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Abst rac t 

Many types of problem exhibit a phase tran­
sition as a problem parameter is varied, from 
a region where most problems are easy and 
soluble to a region where most problems are 
easy but insoluble. In the intervening phase 
transition region, the median problem diffi­
culty is greatest. However, occasional excep­
tionally hard problems (ehps) can be found in 
the easy and soluble region; these problems 
can be much harder than any problem occur­
ring in the phase transition. We show that, in 
binary constraint satisfaction problems, ehps 
are much more likely to occur when the con­
straints are sparse than when they are dense. 
Ehps occur when the search algorithm encoun­
ters a large insoluble subproblem at an early 
stage; the exceptional difficulty is due to the 
cost of searching the subproblem to prove insol­
ubility. This cost can be dramatically reduced 
by using conflict-directed backjumping (CBJ) 
rather than a chronological backtracker. How­
ever, when used with forward checking and the 
fail-first heuristic, it is only on ehps that CBJ 
gives great savings over backtracking chrono­
logically. 

1 In t roduc t i on 
It has been observed by several authors in recent 
years, beginning with Cheeseman, Kanefsky and Taylor 
[Cheeseman et al, 1991], that for many types of prob­
lem where a large population of problem instances can 
be examined, there is a phase transition as a problem 
parameter is varied. The phase transition is from a re­
gion where almost all problems have many solutions, and 
are relatively easy to solve, to a region where almost 
all problems have no solution, and are relatively easy 
to prove insoluble. The intervening region, where the 
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probability that a problem is soluble falls from close to 
1 to close to 0, is termed the mushy region [Smith, 1994; 
Smith and Dyer, 1995]; as the problem size increases, 
the mushy region becomes increasingly narrow, and in 
the limit there is an instantaneous phase transition from 
solubility to insolubility. Within the mushy region, prob­
lems are on average hard to solve, or prove insoluble: it 
has been observed experimentally that the peak in av­
erage difficulty occurs at the crossover point [Crawford 
and Auton, 1993], where the probability that a problem 
is soluble is 0.5. 

It has been observed by [Hogg and Williams, 1994] in 
graph colouring problems and by [Gent and Walsh, 1994] 
in satisfiability problems, that although there is a well-
defined peak in the median cost to find a solution in the 
region of the phase transition, this is often not where the 
hardest individual instances occur. Given a large sample 
of problems, individual problems which are very hard to 
solve may occur in the region where most problems are 
relatively easy to solve. These problems may be so hard 
that their cost significantly affects the value of the mean 
cost; it is for this reason that authors reporting phase 
transition behaviour have often used the median rather 
than the mean as a measure of average difficulty. 

This paper presents experimental investigations into 
these exceptionally hard problems occurring in the easy 
region, in the case of binary constraint satisfaction prob­
lems (CSPs). In this paper, a problem instance is said to 
be an exceptionally hard problem (ehp) for a particular 
search algorithm if: 

1. it occurs in the region where almost all problems 
are soluble, and on average easy to solve (that is, 
outside the mushy region); 

2. it is much more difficult, by at least an order of 
magnitude, than almost all other problems with the 
same parameter values; 

3. it is more difficult than almost all the problems oc­
curring in the mushy region. 

This is intended to be a description of ehps, rather 
than a precise definition. As will be seen, the individ­
ual ehps that we have found are highly dependent on 
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the algorithm being used: even a minor change in vari­
able instantiation order may convert an ehp into a much 
easier problem. So although individual ehps, and what 
makes them so difficult for a particular algorithm, should 
be investigated, we can also ask about ehps in relation 
to populations of problems and in relation to search al­
gorithms: for instance, do ehps occur in all populations 
of problems, and are some search algorithms more sus­
ceptible to ehps than others? 

2 The random generation model 
The experiments reported here were done using 
randomly-generated binary CSPs. Each set of problems 
is characterized by four parameters: n, the number of 
variables; m, the number of values in each variable's do­
main; p\, the proportion of pairs of variables which have 
a constraint between them (i.e. the constraint density); 
and p2» the proportion of pairs of values which are in­
consistent for a pair of variables if there is a constraint 
between them (i.e. the constraint tightness). 

When constructing the constraint graph, we choose 
p\n(n — l)/2 of the possible variable pairs at. random; 
for each selected pair there will be a constraint between 
the corresponding variables. For each constrained pair 
of variables, we choose m2p2 of the possible pairs of val­
ues, at random, to be the pairs forbidden by this con­
straint. The phase transition from under-constrained to 
over-constrained problems is observed as p2 varies, while 
n, rn and P1 arc kept fixed; below, sets of randomly-
generated problems with fixed n, m and P1 and varying 
P2 will be referred to by the tuple (n,m,p1). 

