Increasing Functional Constraints Need to Be Checked Only Once

Bing Liu
Department of Information Systems and Computer Science
National University of Singapore
Lower Kent Ridge Road, Singapore 0511
Republic of Singapore

Abstract

Central to solving Constraint Satisfaction Problem
(CSP) is the problem of consistency check. Past
research has produced many general and specific
consistency algorithms. Specific algorithms are
efficient specializations of the general ones for
specific constraints. Functional, anti-functional and
monotonic constraints are three important dasses of
specific constraints. They form the basis of the current
constraint programming languages. This paper
proposes a more efficient method for checking an
important subdass of functional constraints,
increasing functional constraints. Rather than
checking them many times as in a typical consistency
check process, in the new method they (almost all of
them) only need to be checked once. This results in a
substantia] saving in computation.

1. Introduction

The key technique in solving CSPs is consistency check.
Arc oonsistency algorithms that work on a network
representation of binary CSPs are perhaps the most
important class of consistency algorithms. In this paper, we
are also concemed with arc consistency of binary
constraints, in particular, increasing functional constraints.

Over the past two decades, a number of general arc
consistency algorithms have been proposed, e.g., AC-3
[Mackworth, 1977], AC4 [Mohr and Henderson, 1986],
AC-5 [Hentenryck et a/., 1992] and AC6 [Bessiere and
Cordier, 1993]. Apart from the general algorithms, many
specific methods were also designed which are
specializations of the general ones for specific constraints
[Lauriere, 1978; Mohr and Masini, 1988, Hentenryck et a/.,
1992]. These methods typically exploit the semantics of
individual constraints, and are more efficient in checking
these constraints. For instance, in [Hentenryck et a/., 1992],
AC-5 is specialized for functional, anti-functional and
monotonic constraints, and their piecewise generalizations
(see their formal definitions in [Hentenryck et a/., 1992]).

Recent years, the CSP model has been implemented in
constraint programming languages, such as CHIP
[Hentenryck, 1989], Chamrme [Chamme, 1990], Hog Solver
[Hog, 1993], eftc., for solving practical combinatorial
problems, such as scheduling, sequencing and resource

586 CONSTRAINT SATISFACTION

allocations [Dincbas et a/., 1990; Hentenryck, 1989]. The
basic constraints used in these languages are special cases
of functional, anti-functional and monotonic constraints.

In this paper, we propose a more efficient consistency
technique for a frequently used subdass of functional
constraints, namely, increasing functional constraints
(IFC). This technique allows this subdass of constraints
(almost all of them) to be checked (or considered) only once
in an arc consistency check process.

In a normal process, a constraint needs to be checked
many times to maintain consistency. Recheck is necessary
when its previously established consistency is broken by
other constraints. In the new method, IFCs only need to be
checked once. This is achieved by merging the domains of
the two variables in a IFC in the initial check such that
rechecks will not be necessary. This technique may be
embedded in any general arc consistency algorithm. This
paper only presents a modified AC-5 algorithm, called AC-
S* to incorporate this technique.

Experimental results have shown the new technique
outperforms the existing techniques substantially. This
saving is important in practice because from our
experiences in using two constraint languages, Charme and
Hog Solver to build practical systems, many constraints are
IFCs, in particular, equations of the form aX = bY + c,
where X and Y are variables, and a and b are positive
constants and ¢ a constant.

Section 2 gives definitions and conventions. Section 3
describes AC-5". Section 4 presents the new method for
IFCs. Section 5 shows the test results. Section 6 discusses
the related work and Section 7 concludes the paper.

2. Preliminaries

A binary CSP is defined as follows: (1) variables - a finite
set of n variables {1, 2...n}, and (2) domains - each
variable i takes its values from an associated Finite domain
Di, and (3) constraints - a set of binary constraints C
between variables. If i and j are variables (i < j), we
assume, for simplicity, that there is at most one constraint
relating them, denoted C;.. A solution to a CSP is an
assignment of values to variables such that constraints are
satisfied.

A graph G can be assodated with a binary CSP, where
each node represents a variable /, and each edge between
two variables i and y, a constraint, which is expressed as

two directed arcs, (i, /) and (j, i). We denote by ¢ the

number of arcs in G, bydthesxmoflhelargesl domain,

and by arc(G) the set of arcs in G,

We recall the standard definitions of arc consistency for
an arc &nd a graph.

