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Abst rac t 

Although communication is generally consid­
ered to dominate over processing cost in dis­
tributed systems, the problem of communica­
tion cost in multiagent planning has not been 
sufficiently addressed. One method for re­
ducing both communication cost and planning 
time is the use of social laws. Social laws, 
however, can be too restrictive, limiting sound­
ness. Flexible social laws can enable multia­
gent systems to reap the benefits of reduced 
communication cost and planning time (except 
in the worst case), without limiting soundness 
(although optimality may be degraded). By 
analyzing the performance, we show that this 
model can make multiagent planning exponen­
tially more efficient without limiting its appli­
cability. 

1 I n t r oduc t i on 
As automation of intelligent tasks increases, the need 
will arise for heterogeneous agents working in a common 
environment. As a result, agents will need to plan and 
coordinate plans in real time. 

[Cook, 1994] has described three methods of handling 
multiple agents: central control, distributed control, 
and local control (no communication). She notes that 
central control is effective when communication is reli­
able, and local control is effective if no communication 
is needed; otherwise, distributed control is necessary. 
This is the protocol generally used with multiagent sys­
tems [Durfee and Montgomery, 1991; von Martial, 1992; 
Gmytrasiewicz and Durfee, 1994]. 

Unfortunately, planning is intractable, especially if 
plans must be coordinated: the amount of communi­
cation (worst-case) grows as the square of the search 
space, which is itself exponential for deliberative plan­
ning ([Briggs and Cook, 1995a]). Multiagent planning 
work so far has mostly provided mechanisms for inter­
action [Georgeff, 1986; von Martial, 1992] without at­
tention to this problem, although [Gmytrasiewicz and 
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Durfee, 1994] shows a model in which agents use deci­
sion theory to decide when to communicate, and [Dur­
fee and Montgomery, 1991] reduces the cost of com­
munication by sending abstract messages. Previous 
work on social laws [Moses and Tennenholtz, 1990; 
199l], that is, constraints on what actions an agent may 
take, has shown a method for reducing communication 
and planning time by reducing the options an agent has 
at any point. (In this paper, we relax the definition of 
social law to allow each agent to have a distinct set of 
constraints.) 

Our work extends the social law paradigm, providing 
a specific analysis of the costs, and a way of controlling 
these costs without reducing the applicability of plan­
ning. 

1.1 Social laws 
Social laws provide a way to constrain the actions of 
agents in multiagent systems, so as to reduce both the 
branching factor within an agent's search space and the 
chance of interaction with another agent's plan. 

For example, consider a domain in which mobile 
robots must share a three-lane highway (Figure 1). One 
possible social law is a common traffic regulation: "Drive 
on the right." This law will prune a portion of the search 
space, since agents will not need to consider moving into 
other lanes. It will also reduce possible contention, since 
agents moving in one direction will never share a lane 
with those moving the opposite direction. 

Reducing possible contention over states of resources 
is crucial, since the detection and resolution of such in­
teractions is the dominant communication cost in mul­
tiagent planning [Briggs and Cook, 1995a]. Specifically, 
agents need to communicate about the states of resources 
that their operators require (in a precondition list) or can 
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provide (in a postcondition list). In Figure 1, for exam­
ple, each mobile robot needs to know that a section of 
the highway is clear before it can safely enter. 

Unfortunately, social laws can prevent us from finding 
a solution. Figure 1 shows a roadblock in the topmost 
lane. If robot C is required to drive on the right, it 
cannot move into columns 1-3. 

Social laws, therefore, can limit soundness. Determin­
ing if this is a possibility for any particular social law is in 
general NP-complete [Shoham and Tennenholtz, 1992]. 

1.2 Flexible social laws 
Previous work by the authors [Briggs and Cook, 1995b] 
has analyzed what may be viewed as a special case of 
social laws, that is, restrictions on access to resources. 
This work extends the analysis to a more general concept 
of flexible social laws. 

In this framework, agents prefer to obey the "laws" 
but are able to relax them. Assume a ranking of sets 
of social laws, from strictest to most lenient, where a 
more lenient set is one that allows a greater choice of 
operators. Also assume a limit on the depth of search. 
Each agent will try to generate a plan within the strictest 
set of laws. If this fails, the agent will try again, using 
the next set in the ranking. This continues until the 
agent has a successful plan or has failed with the most 
lenient set of laws. 

Flexible social laws can reduce both planning time and 
communication. Soundness is not sacrificed, because if 
no solution is found within limits set, the agent plans 
with more flexible laws. 

Of course, when an agent finds a solution while us­
ing a social law, the solution may not be optimal. But 
(especially if the plan is to be used only once) the cost 
of plan generation may be high enough that a solution 
quickly found is better than an optimal one. 

If an agent has to try two or more sets of social laws 
before finding a solution, some redundant planning is 
performed. We will find that this extra cost is not great, 
and (for deliberative planning at least) makes the total 
cost greater than the cost of planning without social laws 
only in the extreme worst case. 

This model should apply to groups of homogeneous 
or heterogeneous agents, which share subgoals or work 
on their own goals exclusively. The model should also 
apply with varying degrees of reactivity, and to anytime 
planning. 

2 An example 
Mobile robots A, B, and C are to share a highway (see 
Figure 1, previous page). A and B want to go right; C 
is to go left. There is a roadblock in the top lane. 