Many of the experiments described later involve sparse 
constraint graphs (i.e. with small p1). The problem gen­
erator described above will then produce a proportion 
of disconnected graphs. Since a problem with a discon­
nected graph would in practice be dealt with by solving 
the subproblems separately, we did not include discon­
nected graphs in our samples. If the problem generator 
produced such a graph, it was rejected and a new graph 
generated, until a connected graph was found. 

For most of these experiments, the problems were 
solved using the forward checking algorithm with a vari­
able ordering heuristic using the fail-first principle: the 
first variable to be instantiated is the one which is most 
constrained, and thereafter, the next variable to be in­
stantiated is one with fewest remaining values in its do­
main. 

3 Where do ehps occur? 
Figure 1 shows the results of a set of experiments with n 
— 20 and m — 10 and the constraint density, p1, equal to 
1.0, 0.7, 0.5, 0.3 or 0.2.1 For each value of p1 a range of 
values of p2 was chosen, so as to cover the crossover point 

1We did not consider p\ =0.1, as we did in later ex­
periments with n = 50, because, as already described, the 
constraint graph had to be connected, and connected graphs 

Figure 1: Randomly-generated binary CSPs with n = 20 
and m — 10: 1000 samples at each data point 

and the region of increasing average difficulty leading up 
to it. In order to have a reasonable chance of seeing the 
extremes of behaviour, 1000 problems were generated at 
each set of values of the four parameters. The cost of 
solving each problem was measured by the number of 
consistency checks required to either find one solution 
or prove the problem insoluble. 

Following the graphs shown by [Hogg and Williams, 
1994] and [Gent and Walsh, 1994], Figure 1 shows a num­
ber of higher percentiles as well as the median for each 
set of 1000 problems. The behaviour of the median as 
p1 decreases is as shown in Prosser's extensive series of 
experiments [Prosser, 1994]: the peak median cost coin­
cides with the crossover point, in each case, but as the 
constraint graph becomes less dense, the phase transition 
becomes less sharp. When p\ — 1.0, all the percentile 
curves are close together; as p1 decreases, they become 
more widely separated, and the maximum cost begins to 
behave erratically. To the left of the peak, when p1 — 
0.2, the maximum cost is sometimes two orders of mag­
nitude higher than the median. 

It is noteworthy that although, in general, as p1 de­
creases, each succeeding phase transition gives rise to 
easier problems, the single most difficult problem in the 
whole set of experiments occurs when p1 = 0.2, shown 
by the 'spike' in the maximum when p2 = 0.63. This 
problem is insoluble. It is not an ehp by the criteria 
given earlier, since it is not in the region where most 
problems are easy: there are, however, ehps when p2 = 
0.54 and 0.56, which are both soluble problems. The 
most difficult problem occurring when p1 = 0.3, at p2 = 
0.48, might also be classed as an ehp, although it is on 
the edge of the mushy region. 

These experiments suggest that ehps are not a univer­
sal phenomenon of randomly-generated CSPs, but occur 

with 20 nodes and 19 edges are not very interesting for our 
purposes. 

SMITH AND GRANT 647 



only in sparse problems. Since it is conceivable that ehps 
would be found in denser problems if the sample sizes 
were sufficiently large, we have carried out further ex­
periments with (20,10,1.0) problems, generating up to 
50,000 problems for each value of p2; no ehps were found 
(the results are shown in [Smith and Grant, 1994]). We 
have also examined larger dense problems ({20,20,1.0) 
and (30,10,1.0)) and found no ehps. If these are typi­
cal, then at the least, ehps in dense problems must be 
extremely rare compared with those in sparse problems. 

4 Larger Sparse Problems 
As noted in the last section, the phase transition is less 
sharp in sparse problems than in dense problems, given 
the same values of n and m. It might be suspected 
therefore that the ehps seen in the (20,10,0.2) prob­
lems were a side-effect of this, and that in larger prob­
lems, as the phase transition becomes more abrupt, ehps 
would tend to disappear. Figure 2 shows the results of 
experiments with larger sparse problems: again, 1000 
problems were generated for each data point.2 As ex-

Figure 2: (50,10,0.1) CSPs: 1000 samples at each data 
point 

pected, the (50,10,0.1) problems show a much sharper 
peak in the median than the (20,10,0.2) problems. The 
increase in n from 20 to 50 has caused the phase transi­
tion to become more abrupt, even though the density is 
lower. However, far from disappearing, ehps are if any­
thing more common, and are more extreme, than in the 
smaller problems. 