Defnition 1. An arc (i,) € are((3) is arc consisten! with
respect t0 D; and D; iff foe all v € Dy, there exists w e
DJ such thal Cjj(v, w) holds.

Definition 2. A CSP is arc consistent iff for all (i, /) e
arc((r) such that (i, j) is arc consistent with respect 1o
Djand Dj.

Our new technique requires a towal ordering on Ihe
variable domain. This total ordeting is defined as follows:
Definition 3. A domain D; = {v, ..., v} is lotally ordered

ffvg<vp, .

We now define a functional constraint and an increasing
Junctional constraint.

Definition 4. Given two variables i and j, we denote § — f
if for all v € D; there exists at most one w € D such
that CU-(v w). Iflt exists, then w= f‘{v)

A consiraint is functional iff | — § and; =i,

Definition 5. Given two variables, we denote { T 5 iff (1) i
— j, and (2) for all u, v € D; such that hothf,{u) and
5).{v) exist in D thenu < v lmphes fu(u) < fq{v)

Observe that if : T j (or equivalently j T i) then the
constraint C;; must be fimctional, and we call such a
constraint mcreasmg Junctional constraint (IFC). An
example of an IFC is X =Y + 5.

Most carlier algorithms {(e.g., AC-3 [Mackworth, 1977],
AC-4 |Mohr and Henderson, 1986| and also AC-6
[Bessiere and Cordier, 1993]) do not use the semantics of
constraints to achieve better efficiency. AC-5 [Hentenryck
et al., 1992] is different as the implementations of its two
procedures ARCCONS and LOCALARCCONS are left open,
This means that for different constraints differem
algorithms could be used. ARCCONS checks an arc when it
is first encountered, while LocALARCCONS rechecks it if its
consistency is broken by consistency check of other ares,
[Hentenryck er al., 1992] provides the special ARCCONS
and Local. ARCCoNs procedures for checking functional,
anli-functional and monotonic constraints in Ofed).

In this paper, we call these two procedures the initial
check procedure and the recheck procedure respectively for
intuitive reasons. This separation is important because the
algorithm for recheck for certain constraints (e.g.,
functional constraints) may be different from its initial
check algorithm.

In most situations, rechecks take a considerable amount of
computation. In this paper, we will ry 1o climinate the
rechecks for IFCs.

3. AC-5* Algorithm

Before discussing the new technique for IFCs, we first
present AC-5%, which provides the data structures and the
framework for the discussion of our techmique. The
iniention here is not to propose a new algorithm, but o do
minimum modifications to AC-5 50 that the new technigue
can he embedded in it. The main modification is in the
domain data struclures, In fact, we also modified AC-3 for

our technique. which is much easier to modify than AC-5.
Duie to the space limitation, it is not discussed here.

AC-5% works with the domain data structures in Figure 1.
Like AC-5, we assume a total ordering on the domain.

Let §={v}. ...,
of i}
D ={vg; a¥p ©8 withpp < andm>0
Syntar Vo1 Vpm Pi<Fi+}
D;.merge: boolean
Dy element: set of pairs (v, ler) with v € § and Joc is
a structure, organized as a hash table on key v.
Dy.values: amay [1..g] of elements € §
D,.info: an info structure
Semantics
Dimerge

Vgl with vg < v, 1 be the original domain

= frue if this domain has been merged
with another domain
=jfalse otherwise
loc.index(Dy.elemen(v)) =p (withv=v) ifve D;
=0, othervvlse
D; valueslp] = v
Dj.info poinis to an info strocture (see below)
{A). Domain dala struclure
Syntax
for.index: integer
Semantics
Ioc.index = pell), ..., a}
(B). foc data strycture
Syntax
info.size; integer
info.min: integer € {1, ..., al
info.max; integer {1, ..., a}
info.succ: arcay [1..0] of inegers € {1, ... ai
info.pred: array | |..a} of imegers € {1, ... a}
info.arcs: aset of arcs.
Semantics
info.xize=m
info.min=p;
info.max=p,,
info. surrlpk] Piat N Sk <m), infosucclpyl =+
info.predipg, 1= pp (1 Sk <m), infopredip)]=- o
info.arcs = [(k,) | {k, D) € arc((5), (k, i) is not a [FC}
{C). info data structure

