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Abstract 

Computational ecosystems are large distributed sys­
tems in which autonomous agents make choices asyn­
chronously based on locally available information 
which can be uncertain and delayed. They share these 
characteristics with biological ecosystems, human so­
cieties and market economies. We show that, even 
when designed with a single overall goal in mind as in 
the case of distributed problem solving, computational 
ecosystems can face well-known social dilemmas of 
sustaining cooperative behavior among selfish agents. 
Specifically, public-goods problems, where a common 
good is available to all regardless of individual con­
tribution, can arise due to information limitations as 
well as the commonly recognized incentive conflicts. 
Some techniques for mitigating the impact of these 
problems are also presented. 

1. Introduction 
Effective use of distributed computation is challenging since 
the individual processes or agents must obtain resources in a 
dynamically changing environment and collaborate despite 
a variety of asynchronous and unpredictable changes. Be­
cause centralized control is often unable to respond rapidly 
to local changes in these systems, the agents are often de­
signed to act autonomously using locally available infor­
mation. Such decentralized systems are often more robust 
and simpler to design and incrementally modify than those 
using a central controller. On the other hand, these agents 
face the difficult task of performing well in spite of in­
complete, imperfect and changing information. Because 
these characteristics are shared with biological ecosystems 
and human societies, we refer to these systems as com­
putational ecosystems [Hogg, 1994; Huberman and Hogg, 
1988; Gasser and Huhns, 1989; Miller and Drexler, 1988; 
Waldspurger et al., 1992; Wellman, 1993; White, 1994]. 

This analogy between computational and human societies 
offers suggestions for the appropriate design of agents as 
well as new potential problems not seen with centralized 
control or with a small number of agents. In this paper we 
show that one such problem, namely the social dilemma 
involved in maintaining cooperation among a large group 

of self-interested agents, can readily arise even when the 
agents are designed with a single overall goal. This sit­
uation is unlike most studies of distributed artificial intel-
ligence (DAI) that consider agents with possibly conflict­
ing goals and focus on designing incentives to encourage 
cooperation [Gasser and Huhns, 1989]. In the situation re­
ported here, social dilemmas can still arise even with full 
control of the agents' overall incentives. Thus issues raised 
by DAI have a broader range of applicability than might 
initially appear to be the case. While social dilemmas can 
adversely affect a group's performance, we also show how 
they can be addressed to some extent with methods used 
in human societies. 

This paper is organized as follows. The next two sec­
tions summarize the social dilemmas for cooperation and a 
model for the dynamical behavior of computational ecolo­
gies. Section 4 gives the main new result, showing how 
the dilemmas can readily arise in computational ecosys­
tems, even those with a single overall goal, and how this 
lowers performance. In some cases, this can lead to the 
paradoxical situation in which giving more resources to the 
system results in lowered overall performance, as shown in 
section 5. Some possible ways to address this problem, and 
concluding remarks are given in the remaining two sections. 

2. Social Dilemmas 
One of the most challenging problems for societies of au­
tonomous agents is providing for public goods [Hardin, 
1968], i.e., benefits produced by the society and available to 
all of its members regardless of individual contribution. Ex­
amples of public goods in human societies include provision 
of parks, roads, a clean environment and national defense. 
When there is a cost involved in contributing, there is the 
temptation for agents to free ride on the efforts of others; 
but if everyone reasons this way, no public good is pro­
duced, lb the extent that the individual costs are less than 
the public good's benefit to the whole group, individually 
rational behavior leads to an overall suboptimal result This 
is the social dilemma involved in maintaining cooperation 
for the production of such goods. 