One difference between the set of problems shown in 
Figure 2 and, say, the (20,10,1.0) problems of Figure 
1 is that the former includes many different constraint 
graphs, whereas all the (20,10,1.0) problems have the 

2Figure 2 is therefore based on solving 23,000 individual 
CSPs; it takes hours to solve some of the worst individual 
problems (on a SPARCstation IPX, using C) and altogether 
Figure 2 represents well over 100 hours of cpu time. 

same constraint graph. We considered whether the oc­
currence of ehps depends on the topology of the con­
straint graph. This seemed possible, because it has been 
shown in [Smith and Dyer, 1995] that the location of the 
phase transition in randomly-generated sparse CSPs de­
pends on the constraint graph: the more irregular the 
constraint graph, the lower the value of p2 at which the 
phase transition occurs. For example, it might be that 
some constraint graphs give rise to problems which are 
very susceptible to ehps, whereas others produce more 
homogeneous behaviour, similar to the denser constraint 
graphs of Figure 1. The same set of 1000 constraint 
graphs was used at each value of p2 in Figure 2. We 
selected the most regular (graph 739) and the most ir­
regular (graph 904), and used each graph as the basis 
of two new sets of problems, again with 1000 instances 
generated at each value of p2 all the problems in one 
set had constraint graph 739 and all the other set had 
graph 904. 

The results for the two problem sets are shown in Fig­
ure 3. As expected on the basis of previous experience, 
the peak in the median cost occurs at a higher value of 
P2 for the more regular graph than for the more irreg­
ular graph. From the higher percentiles, it can be seen 
that the irregular constraint graph gives more variable 
behaviour over the phase transition than does the reg­
ular graph. However, it is hard to see any significant 
difference in the behaviour of the maximum before the 
phase transition in the two graphs: both graphs seem 
more or less equally susceptible to ehps. 

We also took one of the ehps from Figure 2 (that oc­
curring at p2 = 0.48, with graph 358) and generated a set 
of problems with this constraint graph. If any randomly-
generated constraint graph is likely to produce more ehps 
than others, a graph which has already produced an ehp 
should be a good choice. Graph 358 does not appear to 
be exceptional in any way, and solving the problems pro-
duced similar results to Figure 2 (shown in [Smith and 
Grant, 1994]), so that once again, it does not appear to 
be especially susceptible to ehps. 

We have not, therefore, found any randomly-generated 
sparse constraint graphs which do not produce ehps, nor 
any which appear to be more likely than others to give 
rise to them. A more thorough investigation, consider­
ing a wide range of constraint graphs and much larger 
sample sizes, might show that the incidence of ehps is 
higher for some constraint graphs than for others, but 
since ehps are by definition rare and difficult to solve, 
this would be a daunting task. 

5 Ana tomy of an ehp 
To understand better the causes of ehps, we examined 
carefully the three ehps shown in Figure 2, i.e. the most 
difficult problems at p2 = 0.44, 0.47 and 0.48. For 
these values, the median cost is about 10,000 consistency 
checks; the easiest of the three ehps takes more than 72 
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million consistency checks. These values of P2 are well 
outside the mushy region, and all three problems have 
solutions. Why, then, are they so difficult to solve? 

One of these problems is problem 358 at p2 = 0.48. 
The first four instantiations made by the forward check­
ing algorithm are v5 = l,3 vl6 = 4, v22 - 9, v37 — 
4. It (eventually) becomes clear that this set of as­
signments leads to an insoluble subproblem. However, 
proving insolubility takes more than 376 million con­
sistency checks; the algorithm frequently finds partial 
solutions with 38 or more variables instantiated before 
detecting an infeasibility and backtracking. Once it has 
been proved that there is no solution to the subproblem, 
the alternative assignment of v37 = 10 is tried and leads 
almost immediately to a solution. Since only one possi­
ble instantiation of the first variable, v5, has been tried, 
it is very likely that this problem has many solutions. 

In the other two ehps, similarly, the first few assign­
ments lead to a subproblem which has no solutions, 
and almost all the search effort is expended in proving 

3i.e. variable 5 is assigned the value 1. 

this. Partial solutions involving most of the variables 
are found in the course of searching the subproblem, re-
sulting in a great deal of backtracking. As with problem 
358, the solutions eventually found for these two prob­
lems have the first variable assigned its first value, so 
that there are very probably many solutions in other ar­
eas of the search space. We have seen the same kind of 
behaviour in other ehps which we have found. 

