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Abst rac t 

This paper is a study on LRAAM-based (Label­
ing Recursive Auto-Associative Memory) clas­
sification of symbolic recursive structures en­
coding terms. The results reported here have 
been obtained by combining an LRAAM net­
work with an analog perceptron. The ap­
proach used was to interleave the development 
of representations (unsupervised learning of the 
LRAAM) with the learning of the classifica­
tion task. In this way, the representations 
are optimized with respect to the classifica­
tion task. The intended applications of the 
approach described in this paper are hybrid 
(symbolic/connectionist) systems, where the 
connectionist part has to solve logic-oriented 
inductive learning tasks similar to the term-
classification problems used in our experiments. 
These problems range from the detection of a 
specific subterm to the satisfaction of a specific 
unification pattern, and they can get a very sat­
isfactory solution by our approach. 

1 In t roduc t i on 
In this paper, we show that basic classification tasks 
on symbolic recursive structures (logical terms) may be 
solved with a connectionist approach. We regard this 
approach to logic-oriented inductive learning as a sup­
plement to classical symbolic AI, which is mainly deduc­
tive. It could be used in hybrid (symbolic/connectionist) 
systems, especially for lifting the expressiveness of these 
systems from prepositional logic to predicate logic. 

The generalizations that are necessary for the term-
classification problems presented in this paper range 
from the detection of specific subterms to finding a 
most specific term, subsuming all terms from the pos­
itive class. While these tasks, if known in advance, 
are trivially solved by ad hoc symbolic procedures, it 
is very difficult to induce their nature when only a set 
of positive and negative examples is given. The prob­
lem of representing recursive structures of arbitrary size 

*This work was partially supported by the DFG, EC, 
DA AD and CRUI (Vigoni Project). 

has been so far the major obstacle to using connection­
ist approaches for such logic-oriented inductive learning 
tasks. Neural networks like the LRAAM-model (La­
beling Recursive Auto-Associative Memory) [Sperduti, 
1993a; 1993b], however, propose a solution to this prob­
lem. The LRAAM is an unsupervised method for de­
vising fixed-width distributed representations of labeled 
variable-sized recursive data structures, such as graphs, 
lists and logical terms. The appropriateness of these 
distributed representations for subsequent classification 
tasks, in the context of natural language processing, 
has been shown e.g. in [Cadoret, 1994], where the dis­
tributed representations of syntactical trees devised by 
an LRAAM are automatically classified according to the 
typology of dialogue acts. Our approach, however, is a 
little bit different. We interleave the unsupervised de­
velopment of representations (learning of the LRAAM) 
with the supervised learning of the classification task. In 
this way the representations are optimized with respect 
to the classification task. The classification becomes 
much easier. In fact, in all the problems we investigated, 
we did not need an additional complex multilayer net­
work for classification. A single sigmoidal unit connected 
to the hidden layer of the LRAAM is sufficient. 

In section 2 we introduce the LRAAM-model. In sec­
tion 3 we describe the different options for using the 
LRAAM for classification tasks. The approach chosen 
by us is introduced within this framework. In section 4 
the term-classification tasks used for our experiments are 
described. In section 5 we present the results and an 
analysis of the representations found for the terms. In 
Section 6 we conclude proposing directions for future re­
search. 

2 Label ing R A A M 
The Labeling RAAM (LRAAM) [Sperduti and Starita, 
1993; Sperduti, 1993a; 1993b; 1994] is an extension of 
the RAAM model [Pollack, 1990] which allows one to 
encode labeled structures. The general structure of the 
network for an LRAAM is shown in Figure 1. The net­
work is trained by backpropagation1 to learn the identity 

*We verified faster learning using the descending-epsilon 
heuristic technique [Yu and Simmons, 1990]: during the 
learning phase we maintain a list of the patterns having a 
decoding error higher than a specified threshold. The back-
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function. The idea is to obtain a compressed represen­
tation (hidden layer activation) of a node of a labeled 
directed graph by allocating a part of the input (out­
put) of the network to represent the label (NL units) 
and the rest to represent one or more pointers. This 
representation is then used as pointer to the node. To 
allow the recursive use of these compressed representa­
tions, the part of the input (output) layer which repre­
sents a pointer must be of the same dimension as the 
hidden layer (NH units). Thus, a general LRAAM is 
implemented by a iV / - NH — N[ feed-forward network, 
where NI — NL + nNH, and n is the number of pointer 
fields. 