While it is easy to see how such problems arise com­
putationally when agents have different goals [Rosenschein 
and Zlotkin, 1994], when there is a single overall goal for 
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the system (e.g., in distributed problem solving) one might 
hope to avoid social dilemmas entirely by explicitly pro­
gramming desired cooperative behaviors into the agents. 
Recently, however, it has been recognized that such dilem­
mas can occur in contexts such as coevolutionary genetic 
algorithms with a single overall goal [Glance and Hogg, 
1995]. This is an example of the general mathematical fact 
that locally optimal actions can result in suboptimal global 
performance. At the same time, determining the globally 
superior choice by central fiat may be computationally in-
tractable. In some cases, the optimal state may actually 
be provably impossible to find within a distributed setting 
since individual choices will take the system away from the 
optimum instead of towards it This is the computational 
analogue of a social dilemma. In this case the dilemma 
is due to information limits rather than incentive prob­
lems, but has the same detrimental effect Social dilemmas 
stand in contrast to other causes of difficulty in computa­
tional problems. For instance, hilly landscapes cause meth­
ods such as neural nets [Rumelhart et al., 1986], simulated 
annealing [Kirkpatrick et al., 1983] and greedy heuristics 
for NP-hard search problems [Garey and Johnson, 1979] to 
become trapped in local minima, making the overall mini­
mum hard, but not impossible, to find. Despite these obser­
vations, one might hope computational social dilemmas are 
exceptional and so rarely seen in practice. The major new 
finding of this paper, given in Section 4, is that these dilem­
mas are indeed readily found in computational ecosystems. 

3. Dynamics of Computational Ecosystems 
Computational ecosystems consist of agents, with compu­
tational tasks to perform, and various resources with which 
to accomplish their tasks. These resources can include 
both hardware and software (e.g., information from sen­
sors, databases and the use of specialized algorithms). A 
simple model of these societies supposes each agent uses 
one resource at a time, evaluates its choice at a rate a and 
selects that resource it perceives to be best based on locally 
available information. The suitability of a resource can de­
pend on how many other agents are using it, leading to a 
range of dynamical behaviors including simple equilibria, 
continual oscillations and chaos [Kephart et al., 1989]. 

Specifically, the state of a system with r resources at a 
given time can be characterized by the fraction of agents 
fi using resource i with 

(1) 
1=1 

Let c, be an agent's cost of using the resource, which can 
depend on the state of the system. The overall average cost 
per agent is then given by , This provides 
one simple measure of global performance for the system 
and is appropriate for situations in which the agents are each 
contributing to the result More complex global measures 
can arise in other situations such as cooperative problem 

solving in which a single solution is required and so the 
global performance is determined by the time for the first 
agent to finish [Clearwater et al., 1991]. 

The dynamical behavior, on average, is given 
by [Huberman and Hogg, 1988] 

(2) 

where pi, is the probability that resource i will be perceived 
to be the best one, i.e., have lowest cost, when an agent 
makes a choice. Note that pi = 1 and that the p,- depend 
on the /, because the resource costs do. The two terms 
on the right side of Eq. 2 are readily understood as 1) a 
decrease in use of resource i due to agents already using it 
making choices at a rate a, and 2) an increase in the use 
of resource i due to agents perceiving it to be the best one 
when they make their choices. 

The simplest case is when the agents have full informa­
tion on their individual costs and there are no delays in the 
information. In that case they will always select that re­
source with the lowest actual cost giving pi = 1 when ci 
is the lowest cost, and zero otherwise. Uncertainty and de­
lays in the information give well-studied mechanisms that 
degrade performance [Kephart et al., 1989]. Here we fo­
cus instead on the perfect information case to highlight the 
suboptimal behavior due explicitly to the social dilemmas. 

4. How Dilemmas Arise 
Having introduced the possibility of social dilemmas and 
the dynamical model for computational ecosystems, we 
now turn to the question of how often these dilemmas 
can be expected to occur. Although ideally approached 
empirically once many such systems become available for 
study, we can gain considerable insight from examining 
the kinds of resource costs that will give rise to a social 
dilemma. Specifically, this will happen when the local 
dynamics does not lead to the globally optimal state even 
when the agents have perfect local information. In such 
cases, the performance of the group as a whole would 
benefit if some agents "cooperated" by making different 
resource choices even though they would incur higher costs. 

