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Abst rac t 2. Molecular Neurobio logy 

Recent studies in neurobiology have discovered 
that many hormones exist in the brain, and 
play key roles in learning and memorization. 
In this paper, we discuss the possible role of 
hormones in learning, and propose a new learn­
ing model which incorporates hormonal effects 
on learning. The model is a variant of rein­
forcement learning with modulation on learn­
ing rate and the frequency of mental rehearsal. 
The modulation enables the system to focus its 
learning on data which are evaluated as impor­
tant for the system's overall performance. The 
experiment demonstrates that the incorpora­
tion of hormonal modulation improves behavior 
learning performance, and such an evaluation 
network can be acquired through the evolution­
ary mechanism. 

1 . I n t roduc t i on 

Recent developments in neuroscience and molecular bi­
ology have identified several neural systems which dis­
charge hormones and neuropeptides according to emo­
tional and other internal body status. Traditionally, hor­
mones have been thought to control the homeostasis of 
internal organs, but recent findings suggest that the cen­
tral nervous system itself produce hormones, thereby af­
fecting behavior and learning. In this paper, we discuss 
the possible role of hormones in learning, and propose 
a variant of reinforcement learning. The central claim 
in this paper is that hormonal modulation of learning 
(HML) enables the system, or the agent, to focus learn­
ing on important incidents for performance and survival, 
thus improving the total behavioral performance over 
learning agents without hormonal modulations. Evolu­
tionary acquisition of learning focus is essential for au­
tonomous systems in an open dissipative environment. 
In such an environment, a priori acquisition of training 
data and a behavior evaluation function is not possible. 
In addition, importance of the event is not related with 
the frequency the event takes place. This paper discusses 
the use of hormoal modulation of learning for designing 
autonomous agents in the open dissipative environment. 

This section presents a brief overview of molecular neu-
robiology relevant to the discussions in this paper. The 
central issue is how signals among neurons are transmit­
ted and modulated. In the traditional literature, neu­
rotransmitters such as acetylcholine, glutamate, and B-
aminobutyric acid are considered to be the sole chemi­
cal components mediating inter-neuron information pro­
cessing. However, recent studies, particularly in the last 
decade, revealed that many chemical substances known 
as hormones arc playing important roles in the cen­
tral nervous system. For details, refer to [Hall, 1992; 
McGaugh, 1989]. 

2.1. Neurotransmitters 

It is well understood that chemical substances medi­
ate signal transmission among neurons. When elec­
tric impulses, which propagate through the axon, reach 
a pre-synaptic site (or axon terminal), chemical sub-
stances such as acetylcholine (ACh), glutamate, and 
7-aminobutyric acid (GABA) are released into the 
synapse. ACh and glutamate mediate excitory connec­
tions, and GABA mediate inhibitory connections. These 
neurotransmitters act on ion channels on the surface 
of the post-synaptic site (Fig. 1-left). The ion chan-
nels then open to intake Na+ which causes elevation of 
the action potential. This process causes fast excitatory 
postsynaptic potentials (fEPSF). This part of the infor­
mation processing has been modeled in current neural 
networks. However, there are other chemicals involved 
in the information processing. 

2.2. Biogenic amines 

The second group of chemicals, the biogenic amines, in­
clude serotonin (5-hydroxytryptamine), histamine, nore­
pinephrine, epinephrine, and dopamine. These chemicals 
are known as hormones, and are used by endocrine and 
other cells as well as by neurons. Synaptic communica­
tion mediated by amines has aspects of both fast and 
slow transmission. Typically, amines are released by 
paracrine discharge, which means it diffuses to nearby 
synapses, as opposed to specialized discharge of neuro-
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transmitters which acts only at the synapse where the 
chemicals are discharged. This is illustrated in Fig 2. 

