
A g e n e t i c p r o t o t y p e l e a r n e r 

Sandip Sen Leslie Kn igh t 
Dept of Mathematical & Computer Sciences, Dept of Math & Computer Sciences, 

The University of Tulsa, U. S. A. The University of Tulsa 
sandip@kolkata.mcs.utulsa.edu U. S. A. 

Abst rac t 
Supervised classification problems have re­
ceived considerable attention from the machine 
learning community. We propose a novel ge­
netic algorithm based prototype learning sys­
tem, PLEASE, for this class of problems. Given 
a set of prototypes for each of the possible 
classes, the class of an input instance is deter­
mined by the prototype nearest to this instance. 
We assume ordinal attributes and prototypes 
are represented as sets of feature-value pairs. A 
genetic algorithm is used to evolve the number 
of prototypes per class and their positions on 
the input space as determined by correspond­
ing feature-value pairs. Comparisons with C4.5 
on a set of artificial problems of controlled com­
plexity demonstrate the effectiveness of the pro­
posed system. 

1 I n t roduc t i on 
The induction of concept classification methods has re­
ceived widespread attention both in the cognitive sci­
ences and in the machine learning communities. This is 
to be expected because the development and use of con­
cepts is a key characteristic of intelligent behavior. A 
study of the acquisition of conceptual knowledge involves 
an analysis of the representation of this knowledge, as 
well as the process of drawing inductive inferences using 
these representations. 

A number of symbolic and subsymbolic systems have 
been proposed to solve the problem of inductively ac­
quiring concept classification knowledge from a set of 
pre-classified instances. Some of the more influential 
symbolic systems include ID3 [Quinlan, 1986], version 
spaces [Mitchell, 1986], and COBWEB [Fisher, 1987]. 
The most widely used subsymbolic systems for concept 
learning are based either on neural networks [Rumel-
hart et ai, 1986] or on genetic algorithms (GAs) [De-
Jong, 1990; Holland, 1986]. Some of the more frequently 
used representations in symbolic concept learning sys­
tems use logic expressions and programs, decision trees 
and lists, hierarchical clusters, and rules. Representa­
tions used in subsymbolic systems include networks of 
simple computational units connected by weighted links 
and bit strings. 

In addition to these mainstream machine learning ap­
proaches, there exists a significant body of work on sta­
tistical induction schemes [Breiman et ai, 1984; Cheese-
man et ai, 1988]. Other researchers have been motivated 
by the findings of cognitive psychologists [Schaffer, 1978; 
Smith and Medin, 1981] and are using exemplar-based 
classification schemes [Aha et ai, 1991; Kruschke, 1992; 
Stanfill and Waltz, 1986]. These methods store the set of 
training instances and classify a new instance by some 
voting scheme using a given number of nearest stored 
examples. The exemplar-based approach (also called 
the nearest neighbor classification algorithm [Vosniadou 
and Ortony, 1989]) is attractive because of its simple 
representation, and because it can be used to explain a 
number of human cognitive phenomena [Schaffer, 1978; 
Smith and Medin, 1981]. Hybrid GA-nearest neighbor 
algorithms have been developed to learn weights associ­
ated with individual attributes [Kelly and Davis, 1991] 
(used in calculating distance of new instance from the 
stored instances) and to store only a subset of the set of 
training instances [Cherkauer, 1992]. 

The other form of concept representation that has 
been commonly posited by cognitive scientists as a 
theory of human concept learning is that of proto­
types [Reed, 1972; Smith, 1989]. A prototype is a col­
lection of salient features of a concept. An instance can 
be classified using prototypes by finding the prototype 
with which it shares most of its features, and then using 
the class of that prototype. The exemplar based models 
of concept classification are more flexible than prototype 
models, but cannot account for some general aspects of 
ordinary concepts. Smith [Smith, 1989] concludes that 
for ordinary concepts like birds, we use prototypes rather 
than storing exemplars; for complex concepts like stu­
dents in my class, however, exemplars can be used to 
construct prototypes or to directly classify instances. 
In addition, the prototype models produce much more 
compact concept descriptions compared to exemplar-
based models, and hence require much less computa­
tional effort to classify new instances. The on-line com­
putation of prototypes, however, has been recognized 
as a difficult computational problem [Hintzman, 1986; 
Kahneman and Miller, 1986]. 

In this paper, we use a genetic algorithm [Holland, 
1975] to evolve prototypes from pre-classified instances. 
We believe that in addition to possessing psychological 

SEN AND KNIGHT 725 



plausibility, prototype models can be used to build effec­
tive classification techniques for supervised classification 
problems. To test this hypotheses, we have defined a set 
of classification problems involving two classes and two 
real-valued features. The constructed problems are of 
varying complexity as measured by the number of pro­
totypes per category required for correct classification. 
We compare our system with the C4.5 system [Quinlan, 
1993] on these data sets. 