4.1 Theory for Linear Costs 
Consider the situation with r resources and with costs de­
pending linearly on their utilization: 

(3) 

with the vectors c and f having components ci and fi, giving 
the cost and utilization of the resources. The matrix M 
specifies how the costs depend on the utilization, and the 
vector v is a usage-independent contribution to the costs. 
Note that because of Eq. 1, the choices for A/ and v are not 
unique, e.g., this relation can be used to eliminate fr from 
the costs so the last column of M will be zero. Furthermore, 
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because agents make choices based on the minimum cost 
option (when they have perfect information), the results 
presented here will not be affected by rescaling the unit 
of cost, i.e., multiplying each component of M and v by a 
constant, or by shifting the origin of the costs, i.e., adding 
a constant to each component of v. 

The global average cost is given by 

(4) 

From this we see that the linear cost example considered 
here is particularly useful for investigating social dilemmas: 
except in degenerate special cases, has only one 
minimum and so avoids the complication of local minima. 
The resource usage that minimizes this cost is found by 
minimizing , where the Lagrange 
multiplier is used to enforce Eq. 1. Setting all partial 
derivatives to zero gives the extremum as the solution to 

with 

(5) 

(6) 

where 1 represents the vector all of whose components equal 
1. There are two degenerate cases in which this extremum 
will not in fact be the global minimum cost. First, while 
this is the only point where the partial derivatives vanish, it 
could be a maximum or saddle point instead of a minimum. 
Second, the extremum may not have each fi > 0. In either 
case, the true minimum cost will be found at the boundary 
of the allowed set of values, i.e., at least one resource is 
not used at all. In effect, such systems can be viewed as 
having fewer resources. 

By contrast, the equilibrium found by local choices will 
be where all resources have the same cost so agents will 
remain where they are, on average. That is c = u1 where 
u is a constant, which gives Cglobal - u. This can be 
combined with Eq. 1 to obtain 

with 

(7) 

(8) 

whose solution gives the equilibrium state found by local 
choices, again provided (otherwise, some resources, 
with relatively high costs, will not be used in equilibrium). 

42 The Existence of Social Dilemmas 
lb see that social dilemmas can be expected quite frequently 
in computational ecosystems, consider a typical situation in 
which the cost to use a resource increases with its use, with 
some fixed overhead, but is not directly dependent on the 

(9) 

By contrast, the local equilibrium from Eq. 7 is fi,/ai, =: 
s + v - vi.-, with cost CI; = s + v, which is also the value 
of Cglobal at this equilibrium In both cases, a negative 
resulting value for fi, indicates resource i isn't used and 
the calculation should be repeated without it to find the 
correct resource use. 

We thus see that the local equilibrium is globally optimal 
only if all vi,- are the same, as was the case in a limited 
previous study of the 3-resource case [Kephart et al., 1989]. 
Otherwise, the local equilibrium point will have wider range 
of resource use than is optimal. Thus we see that generally, 
even with resources whose costs depend only on their own 
load, the public goods social dilemma arises. 

A simple example, with two resources, is shown in Fig. 1 
with the dynamics given by and 
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. The global minimum cost is at f1 = | but the 

local equilibrium is at the suboptimal value fi = 1/4. Even 
though, in this case, the system passes through the optimal 
state during its evolution, more agents continue selecting 
to use resource 2. This results in the final state having a 
higher cost, as shown in the figure. 

The basic cause of the problem is agents choose based 
only on their own costs, not on how their actions affect 
others. For example, if there are 1000 agents at the global 
minimum (i.e., 375 agents using resource 1), then the costs 
are and agents using resource 1 are 
tempted to switch. Suppose one agent moves from resource 
1 to 2, reducing its own cost by about 0.25. This move also 
affects the remaining agents: the cost of resource 1 drops 
slightly, thereby benefiting the 374 agents that remain there, 
but the cost of resource 2 increases slightly, harming the 625 
already there. The net result in this case is that the increased 
cost to the agents already using resource 2 outweighs the 
benefit both to the agent that moved and those remaining 
on resource 1: the global cost increases slightly. 

43 Generalizations 
In the general case with nondiagonal matrix M, we can see 
that dilemmas will also often arise as follows. In order that 
Eqs. 5 and 7 give the same value for f, we must have 

(10) 

which is a linear equation for v. In general, most vectors v 
will not satisfy this equation, and hence the global minimum 
and the local equilibrium will be at different points. Thus 
on very general grounds we can expect the results seen 
explicitly above for simple diagonal matrices to apply to a 
wide range of linear cost functions. 

