and belong(s:X,o:fruits) 
THEN eat(s:gorillas,o:X) 

The premises of this rule can be satisfied with pairs of 
information units such as 

like(s:gorillas,o:bananas) and belong(s:bananas,o:fruit), or 
like(s:gorillas,o:apples) and belong(s:apples,o:fruit) 

The former pair derives eat(s:gorillas,o:bananas) and the 
latter eat(s:gorillas,o:apples). 

As mentioned above, the system is equipped with a 
lenient variable handling mechanism. For example, the 
premise part of rulel may match like(s:chimps,o:bananas) 
when like(s:gorilIas,o:bananas) is absent in the data buffer, 
providing that s.gorillas and s: chimps are represented as 
very similar information fragments in the system inference 
domain. In such a case s:gorillas of rulel can be called a 
lenient variable or semantic variable and the inference 
operation which involves such variables is called semantic 
inference. 

1.2 Distributively Represented Symbols and 
Loose Pattern Matching 

There are basically two ways to represent symbols in a 
connectionist network. One is the localised method by 
which only one symbol is allocated in a single unit, and the 
other is the distributed method by which a symbol is 
assigned to a collection of units and each unit may represent 
fractions of more than one symbol. The model proposed in 

502 CONNECTIONIST MODELS 



this paper mainly take the latter method in a Hopfield 
binary neural network because it seems the way to yield the 
maximum capability of the connectionist model and brings 
several advantages as follows: 

(1) Even with the binary state units (on or off), the 
system is capable of expressing graded certainty of 
information. 
(2) The system may gain a high capacity to store 
knowledge with fewer units. 
(3) Similarity information between units of knowledge is 
soundly implemented. 

Loose pattern matching, which is one of the fundamental 
properties of many connectionist models, works very 
effectively if it participates in a rule-based inference 
operation. It has been utilised for a rule selection 
mechanism and the interpretation of vague knowledge. 

1.3 Lenient Variable Handling 
Loose pattern matching governs a certain kind of variable 
handling mechanism with no additional structure or facility. 
Unlike strict variable handling employed by ordinary 
symbol processing systems, lenient variable handling is 
based on the semantic similarity of information. 

The model described in this paper represents 
information in a Hopfield binary neural network to realise 
lenient variable handling in the following manner: 

(1) Units of information handled in the systems are 
represented as structured information composed of 
subject/object concepts and relations. 
(2) Subject/object concepts are provided with a similarity 
degree to the other concepts, e.g. sichimps «50%-
s:gorillas. 
(3) Each subject/object concept is allocated to a collection 
of neurons, and the neuron patterns for the concepts overlap 
in proportion to the similarity degree between the concepts, 
e.g. for the above similarity information a half of the 
fractions of the information fragments s:gorillas and 
sxhimps are allocated to the same neurons. 

In this model, s:gorillas is called a lenient variable 
when a network training pattern representing 
like(s:gorillas,o:bananas) accepts a unit activation pattern 
like(s:chimps,o:bananas). 

Lenient variables are quite suitable for the plain 
architecture of connectionist networks. This is because no 
additional structure or facility is required for the Hopfield 
network for the introduction of variables to the inference 
operation. Besides that, the generalisation function of 
connectionist models can be used to perform approximate 
inferences. Owing to the generalisation effect, any network 
training pattern can match a similar but not exactly 
identical unit activation pattern. A subject or object 
concept distributively represented in the Hopfield network 

may work as a lenient variable for a subject or object 
concept included in the initial input information, if they are 
very similar, or in other words if their representations in the 
Hopfield network overlap a lot. 

Similar models previously proposed have not taken the 
idea of lenient variables into account. One but a very clear 
reason is that most systems of this kind are based on the 
localist representation method. The typical examples are 
the models proposed by Ballard [Ballard, 86], by Shastri 
[Shastri, 88], by Shastri and Ajjanagadde [Shastri & 

Ajjanagadde,89], and by Hendler [Hendler,91]. It seems 
very troublesome that a concept is leniently represented by 
a localist method. There is a model which takes a 
distributed method to represent information, that is the 
model proposed by Touretzky and Hinton 
[Touretzky&Hinton,88]. However, it has not expanded the 

generalisation effect towards the new interpretation of 
variables. More discussion can be found in IKozato, 93]. 