Figure 1. Domain data structures

Figure 1{A) shows the top level structure. The field merge
tells whether this domain has merged with another domain.
Its meaning will become ciear later, The field element is a
sel of pairs (v, foc) organized as a hash table on key v,
where v € §, and Joc is a strocture (Figure 1{B)) with its
field index holding the array index of v in Dj.values (when
a value is not even in the original Dy, Dj.eclement(y) will
return 0). Thig is different from that in AC-5, where v
directly points to the index mather than a structure fac that
indirectly points to the same index. This change is
important for the new technique for IFCs. The info field
gives all the information about the cumrent domain. Its data
structure is shown in Figure 1(C). This is also different
from AC-5 as AC-5 keeps all the information in the domain
data structure in Figure I{A). This modification is also
crucial to our new lechnique.

Ly 587

Regarding the info structure, the field size gives the
domain size; the fields min and max are used to access the
minimum and maximum values in the domain; the fields
pred and succ allow accessing in constant time the
suooessor and of a value in the domain. This
representation allows the algorithm to reason about aray
indices rather than values. These fields are the same as
those in AC-5. The extra field is arcs storing the arcs
(which are kept elsewhere in AC-5) related to the variable
except those IFC arcs because our new technique checks
them only once. Then, there is no need to store them.

We now present AC-5" (Figure 2). It has two parts, the
initial check part (line 2 and 3), and the recheck part (line
4-8). Note that in line 2, we use arc(G') instead of arc(G)
as in AC-5. arc(G) is the same as arc(G) except that each
IFC is expressed as one arc, either (i, j) or (j, i), rather than
two arcs. The reason for this will be clear later. Q in AC-5"
has elements of the form <(i, j), w> (line 6), where (/, j) is
an arc and w is the array index of a real value (in Devalues)
removed from Dj Only in one special case, w is the real
value itself (see next section). In AC-5, w is always a real
value removed from Dj. This change is also important.

Algorithm AC-5*
begin
1 =1k
2 for each (1,) € arc((G) do
3 initialCheck(}, j,)
4 while { not empty do
5 begin
6 delete </, /), we> from Q;
7 recheck(i, j. w, @)
8 end

end

Figure 2. The AC-5" algorithm

The implementations of the two procedures initialCheck
and recheck are left open. Their general definitions are
amost the same as those for ARCCONS and
LOCALARCCONS in AC-5. Due to the space limitation, we
will not describe them here. The major difference is that
AC-5" embeds two procedures remove and enqueue inside
initialCheck and recheck as it gives more flexibility in
implementing specialized initialCheck and recheck
procedures. In AC-5, these procedures are in the main AC-
5 algorithm, remove removes those inconsistent domain
values from Di and enqueue adds elements of the form <(k,
/), w>to Q, where (k, /) is a related arc of i and w is either
the Di values array index of a real value or a real value.

AC-5" inherits all the properties and complexity results
of AC-5 as the key operations and data structures of them
are almost the same. The differences are non-essential.

4. Merge Variable Domainsin a IFC

We now describe the proposed technique that checks
(almost all) IFC only once. The main idea is to exploit the
fact that consistent values in the variable domains of a IFC
is one-to-one comrespondent and in an increasing order. In
initial check, we can make the two variables of a IFC share
some key information. Then, later on, domain change of

588 CONSTRAINT SATISFACTION

one variable will be felt automatically by the other. In this
way, rechecks of the constraint can be avoided.

As indicated, our technique does not guarantee that every
IFC will be checked once. Let us describe the condition
under which every IFC needs only one check. Take note
that every IFC in arc(G) is expressed as one arc (or edge).
Condition: each IFC in arc(G) to be checked (in the initial

check process) must have no more than one variable that
has appeared in a previously checked IFC (also in the
initial check process).

For example, we have IFC arcs (1, 2), (3, 4), and (2, 3). I
they are checked in this order, the above condition is not
satisfied. It may be rearanged as (1, 2), (2, 3), and (3,4) to
satisfy the above condition.