Labeled directed graphs can be easily encoded using 
an LRAAM. Each node of the graph only needs to be 
represented as a record, with one field for the label and 
one field for each pointer to a connected node. The 
pointers only need to be logical pointers, since their ac­
tual values will be the patterns of hidden activation of 
the network. A graph is represented by a list of these 
records, and this list constitutes the initial training set 
for the LRAAM. During training the representations of 
the pointers are consistently updated according to the 
hidden activations. Consequently, the training set is dy­
namic. In the original formulation of the LRAAM, at 
the beginning of training the representations for the non-
void pointers and void pointers are set at random. After 
each epoch, depending on the hidden activation obtained 
in the previous epoch for each pattern, the representa­
tions for the non-void pointers in the training set are up­
dated. The void representations are, on the other hand, 
copied from the output. 

The convention used for the void pointers, however, 
has the drawback that no fixed representation for the 
void pointer is used. This means that when we want 
to encode a structure not in the training set we do not 
know which representation to use for the void pointer. 
One simple solution to this problem was proposed by 
Cadoret [Cadoret, 1994]: the void pointer is represented 
by a vector with null components and its output error not 
considered when backpropagating the error across the 
network. In this paper, we adopted the same strategy. 

Once the training is complete, the patterns of acti­
vation representing pointers can be decoded to retrieve 
information. In order to decide whether a pointer is void 

propagation is performed only on the patterns of the list: 
when all patterns are below the threshold, we lower it and 
resume the backpropagation. The procedure stops when we 
obtain the perfect decoding. 

or not, one bit of the label is allocated for each pointer 
field to represent the void condition. Notice that multi­
ple labeled directed graphs can be encoded in the same 
LRAAM. 

Encoding of Terms 
For our purpose, logical terms can conveniently be rep­
resented as labeled directed acyclic graphs (LDAGs), 
where function symbols are mapped to internal nodes, 
while constants and variables are mapped to terminal 
nodes. The label of each node is used to store the sym­
bol associated to the assigned entity. Some examples 
of terms represented by LDAGs are given in Figure 2. 
The advantage of this representation consists in the pos­
sibility to uniquely represent identical subterms within 
a term, as shown on the right side of Figure 2, where 
the same variable X appears both as first argument of 
the function f(,) and as argument of the function g(). 
This feature allows us to represent terms very compactly. 
When considering a set of terms, we use the same rep­
resentational strategy used for a single term: each term 
(or subterm) is represented only once , and repetitions of 
the same term are handled by resorting to pointers. An 
example is given in Figure 3. Notice that, an LRAAM 
trained to encode a set of terms will generate a reduced 
representation for each intermediate term representation 
(pointer to a subtree) regardless of the fact that it con­
stitutes a term we are interested in or not. 

In this paper, we will consider only the representation 
and classification of ground terms, i.e., terms which do 

Notice that the space and time complexity of the learning 
algorithm depends on the number of subterms in the training 
set. 
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not involve variables, however, the classification tasks we 
propose involve the concept of logical variable. 

3 Classif ication of Terms 
The main subject of this report is to demonstrate the 
feasibility of classification of ground terms encoded by an 
LRAAM. The aim is to devise a system able to generalize 
on a wide range of classification tasks, from the detection 
of a particular symbol within the term to be classified to 
the recognition that the term satisfies a given unification 
scheme. For this, we propose to classify the reduced 
representations devised by an LRAAM through a feed­
forward neural network. Specifically, we propose to use 
one of the network architectures shown in Figure 4. In 
both of them, the first, part is constituted by an LRAAM 
(notice the double side arrow connections) whose task is 
to encode the terms as discussed in the previous section. 
The classification task is then performed in the second 
part of the network through a simple sigmoidal neuron 
(network A) or a multi-layer feed-forward network with 
one or more hidden layers (network B). A very similar 
approach was used by Stolcke and Wu in [Stolcke and 
Wu, 1992], where they try to learn how to unify very 
simple terms encoded in a RAAM. 