The rest of the paper is organized as follows: Sec­
tion 2 discusses alternate representations for prototype 
based classification and introduces our representation; 
Section 3 describes the GA used to evolve these pro­
totypes; Section 4 describes the classification problem 
set used to evaluate our system; Section 5 compares ex­
perimental results of our system with the C4.5 system, 
and Section 6 presents the shortcomings of the current 
system and future research directions to address these 
problems. 

2 Representat ion 
The standard approach to representing prototypes con­
sists of using the descriptions of individual instances of a 
given class and then abstracting the more frequent prop­
erties of these instances [Kahneman and Miller, 1986]. 
A prototype is often represented in a slot-filler struc­
ture containing default attribute values, relationships 
between attributes, and weights on attributes. In these 
representations, prototypes are often linked in hierar­
chies. Other possible representations for prototypes in­
clude production systems [Holland et a/., 1986] and con-
nectionist networks. 

In general, only one prototype is constructed per 
class1. The similarity of an input instance to a prototype 
is calculated from their respective attribute values using 
a "contrast rule": attributes not having common values 
are weighted and subtracted from the weighted sum of 
the attributes having common values. This method of 
classification explains typicality effects seen in most nat­
ural concepts (e.g., some birds are more easily recognized 
as bird than others). 

Using a single prototype per class, however, is not suf­
ficient to learn linearly non-separable categories. Since 
most practical classification problems are likely to be 
linearly non-separable, we allow multiple prototypes per 
class. The classification problems used in this paper are 
defined on real-valued attributes. Hence, the calculation 
of the similarity metric and the representation of pro­
totypes are modified to suit these domains. Our repre­
sentation of prototypes is identical to that of exemplars, 
that is a prototype is represented as a list of feature 
values together with its associated class. The similarity 
metric used is the Euclidean distance between the input 
instance and the prototype in the space defined by the 
features. 

1Actually, it is widely believed that an ordinary concept 
definition consist of a prototype constructed from perceptu­
ally salient and easy to compute features and a core made 
up of more accurate but less accessible features [Smith et al, 
1984]. 

Note that our prototype model is similar to the ex­
emplar model in the nearest neighbor calculation. The 
difference is that the prototypes are, in general, distinct 
from any examples seen by the system, and the number 
of prototypes per class is restricted to a small number 
(5 in this paper). Our model is similar to some proto­
type models which calculate similarity from a distance 
measure in some underlying psychological space rather 
than measuring it by common and distinctive proper­
ties [Shepard, 1974]. 

3 Genetic a lgor i thms for learning 
prototypes 

Genetic-Based Machine Learning (GBML) systems are 
rule-based systems which can be used to determine the 
class membership of input instances from a set of at­
tributes. A GBML system matches the set of attributes 
corresponding to an instance against a set of rules to 
determine the class membership of the instance. These 
domain-independent classification mechanisms are par­
ticularly useful in problem domains for which there is no 
known precise model to determine the class, or for which 
determining a precise model is impractical. 

There are two principal schools of thought in designing 
GBML systems [DeJong, 1990]. The first school of re­
searchers proposes to use genetic algorithms to evolve in­
dividual rules, a collection of which comprises the classi­
fication expertise of the system. This approach to build­
ing classifier systems was originally proposed by John 
Holland at the University of Michigan, and hence is re­
ferred to as the Michigan approach [Holland, 1986]. The 
other school of thought has been popularized by Ken De 
Jong and Steve Smith [Smith, 1980] from the University 
of Pittsburgh, and is therefore referred to as the Pitt ap­
proach to building classifier systems. In this approach, 
genetic algorithms are used to evolve structures, each of 
which represent a complete set of rules for classification. 
Each structure in the population in the Pitt approach 
corresponds to the entire set of rules in the Michigan 
approach. 

The Pitt approach seems to be better suited for 
batch-mode learning (where all training instances are 
available before learning is initiated) and for static do­
mains. The Michigan approach is more flexible to han­
dle incremental-mode learning (training instances arrive 
over time) and dynamically changing domains. We have 
chosen the Pitt approach in this paper to take advantage 
of the availability of all training data before learning is 
initiated. The only difference with the Pitt approach is 
that a structure consists of a set of prototypes instead of 
a set of rules. 

726 GENETIC ALGORITHMS 



3.1 Population structures 
Each population structure consists of one or more pro­
totypes belonging to each of the possible classes in the 
domain. Each prototype is represented as a set of feature 
values as described in Section 2. Prototypes belonging 
to the same class are placed adjacent to each other. Pro­
totypes belonging to different classes are separated by a 
special marker, Let us denote the jth feature value of 
the ith prototype belonging to the kth population struc­
ture by Pij. Then given a problem with two classes and 
two features, the kth structure in the population with 
two prototypes belonging to the first class and three pro­
totypes belonging to the second class is represented as: 

Traditional GAs use bit-string representations for pop­
ulation structures [Goldberg, 1989]. Our choice of real 
valued representation has recently received increasing at­
tention in the GA community [Goldberg, 1991] and has 
been effectively used for supervised concept classifica­
tion problems [Kelly and Davis, 1991; Corcoran and Sen, 
1994]. 