Amines act on G protein-linked receptors, and not di­
rectly on the ion channels. The process involves the 
intra-cellular second messengers such as cAMP and PKC 
to open the ion channels (Fig 1-right). The signal trans­
mission through this process is slow in both onset (tens 
of milliseconds) and in duration (possibly a few hours). 

Amines are discharged from specialized neural sys­
tems called the A, B, and C neural systems. Fig. 3 
shows an example of projection from the A10 neural sys­
tem. Many hormone producing neurons exist in the 
hypothalamus and project axons throughout the neo­
cortex. Norepinephrine is discharged from A\ to A7, 
dopamine is discharged from A8 to A15 and epinephrine 
is discharged from the C system. The B system dis-

Figure 3: The Projection of A10 Neural System 

charges serotonin. Amines are produced at the cell 
body and transported through the axon. Functionally, 
amines affect the mental state of the human, such as 
emotion[Buck, 1986]. Dopamine, norepinephrine, and 
epinephrine produces pleasure, anger, and fear, respec­
tively. Several experiments demonstrate effect on mem­
ory and learning [Gold, 1984; Hall, 1992]. 

2.3. Neuropeptide 

The third class of chemicals are neuropepetides, also 
a kind of hormone. In the 1960s, de Wied proposed 
that adrenocorticotropic hormone (ACTH) and vaso­
pressin (VP) modulate memory and learning by act­
ing on the central nervous system [de Wied, 1965; 
1974]. Research indicated that memory is both en­
hanced and impaired by post-training treatment affect­
ing the monoaminergic[Gold, 1984], cholinergic [Flood 
and Cherkin, 1986], and inhibitory amino acid systems 
[Castellano and Pavone, 1988] as well as peptide systems. 
including ACTH[de Wied, 1974], VP fde Wied, 1984], 
and opioid peptide [Castellano, 1975]. Recent find­
ings indicate that other peptides, including substance 
P [Schlesinger et a l , 1986], CCK [Flood et al., 1987b]. 
angiotensin II [Yonkov et al., 1986], somatostatin [Vecsei 
et al , 1986], and neuropeptide Y [Flood et al.. 1987a]. 
modulate memory storage. 

In general, neuropeptides mediate slow transmissions. 
Currently, over 40 neuropeptides have been identified in 
the central nervous system, and several neuropeptides 
were found to co-exist at one pre-synaptic site. 

3. Impl ica t ions for Learn ing Theory 

Models of neural networks and learning theories must 
be revised in order to incorporate functions of biogenic 
amines and neuropeptides. Due to the limitations of pa­
per length, we focus on a model incorporating functions 
of biogenic amines. Among many possible impacts, this 
section focuses on three aspects that have immediate im­
pacts on learning theory. 

3.1. Elevation of Act ion Potential 

With regard to the forward propagation of a signal, the 
current model uses equation: 

where a; is the activation level of the neuron i, wij is 
a weight between neuron i and j, and h is the bias. By 
incorporating hormonal activity, this needs to be revised 
to: 
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units represent regions of the neo-cortex receiving spe­
cific neural projections from the limbic system. There 
is state-dependency in each region of LTM units. The 
evaluation unit represents a part of the limbic system 
which evaluates preference of the given inputs and acti­
vates neural systems A, B, and C. Metaphorically, this 
may correspond to various emotional states. 

In this circuit, inputs are quickly learned by STM, 
and the closed loop between STM and LTM creates a 
resonance, a repeated propagation of pulses representing 
certain patterns. Without an active hormonal discharge, 
this resonance resolves very quickly. However, with an 
active hormonal discharge, i.e. active A, B, and C neu­
ral systems, the baseline action potential for neurons in 
LTMs is elevated so that sustained (or longer duration) 
resonance can be created. Some reinforcement learning 
use mental rehearsal to speed-up learning [Sutton, 1990; 
Lin, 1990], however, this model adds the modulation of 
the mental rehearsal frequency. 