Several options for the training of the proposed archi­
tectures are available. First of all note that, given a set 
of positive and negative terms, we have no information 
regarding the classification of subterrns, which can also 
appear within both positive and negative terms. This 
means that the classifier will be used only on reduced 
representations of terms and its output will be disre­
garded on reduced descriptors of subterrns. 

Assuming that the training of the system may end 
when the classification task is performed correctly, the 
different options we have for the training can be char­
acterized by the proportion of the two different learning 
rates (for the classification error and the decoding error) 
and by the different degrees x,y of presence (or absence) 
of the following two basic features: 

• the training of the classifier is started not until x 
percent of the training set is correctly encoded and 
successively decoded by the LRAAM; 

• the error coming from the classifier is backpropa-
gated across y levels of the structures encoded by 

the LRAAM3. 
Notice that, even if the training in the classifier is 

started only when all the structures in the training set 
are properly encoded and decoded, still the classifier's 
error can change the reduced representations which, 
however, are maintained consistent by learning in the 
LRAAM. 

The reason for allowing different degrees of interaction 
between the classification and the representation tasks 
may be due to the necessity of having different degrees 
of adaptation of the reduced representations to the re­
quirements of the classification task. If no interaction 
at all is allowed, i.e., the LRAAM is trained first and 
then its weights frozen (y= 0), the reduced representa­
tions will be such that similar representations will cor­
respond to similar structures, while if full interaction is 
allowed, i.e., the LRAAM and the classifier are trained 
simultaneously, the reduced representations will be such 
that structures in the same class will get very similar 
representations4. 

In this paper, we explore the classification capabilities 
of the network architecture A, i.e., a single sigmoidal 
unit connected to the hidden layer of the LRAAM. The 
training algorithm we used is as follows: 

• the training of the classifier is started simultane­
ously (x= 0) with the training of the LRAAM; 

• the error coming from the classifier is backpropa-
gated only to the pointers of the terms to be classi­
fied (y= 1). 

We will see that, even with this very simple architecture 
and learning algorithm, we are able to obtain very good 
results. 

4 Descr ipt ion of the Classif ication 
Problems 

In order to test the ability of the proposed architecture to 
deal with several classification tasks involving terms, we 
have generated a set of "simple" classification problems. 
We have summarized the characteristics of each problem 
in Table 1. The first column of the table reports the 
name of the problem, the second one the set of symbols 
(with associated arity) compounding the terms, the third 
column shows the rule(s) used to generate the positive 
examples of the problem0, the fourth column reports the 
number of terms in the training and test set respectively, 
the fifth column the number of subterrns in the training 
and test set, and the last column the maximum depth6 

of terms in the training and test set. 
3 The backpropagation of the error across several levels of 

the structures can be implemented by unfolding the encoder 
of the LRAAM (the set of weights from the input to the 
hidden layer) according to the topology of the structures. 

4 Moreover, in this case, there is no guarantee that the 
LRAAM will he able to encode and decode consistently all 
the structures in the training set, since the training is stopped 
when the classification task is performed correctly. 

5Remember that the terms are all ground. 
6 We define the depth of a term as the maximum number 

of edges between the root and leaf nodes in the term's LDAG-
representation. 
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For each problem about the same number of positive 
and negative examples is given. Both positive and neg­
ative examples have been generated randomly. Training 
and test sets are disjoint and have been generated by the 
same algorithm. 

It must be noted that the set of proposed problems 
range from the detection of a particular atom (label) in 
a term to the satisfaction of a specific unification pattern. 
Specifically, in the unification patterns for the problems 
inst l , ins t l .long and inst 7 the variable X occurs 
twice making these problems much more difficult than 
inst 4, because any classifier for these problems would 
have to compare arbitrary subterms corresponding to X. 
However concerning the data sets presented here, this 
is true only for inst l and inst l -long, and it will be 
shown later, that both of them can be solved quite well 
by our approach. For problem inst7, randomly generat­
ing negative examples leads to terms not very similar to 
t(i(X)}g(X,b),b). The reason for this is that there are 
so many possible symbols and that t(i(X), g(X, 6), b) has 
already a very specific structure. Therefore there is no 
negative example being an instance of t(i(X), g(Y, 6), 6) 
with X Y neither in the training nor in the test set, 
what may make inst7 unexpectedly easy. 