In practical problem solving, this condition may not be
fully satisfied but only partially because the sequencing of
constraints may depend on the problem, and the IFCs may
also form cycles. In these cases, those IFCs that do not met
the condition still need recheck. However, from our
experience in building practical systems, there are normally
many dlusters of IFCs in a practical CSP, and each cluster
typically has only 2 to 3 variables. Then, the above
condition is always satisfied. That is why we say almost all
IFCs need no recheck in our method.

Figure 3 shows the procedure initial Check for IFCs. Two
subprocedures are used. The first one is mergeCheck
(Figure 4), which is used when the arc (i, j) satisfies the
above condition. The second one is nonMergeCheck
(Figure 6), which is used when the arc (i,j) does not satisfy
the condition. These two procedures use enqueue (Figure 5)
mentioned in the last section.

Procedure initial Check(in i, §, out)

begin

if not D;merge then
mcréeCheck(: IR
elseif Djmerge then
nonMergeCheck(i, j, 0)

else mergeCheck(j, i,)

end

A b L B e

Figure 3. Procedure initialCheck for IFCs

mergeCheck merges D; and D by making them share the
same info and some mfnnnatmn in their slement fields.
Notice that a domain can be merged with any number of
other domains. Lel us have an example of this merging.
Suppose we have the variables X and ¥. X has the domain
{124679} and ¥ has the domain [58 9 10 11 12 13].
The IFC is ¥ = X + 1. The initial domains for X and Y are
as Toltows {only two fields are shown):

D, .vales

loc.index(D, element(v})

D values

!oc.index(Dy.e!emem(w))
After initial check, the domains become:

D, valies
loc.index(D . element(v))
Dy.valncs
{oc.index{D.element(f - {v1))=

nnn

— L e —

WD L

PN N
—

O = N ND
[>

] —

[L - - N

BN
B O e
2 oW
[FURV R N
=0
LA oo LA~
o O MDY

Noie that u stands for undefined, and consistent valyes in

the new D.values are still in the original order, After
inilial check, for each pair of maiching values v € D, and
Ly e DF D .elemeny(y) and D..element(f,. (v)) have the

same loc.

‘or those values in initial D, But not in the

new D, their loc.index all have 0. ¥

Procedure mergeCheck(ia f, j, out Q)
begin

1 A1k

2 newValues ¢ make an array of the same size
a5 Dj.values;

3 for each v (= D.values[index;)) € D; do

4 if fij(v} ¢ D; then

5 éelelc v l‘mm Dy

6 Ap « Ay v [index;}

7 else iudexj + the array index of the value in

D.values supporting v;

B newValues|indexi]¢- D;.values|index;):

9 Dj.elcmem(f (V) «— Dielement(v),

10 delete f; (v} Tom D; without modifying
H - element,

1" enqueue(i, Ay,)

12 Ay e ()

13 forcachwe Dj do

14 begin

15 Ay Ay U ({wi):

16 !oc.iudex(Dj.elemenr(w)) «0

17 end

18 enqueuedf, Ay, 9);

19 Dymerpe ¢ true;

20 D;merge « true,

2

23

1 D{.iufo.arcs « Dy.info.ares v Dj,mfo.arcs;
n D values « newValues,
Df,-.info « Dj.info
end

Figure 4, Procedure for merging two variables in a IFC

procedure enqueus(in i, A, inout Q)

0 « O v [<arc, w») larc € Dpinfo.ares, we A].

Figure 5. Procedure for adding elements W (for recheck

Here are the key poinis to show the correctness of
mergeCheck.

The attay newValues created with the same size as
D;.values is used to store D;s corresponding values in
D, Because IFCs are functional, the smmber of values in
D) after the initial check cannot be more than the size of
the array in D;.values. In line 8, whenever a value v €
D; has a corresponding value w € D-,wm_storeq in
newValues in the index;th cell. iudexj (Ilme T is obtained
when testing the membership of f,}(v) in Dj using the
hash table in D;.element. Thus, after line 10, newValues
has all the consisient values in D; with regard lo Dj.
Consistent values in D; and newValues also have the
same array indices. Due to the { T j property, values in
newValues are still totally ordered.

Line 10 deletes those values in D; with matching
values in D; withou modifying Djelement, This
operation can be done in D;suce which is subsequently

replaced in line 23. So, deleting those matching valves in

D does no harm. Line 13-17 removes those valies in D;

thial do not have matching values in D; by updating onlS;

D¢s hash table. Other information on D; requires no

updating as it is subsequently replaced (ling 23).