Within one timeslice, a robot can move forward or 
back, straight ahead or diagonally; or it can wait. Each 
lane is 5 units long, and only one car can safely occupy 
the same unit in any timeslice. 

Here are some possible planning scenarios, using dif­
ferent social law schemes. In the first scenario, we will 
have no social laws. For the second, we attempt to re­
duce communication and planning costs with a strict so­
cial law. Since this will not allow all agents to com-
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4.1 Optimal i ty 

Branching factor is necessarily monotonically in­
creasing with , but the length (or cost, if we use op­
erator cost) of each agent's final plan (if any is found) is 
necessarily monotonically decreasing with since a more 
lenient social law can't possibly make a plan longer.3 

(This is true for any domain.) 

Therefore a solution for some < max(\LawSets\) 
may not be optimal. 

4.2 Communication 

Here we calculate the maximum num­
ber of messages used for interaction resolution between 
any two agents, at any iteration in the algorithm. This 
is proportional to the number of interacting pairs of op­
erators belonging to separate agent's search spaces. 

The maximum number of interacting pairs for any 
is the number of nodes in one agent's search space times 
the number of nodes in the other's search space. If both 
agents are still searching (that is, neither found a solu­
tion at a previous level), then this is . For all 
pairs of all \A\ agents, there are in­
teracting pairs. If at most C messages are required to 
resolve interactions between such a pair, there will be 

such messages per agent. 

By our assumptions, if we are performing deliberative 
planning, at each iteration of the algorithm an agent 
will need to tell all the others what predicates it may 
be referencing (that is, the predicates in Pi,e), so as to 
know who to negotiate with. The cost per agent Ai is 

This is insignificant compared to the ex­
ponential cost and can thus be ignored. 

If planning with fails, planning with 6(0+1) must 
either search the same space again, or store the space 
generated for It is not enough to store the leaves of 
the search tree; a final solution may interleave operators 
in with operators in 

We have assumed that there was insufficient memory 
to store these search spaces; instead we will search again 
each time afresh, forgetting what we generated for pre­
vious values of 0. With this assumption, we will need to 
communicate old information for each new increasing 

The total 
savings for communication per agent, that is, the cost 
without any social law minus the cost using flexible so-

3If we use breadth-first search. If we use some variation of 
depth-first search, reducing our options may lead us straight 
to the solution; or it may make finding a solution impossible 
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4.4 Best- and worst-case bounds 
In the best case, each agent finds a solution 
with its strictest set of laws. For large L, 
Savingscomm = 

, which is just the cost 
of communication without social laws. Similarly, 
Savingsplanning is approximately the cost of planning 
without social laws. Optimality of the resulting plan 
may be degraded. 

In the worst case, for all . The 
communication penalty for trying flexible social laws 
(per agent) is that is, 

times the cost without social laws; so we have 
an increase in communication linear with the number of 
law sets, but inversely proportional to plan length. If 

\LawSetSi\, this penalty is not significant. By sim­
ilar reasoning, we find a linear increase in planning time. 
Optimality is not degraded. 

5 React ive and any t ime planning 
As agents become more reactive, we are more likely to 
be planning real time, so optimality may be less impor­
tant. Also, although the exponent L (which represents 
the lookahead limit) is reduced, we will see that flexible 
social laws can still reduce cost. Since anytime planning 
has a smaller depth limit than deliberative planning, this 
discussion also applies to anytime planners. 

Let N = the length of the total plan for any agent. (It 
may be greater for a reactive planner than for deliber­
ative planning, of course.) N/L is the number of plans 
an agent must generate and execute to accomplish the 
task. For a totally reactive planner, L = 1. 

The savings for both communication and planning are 
N/L times the values given in the previous section; but 
the exponent L is now smaller, so the savings will be less. 
We note that deliberative planning gets a greater savings 
from the use of social laws than does reactive planning — 
but reactive planning, being closer to tractability to start 
with, will become tractable more quickly with decreasing 
0. 

For completely reactive planning (L — 1), we find that 
Saving8comm is positive when 
(approximately). Savingsplanning is positive when 

(approximately). 
For large numbers of agents and law sets, then, if 

agents are completely reactive, problems must work out 
to fit our social law ranking very well (that is, to have 
solutions when agent use only the first 
of the social law sets). But for even moderately re­
active agents (say, L = 5) the range is much wider 

6 Conclusions 
Flexible social laws are useful in multiagent planning for 
limiting both communication and planning time without 
affecting soundness. Despite redundant planning and 
communication, communication and planning-time sav­
ings are polynomial in the number of social law sets not 

considered by an agent, but with a large exponent if 
planning is deliberative. The tradeoff for this is a loss 
of optimality, and increase in communication and plan­
ning time in the worst case proportional to the number 
of social law sets in an agent's ranking, but inversely 
proportional to plan length. (For deliberative planning, 
this increase is only in the extreme worst case). We have 
shown best- and worst- case bounds, and have shown 
that the model is helpful for reactive and anytime plan­
ning as well as deliberative planning. 

Our current work involves finding tighter theoretical 
limits, and testing the performance of this model. We are 
also developing a more restricted model which deals only 
with allocation of resources [Briggs and Cook, 1995b], in 
real domains. Another interesting area will be develop­
ing criteria for good rankings for the relaxation of social 
laws, like the downward refinement property [Bacchus 
and Yang, 1991] in hierarchical planning. * 
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