2 Overview 
The system consists of 5 parts as described in Figure 1. 

Figure 1 System Overview 

The flow of information in the system is presented by 
the activation signals. The data buffer hands over certain 
information units to the winner predominant networks and 
receives additional information units derived by the 
feedforward network. During the update phase, the Hopfield 
binary network receives as well as sends back some 
information units from/to the winner predominant networks 
in the form of information fragments, and also sends out 
and receives information fragments to/from the structural 
constraint network. After this phase, the Hopfield network 
hands over the information fragments left in it to the 
feedforward network. The sequence of an inference 
operation proceeds as follows: 

<Stepl> The data buffer sends out activation signals to 
the winner predominant networks in order to project certain 
information units called the initial input information onto 
them. 
<Step2> Each of the winner predominant networks passes 
the information units it holds to the Hopfield binary 
network by activating the units to which the information 
fragments included in these information units are allocated. 
<Step3> The Hopfield network starts the unit update 

KOZATO 503 



process in order to select a rule by which a new information 
unit can be derived. 
<Step4> After certain steps of the update process of 
Hopfield network units which is called an update operation 
term, the Hopfield network communicates with the winner 
predominant networks to exchange information so as to 
adjust the direction of the update operation toward a proper 
stable unit activation pattern which must express two 
information units as the premises of a rule. 
<Step5> During the update operation phase which 
consists of a number of update operation terms, the 
Hopfield network also sends out activation signals to the 
structural constraint network to solve certain structural 
constraints between two information units as the premises 
of a rule when they include the same variables. 
<Step6> An update operation phase terminates when only 
one information unit is left in each winner predominant 
network and it cannot be changed by a further update 
operation term. This termination indicates that the 
Hopfield network has selected a rule which can be used to 
derive a new information unit. Then the information 
fragments and variables left active in the Hopfield network 
are sent out to the input port of the feedforward network to 
derive a new information unit. 
<Step7> Through the feedforward network, an 
information unit is generated and sent out from the output 
port. If the premises and conclusion of the selected rule 
include the same variable, then variable substitution may 
also take place. 
<Step8> The information unit derived from the 
feedforward network is then handed over to the data buffer to 
be stored and used for another inference operation. 

3 Architecture 
3.1 The Data Buffer 
The data buffer is used to store all the information units of 
a certain domain provided by the system user and derived 
through the inference operation. When the system starts 
the inference operation, the buffer hands over a certain 
number of information units to the winner predominant 
networks as the initial input information, and also when the 
system ends the inference operation, it accepts a new 
information unit which has just been derived. 

3.2 The Hopfield Binary Network 
The Hopfield binary network is used as a loose pattern 
matching machine to select one of the rules implemented in 
the system. The rule selection is completed by choosing a 
rule whose premises are most likely to be satisfied by the 
initial input information projected on the winner 
predominant networks. An actual pattern matching process 
performed by the Hopfield network is completed in a 
sufficient number of the update operation terms. One 
update operation term is made up of a certain number of 
asynchronous unit updates, e.g., the total number of units 
of the Hopfield network. 

3.2.1 Processing Units 
Hopfield network units have only two states, on or off, and 
are categorised into the following three units: 

(1) Concept units: The indiscriminately divided fractions of 
an information fragment are allocated to a collection of 
concept units, and the information fragment is called the 
base of those units. Because each concept unit represents a 
concept fractionally, the entire set of concept units with the 
same base being active would represent a concept with 
100% validity. 
(2) Relation units: Each relation is allocated to a relation 
unit. 
(3) Variable units: Each variable is allocated to a variable 
unit. 

3.2.2 Structure 
The network is divided into two bodies: one is called the 
left bank and the other the right bank. Each bank which 
comprises a set of concept units, relation units and variable 
units is used to implement one of the two premises of a 
rule. Within a bank, all the concept units are fully 
connected to all the relation units, and all the relation units 
are fully connected to all the variable units. However, there 
are no direct connections between concept units and variable 
units since they are semantically independent of each other. 
Between the two banks, all the relation units are fully 
connected. This enables two rule premises in each bank to 
be recalled as one pattern after the update operation phase. 

3.3 The Winner Predominant Networks 
The winner predominant networks maintain the original 
combinations of information fragments as autonomous 
information units. Because each information unit consists 
of a set of information fragments, it is essential to ensure 
correct combination so as to represent correct information. 

Each network comprises two kinds of sub-networks 
called the help-each-other type sub-networks and the 
winner-take-all type sub-networks as illustrated in Figure2. 
They consist of the nodes and bidirectional links between 
them. The necessary number of nodes is varied but always 

504 CONNECTIONIST MODELS 



a multiple of the total number of the information fragments 
included in the system inference domain. Each node has 
two states, alive or dead. A node becomes alive if it is 
activated at the projection of the initial input information 
from the data buffer, otherwise it is dead. Such a node is 
called a live node. Only live nodes can be operational and 
possess a certain level of activation signal between inactive 
and fully active. Only the sub-networks which include live 
nodes take part in the inference operation. They are called 
live sub-networks. 