5 Results 
In Table 2, we have reported the best result we obtained 
for each problem, described in Table 1, over 4 differ­
ent network settings (both in number of hidden units 
for the LRAAM and learning parameters). The simula­
tions were stopped after 30,000 epochs, apart for prob­
lem inst l -long for which we used a bound of 80,000 
epochs, or when the classification problem over the train­
ing set was completely solved. We made no extended ef­
fort for optimizing the size of the network and the learn­
ing parameters, thus it should be possible to improve on 
the reported results. The first column of the table shows 
the name of the problem, the second one the number of 
units used to represent the labels, the third the number 
of hidden units, the fourth the learning parameters (N 
is the learning parameter for the LRAAM, e the learn-

ing parameter for the classifier, u the momentum for 
the LRAAM), the fifth the percentage of terms in the 
training set which the LRAAM was able to properly en­
code and decode, the sixth the percentage of terms in 
the training set correctly classified, the seventh the per­
centage of terms in the test set correctly classified, and 
the eighth the number of epochs the network emploied 
to reach the reported performances. 

From the results, it can be noted that some problems 
get a very satisfactory solution even if the LRAAM per­
forms poorly. Moreover, this behavior does not seem 
to be related with the complexity of the classification 
problem, since both problems involving the simple de­
tection of an atom (label) in the terms (lblocclJLong) 
and problems involving the satisfaction of a specific unifi­
cation rule (inst4_long> inst7) can be solved without 
the need of a fully developed LRAAM. Thus, it is clear 
that the classification of the terms is exclusively based 
on the encoding power of the LRAAM's encoder which 
is shaped both by the LRAAM error and the classifica­
tion error. However, even if the LRAAM's decoder is 
not directly involved in the classification task, it helps 
the classification process since it forces the network to 
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information about the pointers), the network is auto-
associative and thus it decides by itself the representa­
tion for the pointers. Consequently, the learning mode 
for the LRAAM is, mainly, unsupervised. When a clas­
sifier is introduced (as in our system), the training of the 
LRAAM is no longer mainly unsupervised, since the er­
ror of the classifier constrains the learning. The resulting 
learning regime is somewhat between an unsupervised 
and a supervised mode. 

In order to understand the differences between repre­
sentations devised by a basic LRAAM and the ones de­
vised in the present paper, we trained a basic LRAAM 
(of the same size of the LRAAM used by our network) 
over the training set of ins t l , then we computed the 
first, second, and third principal component of the re­
duced representations obtained both for the training and 
test set8. These principal components are plotted in Fig­
ure 8. It can be noted that the obtained representations 
mainly cluster themselves in specific points of the space. 
Terms of the same depth constitute a single cluster, and 
terms of different depth are in different clusters. The 
same plot for the reduced representations devised by our 
network (as from Table 2, row 3) is presented in Figure 9. 
The overall differences with respect to the basic LRAAM 
plot consists in a concentration of more than half (57%) 
of the positive examples of the training and test sets in a 
well defined cluster, while the remaining representations 
are spread within two main subspaces. The well defined 
cluster can be understood as the set of representations 
for which there was no huge interference between the 
decoder of the LRAAM and the classifier (this allowed 
the formation of the cluster), while the remaining rep­
resentations do not preserve the cluster structure since 
they have to satisfy competitive constraints coming from 
the classifier and the decoder. Specifically, the classifier 
tends to cluster the representations into two well defined 
clusters (one for each class), while the LRAAM decoder 
tends to develop well distinct reduced representations 
since they must be decoded to different terms. 

The above considerations on the final representations 

8We considered only the reduced representations for 
terms. No reduced representation for subterms was included 
in the analysis. 
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generate different representations for terms in different 
classes7. 

In order to give a feeling of how learning proceeds, the 
performance of the networks during training is shown 
for the problems termoccl, inst4 and inst4_long in 
Figures 5-7, where the encoding-decoding performance 
curve of the LRAAM on the training set is reported, 
together with the classification curves on the training 
and test set. 