An example is where resource 1 uses a communication 
channel controlled by resource 2, so agents using resource 
1 incur higher cost when resource 2 is busy with its own 
tasks and unable to service the requests. Such an instance is 

(11) 

which has global minimum at / = (1/2,1/2) with cost 3/4, 
but local equilibrium at f = (0,1) with cost 1. To avoid 
the dilemma, Eq. 10 requires that v1 = v 2 - 1 . 

Finally, for the more realistic case of nonlinear cost func­
tions, the analysis cannot give a complete characterization 
of the dynamics (e.g., there may be local minima), but can 
provide some insight. The dilemma will exist (in addi­
tion to any problems due to local minima) when the local 
dynamics drives the system away from the global mini­
mum, even if it is initially quite close. Whether this is 
the case can be determined by expanding Eq. 2 around the 
global minimum, giving a linearized system to which the 
above analysis applies. Because we saw that dilemmas exist 

quite commonly with linearized costs, this argument shows 
they will correspondingly exist for many nonlinear prob­
lems. How important the dilemmas will be in such cases 
will depend on how easily the system is stuck in local min­
ima. That is, if there are many local minima, they can be 
expected to prevent the system from getting near the global 
minimum at all and hence the existence of a dilemma that 
prevents convergence to the global minimum will rarely af­
fect the dynamics. On the other hand, systems with fewer 
local minima, or that have techniques to avoid or overcome 
them, would be limited instead by a social dilemma. This 
suggests that an interesting question for future work is to 
determine the interplay between these effects, and whether 
strategies that alleviate one problem increase the other. 

5. Braess' Paradox 
A particularly subtle version of the dilemma is given by 
Braess' Paradox [Cohen and Horowitz, 1991; Irvine, 1993] 
in which adding resources to a system can actually lower 
performance. While usually presented in the context of 
traffic or electric current flow, it has a natural interpre­
tation as selection among resources. A specific example, 
which corresponds to that considered for traffic and genetic 
algorithms [Glance and Hogg, 1995] is given by the three 
resource case with the costs 

(12) 

When only the first two resources are available, p1 = 1 
when c1 < c2, corresponding to f1 < f2, and similarly 
p2 — 1 when f1 > f2. Thus, starting from an initial 
condition of all agents using resource 1, i.e., f1(0) = 1, 
Eq. 2 gives and f2(t) = 1 - f1(t) until these 
values reach 1/2, at which point they remain at that value. 

When the third resource is added, each agent finds the 
new resource has a lower cost and selects it, i.e., p3 = 1. 
Thus f1 and f2 decay exponentially toward zero increasing 
the overall cost, as illustrated in Fig. 2. 

In our previous notation, this case corresponds to 

(13) 

Eq. 5 gives the global minimum at f1 = f2 = 1/2, f3 = 0 
with a cost of while Eq. 7 gives the local 
equilibrium at f1 = f2 = 0, f3 = 1 with cost Cglobal = 3. 

More generally, when a social dilemma exists, the lo­
cal equilibrium has a higher cost than the global minimum. 
Hence some additional constraints on the resource use, e.g., 
eliminating any use of the third resource in the example of 
Eq. 13, can in fact change the local equilibrium to be closer 
to, or even reach, the global minimum. Thus social dilem­
mas will always be associated with a seemingly paradoxical 

714 DISTRIBUTED Al 



Fig. 2. Behavior as a function of time for a computational 
ecosystem facing resource costs that include Braess' Paradox. We 
use f1(0) = 1 and a = 1. Initially there are two resources, 
but at t = 1 the third resource is added The top figure shows 
the fraction of agents using resources 1, 2 and 3 (solid, dashed 
and gray, respectively). On the bottom is the global average cost 
Cglobal for the system. Note that the addition of the third resource 
causes the cost to rise from its minimum value of 2.5 up to 3. 

situation in which additional restrictions can result in lower 
costs. This contrasts with the usual intuition that eliminat­
ing some available choices in a minimization problem gives 
a cost at least as large as that for the unrestricted problem. 
Braess' paradox is particularly surprising in the form given 
here where an additional constraint of simply eliminating 
one of the resources is sufficient to lower the cost. 