3.3.1. Help-each-other Type Sub-networks 
A help-each-other type sub-network enhances the unity of 
an individual information unit. It chains nodes to which 
different information fragments are allocated. The 
connections are made with bidirectional links so that a node 
receives as well as sends out an activation signal from and 
to the adjacent nodes. 

A sub-network represents the existence of an 
information unit as the three live nodes to which either a 
subject concept, an object concept or a relation is allocated. 
Such live nodes work cooperatively within a sub-network 
to keep themselves active by sending encouragement 
signals to each other. The magnitude of the encouragement 
signal is in proportion to the activation level of the live 
nodes. Figure3 describes the activity of a help-each-other 
type sub-network. 

3.3.2 Winner-take-all Type Sub-networks 
The other type of sub-network, called the winner-take-all 
type network, is illustrated in Figure4. They prune the 
initial information units projected onto the winner 
predominant network. A sub-network chains all the nodes 
to which an identical information fragment is allocated. A 
live node tries to suppress the other live nodes within a 
sub-network. 

3.3.3 Connection to/from the Hopfield Binary Network 
The nodes of the winner predominant networks and the 
concept units of the Hopfield network are connected by 
bidirectional links. Activation signals are exchanged 
between the networks. 

The activation signals from a winner predominant 

network on the left-hand (or right-hand) side are sent to the 
left (or right) bank of the Hopfield network just before 
every update operation term. This is to install an input 
activation pattern of Hopfield network units representing 
the information units held in the winner predominant 
network in the Hopfield network for the next update 
operation term. The update operation phase finally 
terminates after the signal flow in this direction so that the 
final information fragments left in the winner predominant 
networks will be handed over to the Hopfield network and 
sent out to the feedforward network. 

On the other hand, the activation signals are sent out 
to the winner predominant network on the left-hand (or 
right-hand) side from the left (or right) bank of the Hopfield 
network just after an update operation term. This is to 
bring back the activation pattern of the Hopfield network 
obtained by the last update operation term to the winner 
predominant networks, and to check whether the 
information fragments represented by that pattern are still 
consistent with the information units held in the winner 
predominant network. The activation signal flow from the 
subject (or object) concept units to the winner predominant 
networks is only allowed, when no subject (or object) 
variable unit on the same bank is active. If a subject (or 
object) variable unit is active, then the activation signals 
from the concept units are ignored and the variable unit 
returns the activation signals to the winner predominant 
network. For this purpose, switching gates to control the 
activation signal flow are present on the links. 

3.4 The Structural Constraint Network 
The structural constraint network is added to the system to 
provide the structural constraint imposed by the 
introduction of strict variables into the rules. The task 
imposed on the structural constraint network is to avoid 
inconsistent convergence of the Hopfield network to a unit 
activation pattern which involves inconsistent variable 
substitutions. 

KOZATO 505 



The network is divided into two sections. One is to 
check the existence of the semantically identical 
information fragments, and the other is to set the structural 
constraints between the semantically identical variables. It 
consists of the following components. See Figure5. 

If an identical concept detector unit detects that two sets of 
concept units are both almost active, it sends out a signal 
to the bidirectional links which connect the semantically 
corresponding pairs of variable units to adjust the weights 
of the links. 

(1) Identical concept detector units each of which receives 
and compares the activation signals from two sets of 
concept units where a semantically, or both semantically 
and syntactically, identical concept is assigned. 
(2) Unidirectional links between the concept units and the 
identical concept detector units. 
(3) Weighted bidirectional links between pairs of variable 
units. In each pair, a semantically, or both semantically 
and syntactically, identical variable is represented. 
(4) Unidirectional links between the identical concept 
detector units and the weighted bidirectional links. 

3.5 An Example Core Section 
The Hopfield network, two winner predominant networks, 
and the structural constraint network form the core section 
of this system. Figure6 illustrates an example core section 
where the following collection of information fragments are 
implemented. 