In line 22, the original Djvalues is replaced with
newValues. It is clear no confistent value is lost and no
inconsistent value is kept in the new D values. All the
inconsistent values in £; are removed in'line 5,

s Line 9 makes D;.efement(f;(v)) points to the same loc as
D.elemeni(v) (a5 v € D; and f}J(v) € D; are consistent),
This ensures that when a valué x is delbted from D; (or
Dj) by seiting loc.indexDelementx))y (or
!ar.index(Dj.e!emenr(x)} o 0 in the later process, the
corresponding valve in D; {or D)) is also deleted.

Line 21 concatcnates related arcs of / and j and
assign it to Dyinfo.ares. This and the operation in line
23 ensure that when D; (or D}) is modified later (after
initial check), related arcs of both i and are activatsd
for recheck.

Line 23 makes D; share the same info with D;. 1t is
clear that according to the definition of IFC, alt the
information in D.info and Dy.info should be the same
after the initial check. The” merging of domains is
complete, Later on, anything happens to D; (or Dj), D}-
(or D;) feels it avtomatically.

*» The use of indices in A is crucial. When some valnes
are removed from D; (or Dj) later on, the corresponding
values in those domains merged with D; (or Dj) are also
removed due to our merging operations. Indices in Aj
reflects all these removals. Real domain valves cannot be
used in A) because they only seflect the value changes in
D; but not the others merged with it

However, A does contain the actual values removed
from D; (the only case in AC-5T) because D, values is
replacecjl with newValues so that using indices will be
incorrect, As D; does nol have any variable merged with
il, real values can be used. Note thal for a real value, we
wse lw] as an indicator (lie 15) (in a real
implementation another indicator may be wsed).
Procedure recheck uses this indicator to identify the
value Lype, an array index or a real domain value.
nonMergeCheck is given in Figure 6. Its comectness is

clear. It is almost the same as ARCCoNs in AC-5 for

functional constraints except that both arcs (i, 7) and (j. i}

are checked in monMergeCheck. Note that in line 13 and

14, two arcs for the constraint are attached to two variables,

These two arcs are nol there originally, and they may

require rechecks as they did not merge.

Since some IFCs may still need recheck, the procedure
recheck is given in Figure 7, which is almost the same as
that in AC-5 except in line 1, where we need 10 1test
whether w is a real domain value or an array index.

Due to the use of hash table, each value in D; needs 1o be
checked only once in mergeCheck and nonMergeCheck.
Thus, initialCheck is O(d). recheck is O(1) as only one
value needs 1o be checked. Hence, algorithm AC-5% is
ONed) for IFCs, which is the same as for functional
constraints in AC-5. However, our algorithm climinates
most of the rechecks needed in AC-5.

Liu 589

Procedore nonMergeCheck(in /, j, out)
begin
Ae (kL
for each v (= Dyvalues|index;]) € D;do
if f;Av) ¢ D; then
lete v from Dy;
A« Av index;)
enqueue(i, A, Q)
Aedl:
for each w (= D;.values| index}-]) € D}- do
if f_’,-,-(w) € D; then
delete wl(mm Da
Ae—Ayu Iindexj}
enquene(j, A, 0);
Diinfo.arcs « Dyinfo.ares U [{, i)}
Dyinfo.ares « Dyinfo.arcs U {(,
en

NE@O L B L B e

[E—
-

— et
B b

Figure 6. Procedure nonMergeCheck for a IFC

Procedure recheck(im i, j, w, out Q)

begin
1 if w= {index) then w Dj.values|index]
2 if)f,-,'(w) € D; then
3 delete j_};(w) (= D;.values|index;]) from D;;
4 A« {index;}
5 else A+ {}
6 enqueue(i, A, O
end

Figure 7. Procedure recheck for a IFC
initialCheck and recheck methods for non-IFC functional,
anti-functional and monotonic constraints can be easily
devised for AC-5*. They are basically the same as those in
AC-5,