6. Addressing Social Dilemmas 
Having seen that social dilemmas can arise for a variety 
of resource costs, a natural question is how their effect 
can be alleviated while still retaining the autonomous local 
decision-making of the computational ecosystem. 

A dynamical approach relies on using uncertainty in the 
agents' evaluation of the costs, which tends to move the 
system toward equal use of the available resources [Kephart 
et al., 1989]. When the dilemma gives an equilibrium 
with more variation in resource use than is optimal the 
addition of some uncertainty (either deliberately added to 
the agents or from external causes) can help to improve 
the performance. This benefit of uncertainty is in addition 
to its previously recognized use to improve the stability 
of computational ecosystems. Specifically, uncertainty is 

modeled by adding a normally distributed random variable 
with zero mean and standard deviation to the costs as 
evaluated by each agent. For the case of two resources, this 
changes the probability that an agent will choose resource 1, 
used in Eq. 2, to be ) where erf(x) 
denotes the error function. When is small agents usually 
choose the resource with the lower cost, but for large 
each is chosen with nearly equal probability. An example 
of the improvement this can give is shown in Fig. 3. 

A second approach to public goods dilemmas, commonly 
used in human societies, is to introduce mechanisms that 
enforce contribution, such as taxation. This can be used to 
artificially change the relative costs perceived by the agents 
when making choices. An example, shown in Fig. 3, is to 
add an extra cost x to the overused resource. 

While they can be effective, these methods require find­
ing the correct value for the adjustment which can be hard 
to determine, especially in a complex, changing situation. 
Hence one would like to rely on the agents themselves 
to make the necessary adjustments. One such method is 
suggested by a different approach to the dilemma in hu­
man societies: create new markets that, at least partially, 
restrict benefits to those that contribute. This amounts 
to privatizing the public good using computational pric­
ing and accounting mechanisms [Miller and Drexler, 1988] 
within computational economies [Waldspurger et al., 1992]. 
The resulting prices also provide information on competing 
uses for resources in a manner similar to that in market 
economies [Hayek, 1978]. For example, in Fig. 1 agents 
could be required to pay for the use of resource 2 thus 
encouraging more of them to use resource 1 instead. 

Finally, cooperation can be maintained if the bene­
fits are concentrated in small groups with long-range 
plans [Glance and Huberman, 1994] or if interactions 
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are repeated [Axelrod and Hamilton, 1981; Bendor and 
Mookherjee, 1987]. There are also a variety of mecha­
nisms to evolve cooperation in such cases [Simon, 1990]. 
These observations can suggest additional mechanisms for 
computational ecosystems as well. 

7. Conclusion 
We have seen that social dilemmas readily arise in compu­
tational ecosystems even when all the agents are designed 
with a single overall goal. This is a new mechanism that 
lowers performance, in addition to the previously recog­
nized oscillations and chaotic behavior caused by dynami­
cal instabilities [Kephart et al., 1989]. Since the existence 
of a dilemma will not always be readily apparent from the 
cost functions, especially in cases that include nonlineari-
ties, it may be easy to confuse the lowered performance due 
to a social dilemma with that due to uncertainty or delays 
in the available information. Such confusion could lead to 
inappropriate attempts to address the problem. 

In dynamic environments with changing resource avail-
ability (e.g., a new machine added to a network) or cost 
functions (e.g., due to a better implementation of a data­
base search) the system could have public goods problems 
at some times but not others. This is another reason to in­
vestigate analogies with human social institutions such as 
markets that allow local decisions by many agents to re­
spond to these problems in a timely way. 

Finally, social dilemmas can also occur in (coevolutionary 
genetic algorithms and cooperative problem solving where 
the usefulness of particular methods depends on choices 
of other agents [Glance and Hogg, 1995]. The results 
presented here, showing that many cost functions can give 
rise to dilemmas, suggest they may be common in these 
situations as well despite their very different dynamical 
behaviors. Thus methods for recognizing and alleviating 
social dilemmas are likely to prove useful in a variety of 
multiagent computational contexts. 
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