(1) Subject/object concepts:gorillas, chimps, fruits, bananas 
(2) Subject/object variables: W, X, Y, Z 
(3) Relations: like,eat,satisfy, belong, happy-with, dream 

This system can hold rules consisting of these information 
fragments in the Hopfield network and feedforward network. 
For example, rule 1 as well as others like those presented 
below can be implemented in them. 



rule2: IF eat(s:X,o: Y) and happy-with(s:X,o:Y) 
THEN dream(s:X,o:Y) 

rule3: IF dream(s:X,o:Y) and eat(s:X,o:Y) 
THEN like(s:X,o:Y) 

3.6 The Feedforward Network 
Once the Hopfield network has consistently converged to a 
rule premise pattern, the feedforward network takes charge 
of the derivation of a new information unit. It receives a 
collection of information fragments and variables as a pair 
of information units, and produces an information unit 
based on a rule implemented in the network. As the input 
activation patterns to the feedforward network may include 
probabilistic data owing to the similarity information 
implemented in the Hopfield network, the rule applications 
through the network can be probabilistic. For example, the 
network may receive 

like with 100% certainty, o:X, 
sxhimps with 100 % certainty, s:gorillas with 50% certainty, 
o:bananas with 100 % certainty, and oifruits with 20 % certainty 

from the left bank of the Hopfield network as the first 
premise of a rule and 

belong with 100 % certainty, s:X, 
s:bananas with 100% certainty, and s:fruits with 20 % certainty 

from the right bank as the second premise, and produce 

eat(s:gorillas,o:bananas) with 100 % or less (possibly 50 %) certainty 

by rulel. 
The network consists of three sections: input ports, 

output ports, and analogue units. Each input or output port 
is dedicated to representing one of the information 
fragments or variables represented in the Hopfield network. 
An input port receives a set of binary signals from the 
Hopfield network units where the same information 
fragment is assigned and converts them to an analogue 
activation signal to the analogue units. An output port 
displays an output activation signal for an information 
fragment and sends it to the data buffer. 

Analogue units carry out the actual inferences. They 
are placed in three layers: input, hidden, and output layers. 
Each input or output unit is directly connected to an input 
or output port, whereas the hidden units are placed between 
them. 

In order to provide the variable substitution 
mechanism to the system, extra circuits can be added onto 
the feedforward network so as to accomplish this task 
mechanically. 

4 Network Train ing 
4.1 The Hopfield Binary Network 
Each of the two premises for a rule is stored in one of the 
two banks. For rulel, the first premise like(s:gorillas,o:X) 

is stored on the left bank of the Hopfield network as the 
activation pattern of units to which either like, s:gorillas or 
o:X is allocated, whereas the second premise 
belong(s:X,o:fruits) is stored on the right bank as the 
activation pattern of units to which either belong, s:X or 
o:fruits is allocated. The storage operation is completed by 
an automatic training procedure with the 
sum-of-outer-products function through which the 
appropriate weights are set on the connection arcs between 
Hopfield network units. 

4.2 The Feedforward Network 
The feedforward network is trained to implement the rule 
premise/conclusion relations by error back propagation. 
The premises of a rule are used as the input pattern for 
training, whereas the conclusion is used as the desired 
output pattern. For example, the input pattern to train 
rulel is the activation signals to the input ports (of the 
feedforward network) for like, s:gorillas, and o:X, as well as 
belong, s:X, and o:fruits, and the desired output pattern is 
the activation signals to compare the output activation 
signals from the network at the output ports (of the 
feedforward network) for eat, s:gorillas and o:X. More 
discussion can be found in [Kozato, 93]. 

5 Update Operation Phase 
5.1 The Winner Predominant Networks and 

The Hopfield Network 
Since the initial input information to the Hopfield network 
includes several information units together and each 
information unit is merely a collection of information 
fragments, there is no way that the Hopfield network alone 
can correctly recognises the valid combinations of 
information fragments as autonomous information units 
during the update operation phase. Therefore, it is very 
probable that the network will converge to an activation 
pattern which represents no information unit stored in the 
data buffer but a strange combination of information 
fragments such as Figure7. In order to avoid such a 
situation, the Hopfield network needs to work in 
cooperation with the winner predominant networks. The 
cooperation task is performed after every update operation 
term of the Hopfield network by opening the connections 
between the concept and relation units of the Hopfield 
network and the nodes of the winner predominant networks. 

If the state of the Hopfield network is changed after an 
update operation term so that some of the concept and 
relation units connecting to the live nodes of the winner 
predominant networks lower their activation level from the 
original level set by the live nodes, the activation level of 
those live nodes is also lowered. Accordingly, each such 
live node becomes less able to encourage the other live 
nodes within the same help-each-other type sub-network. 
This means that a certain information unit expressed by that 
help-each-other type sub-network tends to be removed from 

KOZATO 507 



the initial input information to leave out the redundant 
information for the rule selection. 