In summary, hormones modulate learning so that data 
which are evaluated as important are learned with more 
frequent mental rehearsal and a higher learning rate than 
unimportant data. This is critical for survival because 
life-related situations form only a fraction of the events 
we are exposed to in daily life. Thus the successful agent 
must evaluate the importance of the event to enhance 
the learning effect. This conclusion is consistent with 
psychological studies on emotion [Ortony, 1987] 

3.3. Mental Rehearsals A M o d e l 

Speculating from the elevated action potential of the 
neurons and known neural circuits in the brain, we may 
be able to assume the existence of mental rehearsal and 
its modulation by hormones. Mental rehearsal in this 
paper means the repeated internal exposure of patterns 
for memorization. This process does not have to be a 
conscious process. We speculate that mental rehearsal 
occurs through the closed loop formed by upward pro­
jections from the hippocampus to the neo-cortex and 
back projections from the neo-cortex to the hippocam­
pus. With a crude abstraction, this can be schmatized 
as in Fig. 4. Short Term Memory (STM) represents 
the hippocampus, and three Long Term Memory (LTM) 

Discussions in the previous section lead us to propose 
a new model of reinforcement learning. The model is 
a variant of reinforcement learning, and can be applied 
to existing learning algorithms. A basic architecture is 
shown in Fig. 5. The model consists of a genetically-
determined reaction network (React), an evaluation net­
work (also genetically determined) (Eval), and a policy 
network (Policy). 

When an input is given to an agent implementing 
the model, it is received by Policy, Eval, and React. 
Given the input, React produces motor control reac­
tions, Eval produces reinforcement reward (reward) and 
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focus (focus) which will be explained later, Policy pro­
duces a motor control output. The final motor action is 
determined by adding outputs from React and Policy. 

In the model React. Eval and Policy are imple­
mented using feed-forward neural networks whose initial 
connection weights are genetically determined by means 
of the GA process. In this experiment, we used the di­
rect encoding method [Whitley and Hanson, 1989]. For 
Policy, weights are modified through a learning mecha­
nism. React and Policy use a 16-8-8 network, and Eval 
uses 17-8-2 network. For Eval. there are 17 input nodes 
because 16 for sensory inputs and 1 for internal energy 
level. Activation levels of two output nodes correspond 
to Reward and Focus. In this paper, we use one pol­
icy network rather than three networks. As a learning 
mechanism for the model, we employ a modified version 
of Evolutionary Reinforcement Learning (ERL: [Ackley 
and Littman, 1992]). The learning component of the 
ERL is Complementary Reinforcement Back Propaga­
tion (CRBP). Fig. 6 shows the algorithm of CRBP. 

We made an extension to the original CRBP to incor­
porate learning modulation by hormones. CRBP in its 
original form only takes reward to change its learning 
behavior, and no modulation is made on the maximum 
number of mental rehearsals1 nor the learning rate pa­
rameter. In our model, focus produced from Eval cap­
tures the level of hormonal discharge, thus affecting the 
learning rate and the maximum amount of back propa­
gation allowed for learning. When focus is almost zero, 
almost no mental rehearsal is allowed. A high focus level 
allows a large number of mental rehearsals and a larger 
learning rate. This means that focus level determines 
which event is important. The existance of focus is the 
major extension from ERL. Fig 7 shows a new algo­
rithm. Revised parts are shown with underlines, focus 
and reward correspond to r and / in Fig. 7. With this 
modification, a revised CRBP should be able to focus 
learning on significant data. 

5. Exper iments 

1 We use the term mental rehearsal referring to the itera­
tive weight update in CRBP. Specifically, from step 2 to step 
6. 

5.1. Art i f ic ia l world 

The experiment assumes an artificial world consisting of 
a 100 by 100 grid. The emotional agent moves around 
in this world. There are food sites and enemies. Fig 8 
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Artificial World 

shows a snapshot of the world. Experiments reported 
in this paper assume 10 food sites and 5 enemies. The 
agent consumes 1 unit of energy per grid unit moved. 
The agent will die if its energy reaches zero. Each food 
site gives the agent 50 units of energy. When the agent 
is attacked by the enemy, the agent loses 10 points of 
energy. 