Reduced Representations for Classification 
In this section, we briefly discuss the representational 
differences between a basic LRAAM (without classifier) 
and the architecture proposed in this paper. The ba­
sic LRAAM organizes the representational space in such 
a way that similar structures get similar reduced repre­
sentations (see [Sperduti, 1993a] for more details). This 
happens because, even if the LRAAM is trained in su­
pervised mode both over the output of the network 
and over the relationships among components (i.e., the 

'Actually, the decoder error forces the LRAAM network 
to develop a different representation for each term, however, 
when the error coining from the classifier is very strong, it 
can happen that terms in the same class get almost identical 
representations. 



for the terms are valid only if the LRAAM reaches a 
good encoding-decoding performance on the training set. 
However, as we have reported in Table 2, some clas­
sification problems can be solved even if the LRAAM 
performs poorly. In this case, the reduced representa­
tions contain almost exclusively information about the 
classification task. In Figure 10 and Figure 11 we have 
reported the results of a principal components analy­
sis on the representations developed for the problems 
inst 4 long and inst7, respectively. In the former, the 
first and second principal components suffice for a cor­
rect solution of the classification problem. In the lat­
ter, the second principal component alone gives enough 
information for the solution of the problem. Moreover, 
notice how the representations developed for inst7 clus­
tered with smaller variance than the representations de­
veloped for inst4_long, and how this is in accordance 
with the better performance in encoding-decoding of the 
latter than the former. Of course, this does not consti­
tute enough evidence for concluding that the relationship 
between the variance of the clusters and the performance 
of the LRAAM is demonstrated. However, it seems to be 
enough for calling a more accurate study on this issue. 

6 Conclusion and Future W o r k 
In this paper, we have proposed a neural network ar­
chitecture based on the combination of an LRAAM net­
work with an analog perceptron. This architecture can 
be considered an extension of the SRN by Elman [El-
man, 1990]. In fact, when considering our network for 
the classification of lists, the same architecture as a SRN 
is obtained, with the difference that there are additional 
connections from the hidden layer to the input layer9. 
Thus, when considering lists, the only difference between 

9The output layer of the LRAAM can be considered the 
same as the input layer. 

514 C0NNECTI0NIST MODELS 



a SRN and our network is in the unsupervised learn­
ing performed by the LRAAM. However, when forcing 
the learning parameters for the LRAAM to be null, we 
obtain the same learning algorithm as in SRN. Conse­
quently, we can claim that SRN is a special case of our 
network. Moreover, our network can be considered more 
general with respect to a SRN because it allows the clas­
sification of labeled directed graphs. 

We have shown that basic classification tasks on com­
plex terms can be solved by our network. With inde­
pendent test sets we have verified that the networks re­
ally find the right generalizations. Based on these very 
promising results we want to continue our research in 
the following two directions. 

On the one side we want to investigate different net­
work architectures and learning options (see Section 3) 
in order to achieve faster learning with smaller represen­
tations (fewer units in the hidden layer of the LRAAM). 
Based on the results in this paper, we conclude that it 
pays to optimize the representations for the classification 
task. Therefore, the most promising option to investi­
gate seems to be the recursive backpropagation of the 
classification error over the structures. 

On the other side we plan to experiment with more 
complex examples. The single basic tasks which have 
been solved separately in this paper (occurrence of a 
specific label, occurrence of a specific subterm and the 
satisfaction of a specific unification pattern) have to be 
combined (disjunctively and conjunctively) to more com­
plex tasks. Furthermore we want to introduce two addi­
tional basic tasks: the occurrence of unification patterns 
within a term and the recognition of simple regular lan­
guages on the paths from the top function symbol of a 
term to its leaves. According to our knowledge, no single 
symbolic learning system is able to solve all these basic 
learning tasks or even combinations of them. Our exper­
iments should also be supplemented by examples com­

ing from real applications. The application we are cur­
rently working on is a hybrid (symbolic/connectionist) 
reasoning system. The symbolic component of this sys­
tem is the theorem prover SETHEO. Connectionist ap­
proaches are used within this system to learn search con­
trol heuristics from examples [Suttner and Ertel, 1990; 
Goller, 1994]. 
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