On the other hand, every live node in a winner-take-all 
type sub-network tries to suppress the other live nodes 
according to the activation level. That is, the higher the 
activation level of a live node is, the more the node 
suppresses the others and gains its activation. Therefore, 
even if a live node receives less activation signals from the 
connected Hopfield network units, it can still regain its 
activation on condition that the other live nodes in the same 
help-each-other type sub-network have gained higher 
activation than the others belonging to the same 
winner-take-all type sub-network. 

After this process, some of the information units in 
the winner predominant networks are weakened or weeded 
out. The information rearranged in the winner predominant 
networks is then reloaded to the Hopfield network for the 
next update operation term. 

5.2 The Structural Constraint Network and 
The Hopfield Network 

The Hopfield network also works in cooperation with the 
structural constraint network. This is to check whether 
there is any contradiction between the information units 
held in the winner predominant networks and the 
information represented by the unit activation pattern in the 
Hopfield network. Any premise pattern of a rule including 
variables should be expressed by the Hopfield network on 
condition that consistent variable substitution is ensured. 

The units on both the banks of the Hopfield network 
representing a semantically, or both semantically and 
syntactically, identical concept are connected to an identical 
concept detector unit. Also, every pair of variable units 
representing a semantically, or both semantically and 
syntactically, identical variable on both the banks is 
connected by a bidirectional link with a certain weight. 

In the beginning of every update operation term, each 
identical concept detector unit checks whether or not the 
two sets of concept units connecting to the identical 
concept detector unit are both active. If this is confirmed, 
the unit forces the negative weight of the corresponding 
links between variable units to be neutralised (±zero). For 
example (refer to Figure5), once the identical concept 
detector unit detects that the concept units representing 

s:gorillas on both the banks of the Hopfield network have 
been activated together, the identical concept detector unit 
sends out a signal to the weighted links between the 
variable units representing s:W, s:X, s:Y, and s:Z on both 
the banks so as to set the weights to zero. Accordingly, the 
variable units connected by the links are cut off so that 
these variable units are freed from the structural constraint. 

6 Conclusion 
Hopfield network, or even more generally, connectionist 
models, have not been designed to be capable of 
representing structured items in a simple manner nor 
processing each item discriminatory. To achieve a 
complicated task in such a system, some additional 
facilities for an extra mechanism or a large scale 
modification of the architecture to make it suitable for a 
particular use is necessary. In this model, the problem has 
been solved by the introduction of the structural constraint 
network for variable substitution and the winner 
predominant networks for pattern matching among several 
units of structured information. 

References 
[Kozato&De Wilde, 91a] Kozato, F. and De Wilde, P., 

"How Neural Networks Help Rule-based Problem Solvin 
", proc. of the 1991 International Conference on 
Artificial Neural Networks, pp.465-470, Helsinki, 1991. 

[Kozato&De Wilde, 91b] Kozato,F. and DeWilde,P., "A 
Probabilistic Rule-based System in Artificial Neural 
Networks", proc. of IEE Second International Conference 
on Artificial Neural Networks, pp. 153-157, Bournmouth, 
U.K., 1991. 

(Ballard, 86] Ballard, D. H., "Parallel Logical Inference 
and Energy Minimization", Technical Report no. 142, 
Computer Science Department, University of Rochester, 
NY, March 1986. and also in proc. of AAAI, 
pp.203-208, 1986. 

[Shastri, 88] Shastri, L., "A Connectionist Approach to 
Knowledge Representation and Limited Inference", 
Cognitive Science, vol.12, pp.311-392, 1988. 

[Shastri & Ajjanagadde, 89] Shastri, L. and Ajjanagadde, 
V., "A Connectionist System for Rule Based Reasoning 
with Multi-Place Predicates and Variables", Technical 
Report, Computer and Information Science Department, 
University of Pennsylvania, Philadelphia, 1989. 

[Hendler, 91 ] Hendler J.A., "Developing Hybrid 
Symbolic/Connectionist Models" in High Level 
Connectionist Models, Barnden, J. A. and Pollack, J. B. 
(eds), vol.1, chap.7, Ablex Publishing Corporation, 

New Jersey, 1991. 
[Touretzky& Hinton, 88] Touretzky, D.S. and Hinton, 

G.E., "A Distributed Connectionist Production System", 
Cognitive Science,vol.l2,no.3, pp.423-466, 1988. 

[Kozato, 93] Kozato, F., "Where Connectionist Models 
Meet Symbol Systems", PhD Thesis, Computing, 
Imperial College, University of London, London, 1993. 

S08 CONNECTIONIST MODELS 