These results are very similar to the experience re­
ported by [Gent and Walsh, 1994]; they found a sat­
isfiability problem which required more than 350 mil­
lion branches to solve, using a simplified version of the 
Davis-Putnam algorithm. The first choice made by the 
algorithm led to a very difficult unsatisfiable problem, 
which required almost all the search effort; the alterna­
tive choice led immediately to a solution. They conclude 
that: "These difficult problems are either hard unsatis­
fiable problems or are satisfiable problems which give a 
hard unsatisfiable subproblem following a wrong split." 

It appears that, in CSPs also, ehps are problems in 
which the search algorithm gets into a hard insoluble 
subproblem early in the search. All the ehps that we 
have seen in these experiments are themselves soluble; 
if an insoluble problem were to occur at these values of 
P2 it would be extremely hard to prove insoluble, since 
a complete exploration of the search space is required. 
However, it seems that ehps of this type are exceptional 
even amongst ehps. 

6 Can ehps be avoided? 
There are, in theory, two potential ways of avoiding ehps 
which arise through encountering insoluble subproblems 
early in the search: one is to avoid getting into such sub-
problems in the first place, and the other is to find some 
search algorithm which can detect that the subproblem 
is insoluble more quickly. 

In the problems we have considered, clearly the in­
soluble subproblem would have been avoided if a differ­
ent instantiation order had been chosen, or if a different 
value had been chosen for one of the variables. How­
ever, it seems unlikely that different ordering heuristics 
could eliminate ehps altogether: they might avoid par­
ticular instances that the fail-first heuristic encounters, 
and so find those problems easy to solve, but might then 
meet insoluble subproblems in other problems that the 
fail-first heuristic would avoid. 

The alternative is to search the insoluble subprob­
lem more quickly. An obvious candidate for considera­
tion is some kind of informed backtracking, rather than 
chronological backtracking as in the basic forward check­
ing algorithm. [Prosser, 1993] describes an informed 
backtracking algorithm, conflict-directed backjumping 
(CBJ), and shows that it can be combined with for­
ward checking (FC) to produce a new search algorithm, 
FC-CBJ. In his experiments with the zebra problem, 
he showed that FC-CBJ was the best of the algorithms 
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that he considered, including plain FC: on individual in­
stances, FC-CBJ almost always did better than FC and 
was never worse. 

We have used both algorithms in combination with 
fail-first, as described earlier: these will be termed FC-
FF and FC-CBJ-FF. Figure 4 shows the results of apply­
ing FC-CBJ-FF to the problems which were previously 
solved using FC-FF to produce Figure 2. It is evident 

that CBJ does significantly reduce the difficulty of ehps 
for this population of problems: the most difficult prob­
lem in the easy region, at p2 = 0.52, takes 39 million 
consistency checks, which is much less than the three 
ehps from Figure 2 considered earlier. 

Problem 358 at p2 = 0.48 and problem 898 at p2 = 
0.47 were ehps for FC-FF because the first four variable 
instantiations led to an insoluble subproblem: since we 
are using the same variable and value ordering heuris­
tics with FC-CBJ-FF, the same subproblems are en­
countered. These problems are not ehps for FC-CBJ-
FF precisely because the algorithm can detect that the 
subproblem has no solutions much more quickly than 
chronological backtracking can. There is a vestige of the 
earlier difficulty with problem 358: FC-CBJ-FF takes 
more than 3 million consistency checks to prove insolubil­
ity and this is one of the most difficult problems at that 
value of p2- Problem 898, on the other hand, which was 
the most difficult of all the problems plotted in Figure 
2, taking more than 109 consistency checks, succumbs to 
CBJ quite quickly: the subproblem is proved insoluble 
in only 150,000 consistency checks. 

Hence, using an informed backtracker such as CBJ 
instead of chronological backtracking moderates the dif­
ficulty of ehps, but does not eliminate them altogether. 
It remains an open question whether any algorithm will 
be able to eliminate ehps entirely from the populations 
of sparse CSPs that we have considered. 

7 The benefits of C B J 
If Figures 2 and 4 are compared, it can be seen that 
they are very similar, apart from the 99th and 100th 
percentiles. This suggests that CBJ's biggest effect is 
on the most difficult problems, and that its performance 
is otherwise similar to chronological backtracking, when 
combined with FC and FF. 