Simple sensor systems are available for the agent. It 
has two types of sensors for 8 directions. Each sensor 
covers 45 degrees. One type of sensor detects food; the 
other type detects enemies. Strength of the sensor read­
ings corresponds to the distance to the object. 

5.2. Evolution 

A genetic algorithm was used to simulate the evolution­
ary process. The genetic algorithm uses real value di­
rect encoding to represent weights [Whitley and Han­
son, 1989], two point crossover, an elitist reproduction 
strategy combined with proportional reproduction, and 
an adaptive mutation rate ranging from 1% to 10%. The 
population size for the following experiments is 20. The 
initial values for the weights encoded on the chromosome 
are distributed with a range of ±2.0. After a predefined 
time period (100 time units), each individual is evaluated 
based on its energy level. If an individual has already 
been killed by an enemy attack, its fitness is equal to the 
number of time units it has survived. 

5.3. Results 

A series of experiments was carried out to evaluate the 
new learning model. The model has been compared with 
several other models so that four indepdent models were 
tested, including: 

1. Genetic reaction only (Gen) 
2. Genetic reaction and fixed reinforcement (Fix) 

Figure 9: Experimental architectures 

3. Genetic reaction and ERL (ERL) 
4. Genetic reaction and ERL with hormonal modula­

tion (HML-ERL) 

Fig. 9 shows the architecture for each model. First, 
an agent with only a genetic reaction circuit Gen was 
evolved and tested in the artificial world. This data is 
used as a baseline to measure the effects of other circuits 
on behavior performance. Next, an agent with Eval and 
Policy with pre-programmed reinforcement was tested. 
Policy receives positive reinforcement when it eats food, 
and negative reinforcement when attacked by the en­
emy. Thus, its learning behavior is based on CRBP 
with a fixed evaluation circuit. The third experiment 
was carried out using the model proposed in this paper. 
The control experiment was carried out using the same 
architecture, but without modulating the learning rate 
or numbers of mental rehearsals. The control group is 
equivalent to evolutionary reinforcement learning (ERL: 
[Ackley and Littman, 1992]). 

The average performance of these variations are shown 
in Figure 10. This is a typical result from 20 experiments 
performed on the same task. Several interesting results 
can be discovered. First, the proposed model attained 
the best performance. This supports our hypothesis that 
hormonal modulation improves learning capability. Sec­
ond, the genetic-reaction-only model (Gen) outperformed 
all other models except the proposed model (HML-ERL). 

For the model with fixed reinforcement (Fix), the per­
formance is significantly worse than the model with ge-
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In some runs, Gen outperformed HML-ERL at the early 
stage of evolution. This is because an appropriate eval­
uation network was not acquired at the early stage of 
evolution for HML-ERL. If several agents co-exist in the 
same environment, HML-ERL and ERL could have been 
extinct due to slow acquisition of an evaluation network. 
Thus, there is a need to evolve complex agents using an 
incremental built-up approach. In this case, the first step 
is to use emotion, more precisely a hormonal discharge, 
as the sole mechanism of behavior control. The main 
question is, how was the more complex module can be 
created and connected to the older module. This is our 
major future research target. 

6.2. Symbol Grounding 

netic reaction alone. The problem for this model is that 
the evolution and behavior of the genetic reaction cir­
cuit and the learning and behavior of the policy network 
are not coordinated, so that two independent behav­
ior modules are evolved and learned without interact­
ing. This experimental result clearly demonstrates that 
simply adding a learning module on top of the reactive 
module does not necessarily improve the agent's overall 
performance. 