5. Experimental Resulis

Here, we first compare the performances of AC-5* and AC-
5 over equations, ingqualities and disequations, which are
the basic constraints of the current constraint 1anguages.
Equations, inequalities and disequations are special cases of
functional, monotonic and anti-functional constraints
respectively. Increasing cquations, such as X = a¥ + b,
where X and ¥ are variables, @ and b are constants and 2 is
positive, are special cases of IFCs,

Since AC-3 may be preferable in practice [Hentenryck ef
al.. 1992] because of its space efficiency. we also compare
the performance of our technique with the existing one in
the context of AC-3, In particular, we compare two versions
of AC-3: AC-3§ and AC-3*, AC-35 uses the special
handling techniques in [Hentenryck, 19897 (it cannot use
those in AC-5 because ol the representation limitation of
AC-Y) for equations, inequalities and disequations. AC-3+
uses our new method for IFCs without changing the
techniques for non-IPC equations, inequalitics and
disequations. All the algorithms are implemented in CMU
Common Lisp on SPARC-2,

We report two sets of tests. One set uses CSPs with only
IR, in particular equations of the type: X = a¥ + b, where

690 CONSTRAINT SATISFACTION

X and Y are variables, ¢ and b are constants and « is also
positive. This sei of tests is o show the effects of the new
technique on TFCs alone. The other set uses typical
scheduling problems. Scheduling problems are used here
hecause most applications of constraint programming are in
scheduling, sequencing and other similar domains.

For the first set of fests, variables, domains and
constraints are randomly generated. The number of
variables ranges from 40 to R0, he domain sizes range
from 10 to 100, and the number of consiraints ranges from
45 1o 90. Figure 8 shows the performance comparison of
AC-5 and AC-5% in percentage terms over IR problems,
The performance of AC-5 is 1aken as 100% (shown as the
dash line), AC-5* takes only 52% 10 80% of the time for
AC-5 for arc congistency.

123456789 1011121314151617 18
Figure 8. Comparison of AC-S and AC-5% on IFCs

Figure 9 shows the comparison on the same set of IFC
CSPs with AC-35 and AC-3*. The performance of AC-18
is taken as 100%. AC-3% only uses 42% to §2% of the time
taken hy AC-38. From the two figures, we can see that AC-
3* improves more than AC-5*. This is because AC-5 has a
more efficient algorithm for lunctional constraints.

wmr---"---"-"-- /’ -------------

%0
80

70
60
50
a0

123 4567 89 101L12131415]161718
Figure 9. AC-35 and AC-3* on TFCs

The second set of 1ests is intended 10 show what we may
see when the new technique is used in real applications.
The test problems are rypical job scheduling problems. In
this domain, we need to schedule a number of jobs J = (/;,
Ja. ..., Jp), and each job consists of a number of operations
J; = (Op;}. Op;z. ... Opjy). The operations in each job
have to be performed in a fixed sequence. Thus, the start
time S;; of one operation must be greater than or equal o
the end’{ng time Ejy_; of its previous operation, i.e., Sjp 2
Eji.;. Each cperation also has a duration Duy. Then, we
have the constraint E;y = S;; + Duj (which is a IRC).
Each job has a due time Dv;, by which it must be finished,
i.e., Ejp S Dt There are also other comstraints such as
certain operations from different johs may need lo start at
the same time or finished no later than cenain time, et
This by no means describes a full scheduling problem. A
real problem also needs to consider resources, and requires
a good solution. However, these are more to do with
heuristic search strategics rather than consistency check,
and they are out of the scope of this work. The results
reported here are only for achieving consistency,

For this set of tests, we fix the number of operations (o be
5 for each job, which means 10 variables per job. Each
domain has 100 values. However, the number of jobs is
randomly generaied for each problem, ranging from 4 to 8.
The constraints are also randomly sequenced, Figure [0
and 11 show the performance comparisons of AC-5 and
AC-5%, and AC-3§ and AC-3* respectively (over 18
problems). It can be seen that the new technique produces
substantial saving. AC-5% (akes only 55% 10 80% of the
time for AC-5. AC-3% takes 42% 10 57% of the time for
AC-38. On the surface, il seems thal our iechnique should
save less with the second set of tests because other types of
constraints are involved. Bul from the figures, the savings
are simmilar. This is becavse in the first set of tests, many
TFCs may not he merged due to the condition in Section 4,

1 23 456789 (0111213141516 17 18
Figure 10. AC-5 and AC-5* on scheduling problems,

123 456 7 8§89 1031121314156 17 1R
Figure 11. AC:38 and AC-3* on scheduling problems
The ahove saving is resulted from only a single arc
consistency check. When applying the technique to
constraint programming even more saving could be
achieved due to backtrack search which requires
consistency check fo be performed many times.