Figure 5 shows the cost of solving a problem using FC-
FF compared with the cost using FC-CBJ-FF when p2 = 
0.48, where FC-FF encounters one of the ehps considered 
earlier (problem 358). The 1000 problems which were 

generated with these parameter values for Figures 2 and 
4 are plotted as individual points in Figure 5, although 
most of them cannot be distinguished. The median cost 
is 10786 consistency checks for FC-CBJ-FF, 11235 for 
FC-FF, and for well over half the problems, the perfor­
mance of FC-CBJ-FF is not very different from that of 
FC-FF. It is only for the 100 or so most difficult problems 
that there is a dramatic difference in cost between the 
two algorithms. Similar plots for other values of p2 con­
firm that FC-CBJ-FF does not offer great savings over 
FC-FF except for the most difficult problems occurring 
before the phase transition. 

These findings to some extent contradict Prosser's; he 
found that on average FC required about 3.5 times as 
many consistency checks as FC-CBJ. However, Prosser 
used a fixed instantiation order, rather than the dynamic 
order given by FF. It appears that most of the benefit of 
using CBJ in conjunction with FC can be obtained more 
simply by using the fail-first heuristic, perhaps because, 
for most problems, the ordering given by fail-first en­
sures that chronological backtracking usually results in 
backtracking to the real culprit for a failure, so that in­
formed backtracking does not add very much. Since CBJ 
carries an additional overhead, which is not reflected in 
the count of consistency checks,4 it may be that for some 

4 We have found that FC-FF can do about 8% more con-
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regions of the parameter space FC-FF would be a bet­
ter choice. For instance, we have compared the two al­
gorithms on the problems shown in Figure 1, and for 
p1 > 0.5, the number of consistency checks is identical 
in almost every instance. However, for sparse problems, 
FC-CBJ-FF does offer a great benefit in overcoming the 
most difficult problems in the region where most prob­
lems are easy and soluble. 

8 Discussion 

We have shown that when the constraint density is high, 
there is much less variation in problem difficulty at a 
given value of the constraint tightness than when the 
constraints are sparser. As a corollary of this, we have 
found no instances of ehps except at low constraint den­
sities, from samples of up to 50,000 problems with each 
set of parameter values. Whether ehps might arise even 
when the constraints are dense, given sufficiently large 
sample sizes, remains an open question. In sparse prob­
lems, the incidence of ehps does not seem to depend 
greatly on the constraint graph, although it is difficult 
to be sure from the small numbers of ehps that we have 
found. 

It should be noted that our graphs exhibiting ehps 
show no sign of the double peak in the higher percentiles 
found by [Hogg and Williams, 1994]. However, their ex­
periments, on 3-colouring problems, used far larger sam­
ples than ours; they had between 10,000 and 1 million 
samples for each data point, and were thus able to see 
smooth behaviour in the 99.95 percentile. We have in­
creased our sample size to 10,000, at considerable cost 
in cpu time, without seeing any sign of a double peak, 
but if it were feasible to solve 1 million samples in cases 
such as the (50, 10,0.1) problems considered earlier, the 
double peak might then appear. 

We have shown that adding an informed backtracker 
(CBJ) to forward checking and the fail-first heuristic can 
make a huge difference to the difficulty of ehps; CBJ al-
lows the algorithm to search insoluble subproblems much 
more quickly than a chronological backtracker can do. 
Ehps thereby become much less significant, but do still 
occur. 

However, except for the hard problems in the easy re­
gion, and in particular the ehps, CBJ does not give great 
savings over chronological backtracking, when applied to 
sparse problems. With dense problems, our experiments 
suggest that it is not worthwhile to use CBJ at all, in 
conjunction with FC-FF. 

It should be remembered, however, that all our exper­
iments are based on random problems generated by the 
model described earlier. Problems with more structured 
constraint graphs, varying domain sizes and/or varying 
constraint tightness might well behave differently. How 
each of these factors might affect the incidence of ehps, 

or the performance of the algorithms we have considered, 
has yet to be explored. 

This paper illustrates that the full story of the relative 
performance of two algorithms needs to be based on a 
wide range of problems, including the extremes of prob­
lem difficulty. Judging by the median cost alone, FC-FF 
is at most 60% more expensive than FC-CBJ-FF, on the 
(50,10,0.1) problems. However, on some of the hard 
problems, the performance of FC-CBJ-FF is orders of 
magnitude better than FC-FF; this would be sufficient 
to give a considerable difference in the mean cost of the 
two algorithms at these points. In order to be able to 
design a comprehensive set of experiments comparing 
different CSP algorithms, it is therefore essential to con­
sider phase transition behaviour, and, in particular, the 
existence of occasional exceptionally hard problems. 
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