The surprise comes with the performance of ERL. It 
shows a significantly worse performance than the pro­
posed model HML-ERL, and equivalent to or even worse 
than the agent with only the genetic reaction module 
(Gen). The only difference between the proposed model 
and this model is in the existence of learning rate and 
mental rehearsal modulation based on the signals from 
the evaluation module. In the original ERL, reinforce­
ment learning is triggered for every input ragardless of 
its importance. Thus, memories of important events are 
scrambled by weight updates caused by a large number 
of unimportant and often noisy inputs. The environ­
ment in this experiment is sparse than the experiment 
environment in [Ackley and Littman, 1992] where agents 
using ERL performed better than genetically-hard-coded 
agents. Thus, the result is dependent upon the eviron-
rnent. 

6. Discussions 

6.1. Evolution of Learning Control 

HML is closely related with emotion. Since the discharge 
of hormone is associated with changes in emotional sta­
tus, HML can be viewed as emotion-driven learning. 
Emotion has already been considered as a mechanism of 
behavior control [Toda, 1985; Pfeifer, 1988]. We consider 
that emotion also controls learning by regulating the dis­
charge of hormone. However, it is not clear how emo­
tional control emerged through evolution. Experiments 
indicate that agents with the genetical-determined be­
havior module, Gen, perform almost as well as HML-ERL. 

HML can be applied as a solution for the symbol ground­
ing problem. The basic approach is to evaluate an input 
sequence, and decide which input to focus for learning. 
This means that partitioning of a signal stream may be 
possible. While various studies demonstrate that forma­
tion of attractors from an input stream is possible [Pol­
lack, 1991; Tani, 1995], these input streams need to be 
partitioned. Each attractor can be viewed as a symbol 
representing a specific pattern of the sensory input. The 
input sequences in these studies are either a sequence of 
symbols [Pollack, 199l], or a sequence of continuous sig­
nal with a hand-coded partitioning function [Tani, 1995). 
For example, in Tani\s robot navigation using dynamical 
systems approach [Tani, 1995], learning is invoked only 
when sensory input shows a pattern of a road branching 
for a maneuver. Without the hand-coded partitioning 
function, learning is always activated. In this case, at­
tractors are not formed. This suggests that partitioning 
of the input stream is necessary for the self-organization 
of the symbols. The question is how the partitioning 
function emerged. Our hypothesis is that a neural cir­
cuit for partitioning, which provides focus in HML, was 
acquired through evolution, and the first level partioning 
was performed using this circuit. Thus, the acquisition 
of focusing circuits using hormonal modulation leads to 
the formation of a primitive set of symbols. If this hy­
pothesis is correct, it means that hormonal modulation 
plays an important role in symbol grounding. 

7. Concludings Remarks 

In this paper, we discussed the possible role of hormones 
in learning, and proposed and examined a new model 
of reinforcement learning. The proposed model is de­
rived from recent findings in molecular neurobiology. Al­
though the model examined and the task was a simple 
one, it clearly demonstrates the effectiveness of using 
hormonal modulation for learning. The result of this ex­
periment has two implications. First, it shows that mod­
eling hormonal activities enables the focus of attention 
for learning, thereby improving behavioral performance. 
This would be an important approach for autonomous 
agents behaving in the real world, because such an agent 
needs to determine what is important for its survival or 
task accomplishment. The proposed model enables the 
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agent to learn vital events even if they are rare events. 
Seocnd, the result supports biological findings regarding 
memory modulation by hormones from computational 
perspectives. While there is much evidence for memory 
modulation by hormones, these are at either molecular 
level or behavioral level. No study so far has documented 
the role of hormonal modulation at the mesoscopic level. 

Although we used ERL as a basis of the experiment 
and the model was proposed as a modification of ERL, 
the basic idea can be applied to other learning algo­
rithms. Now, it is an open question whether the method 
proposed has universality so that it improves learning 
performance when applied to various learning models. 
If this is the case, the hormonal modulation enables the 
focusing of learning by evaluating learning data on the 
basis of the system's goal. 

Further research topics will be to incorporate the ef­
fects of neuropepetides and multiple amines for focusing. 
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