6. Related Work

Many general and specific arc consistency techniques have
been developed in the past, In real applications, specific
methods perhaps play 2 more important role than general
ones because of their efficiency. Most commonly used
specific consistency methods are for functional, anti-
functional, and monotonic constraints [Hentenryck, 1989,
Hentenryck ef al., 1992; Mohr and Masini, 1988]. Their
special cases also form the core of the comenl constraint
programming languages, such as CHIP [Hentenryck, 1989],
Charme [Charme, 1990], Iiog Solver [Ilog, 1993], etc.
AC-5 [Hemenryck et al, 1992] is a genetic arc
consistency algorithm, ie., it aliows both general and
specific checking of constraints. In [Hentenryck ef al.,
1992|, it is specialized for functional constraints, ani-
functional constraints, monotomic constraints, and their
Piecewise constraints, The algorithm schieves O{ed) for
these constraint classes. Our work is motivaled by this
algorithm, It s an improvement to AC-5's special technique
for functional constraints, Although our technique is still

0O(ed), experiments have shown it is more efficient than
that in AC-5.

Mohr and Masini [Mohr and Masini, 1988] discovered
independenty that binary equations, inequalities, and
disequations can be solved in O(ed). Earlier work on
constraint solvers (e.g., ALICE (Lauriere, 1978]) and
consfraint programming languages (e.g., CHIP
[Hentenryck, 1989)) also presented special algorithms for
these types of constraints. However, equations in all these
methods need to be checked many times.

7. Conclusion

We have proposed a new consistency technique for IFCs. It
checks most IFCs only once rather than many times.
Although this technique does not reduce the complexity,
our experiments have shown it outperforms substantially
the existing methods. The main application of this
technique will be in constraint programming languages.

Acknowledgments: | would like to thank Kim-Heng
Teo, Chee-Kit Looi and anonymous IJCAI reviewers for
their helpful comments and suggestions.

References

[Bessiere and Cordier, 1993] C. Bessiere and M Cordier.
Arcconsistency and are-consistency again. AAAI-93,
pages 108-113,1993.

[Chame, 1990] Charme Reference Manual. Artificial
Intelligence Development Centre, Bull, 1990.

[Dincbas et al, 1990] M. Dincbas, et al. Solving large
combinational problem in logic programming. Journal
of Logic Prggramming, 8:75-93,1990.

[Hog, 1993] Hog Solver Reference Manual ILOG, 1993.

[Liu and Ku, 1992] Bing Liu and Y W. Ku. ConstraintLisp:
an object-oriented constraint programming language.
SIGPLAN Notices, 27(11):17-26, 1992.

[Lauriere, 1978] J. Lauriere. A language and a program for
stating and solving combinatorial problems. Artificial
Intelligence, 10:29-127, 1978.

[Mack worth, 1977] A. K. Mack worth. Consistency in
networks of relations. Artificial Intelligence, 8:99-118,
1977.

[Mohr and Henderson, 1986] R. Mohr and T.C. Henderson.
Ac and consistency revisited. Artificial
Intelligence, 28:225-233, 1986.

[Mohr and Masini, 1988] R. Mohr and G. Masini. Running
efficiently arc consistency. Springer, Berlin, 1988, pages
217-231.

[Perlin, 1991] M. Perlin. Arc consistency for factorable
relataions. In Proceedings of Third International Conf
on Tools for Al, pages 340-345,1991.

[Hentenryck, 1989] P. Van Hentenryck. Constraint
Satisfaction in Logic Programming. MIT Press,
Cambridge, MA, 1989.

[Hentenryck et al, 1992] P.V. Hentenryck, Y. Deville and
C-M. Teng. A generic are-consistency algorithm and its
specifications. Artificial Intelligence, 27:291-322. 1992.

[Waltz, 1972] D. Waltz. Generating Semantic Descriptions

from Drawings of Scenes with Shadows, Tech Rept
AI271, MIT, Cambridge, MA, 1972,

L 591