3.2 Operators for structure manipulation 
Genetic algorithms are a class of adaptive techniques 
that were motivated by the effectiveness of natural evo­
lution in developing organisms well-suited to a variety 
of environmental conditions. A majority of the struc­
ture manipulation operators in GAs are highly abstract 
versions of operators found in natural genetics. 

GAs operate on a population of structures, evolving 
more well-adapted structures to the given environment 
over successive generations. Each structure is evaluated 
in the domain to give it a fitness measure. We formu­
late the prototype learning problem as a function mini­
mization problem, where we are searching for structures 
that reduce the number of misclassifications on the train­
ing set. The number of misclassifications produced by a 
structure is used as a measure of its fitness. We formulate 
the prototype learning problem as a function minimiza­
tion problem, where we are searching for structures that 
reduce the number of misclassifications on the training 
set. 

After all the structures in the population are evalu­
ated, a new generation is formed by inserting new struc­
tures into the population according to their fitness val­
ues, causing the poorer performing structures to be elim­
inated (some get copied over multiple times depending 
on their relative fitness). For this selection process we 
use a rank-based method which has been claimed to be 
superior to the traditional fitness proportionate selection 
scheme [Whitley, 1989]. 

Mutation is used to replace the current value of one 
feature of a prototype by a randomly generated number 
in the domain of the feature. Thus mutation allows for 
a drastic change in the position of a prototype along one 
of the dimensions in the input space (each dimension 
corresponds to one attribute of the problem). Mutation 
takes place infrequently. The probability of mutation is 
set by a parameter 

A creep operator is used to displace the current posi­
tion of a prototype on the input space by a small amount. 
The creep operator is applied with a probability pcreep 
and changes the values of all the features of a prototype 
by a small percentage, 8, of their current values2. 

A two point crossover operator is used to swap sub­
parts of two structures. The crossover points can fall 
anywhere within a structure. When two parents are se­
lected for crossover, two crossover points are first ran­
domly selected on one of the parents . Now, two points 
are chosen on the other parent which match up semanti-
cally with the previously chosen points on the first par­
ent. For example, if a crossover point on the first par­
ent is in between prototypes belonging to category X, 
the corresponding crossover point in the the second par­
ent should also fall between prototypes for category X. 
Similarly, if the crossover point in the first parent falls 
between the second and third features of a prototype be­
longing to category Y, the corresponding crossover point 
in the the second parent should also fall between the sec­
ond and third features of a prototype belonging to cate­
gory V. After crossover points are selected in both par­
ents, the portions of the chromosomes in between these 
points are swapped between the parents to produce two 
offsprings. Any crossover that results in chromosomes 
with empty categories or with a number of prototypes 
for a category exceeding the maximum limit, is disal­
lowed. The following example demonstrates a valid two-
point crossover as described above (crossover points are 
marked by the symbol ]): 

4 Prob lem set 
In order to evaluate our proposed system, PLEASE, we 
designed a set of problems of varying complexity. These 
problems were defined on two continuous attributes, x 
and y, each having a range of [0,1]. So, the input space 
is a square of unit area. We formulated four different 
problems by labeling different regions of this unit square 
with one of two possible categories, 1 or 0. The area of 
the region allocated to each of the categories is equal in 
area for all the problems. These regions were chosen so 
that the classification problem can be solved with a spe­
cific number of appropriately positioned prototypes for 
each category. Different problems require different num­
ber of prototypes per category. The minimum number 
of prototypes required per category to solve the classifi­
cation problem is used as a measure of the complexity of 
the problem. Given a particular problem, we randomly 
generated a set of points from the input space and then 
labeled each point with the category associated with the 
region containing that point. These sets of points were 
then divided into training and testing sets. 

2 In our experiments, we found faster convergence when all 
the feature values were changed by the creep operator rather 
than changing only one feature at a time. 

SEN AND KNIGHT 727 



We present the problems used in the experiments in 
this paper in Figure 1. The problems are labeled as 
N/M, where N and M stand for the minimum number of 
prototypes in the two categories required to accurately 
solve the classification problem. The darkened regions 
in each of the figures are associated with category 0, 
and the rest of the square is associated with category 
1. The prototypes required to solve the problem are 
labeled '-' and '+ ' for categories 0 and 1 respectively. We 
should clarify that the presented problems are not unique 
instances of N/M problems; their choice was motivated 
by considerations of the ease of exposition. The following 
describes each of the problems in more detail: 

1/1 problem: The unit square is divided by a diagonal 
into two right-angled triangles, and each assigned to 
one category. This is the simplest problem in the 
problem set, and can be solved by using only two 
prototypes, one each for the two categories. The 
two prototypes must be placed on a perpendicular 
bisector of the dividing diagonal and should be at 
the same distance from the diagonal. The proto­
types should also be correctly labeled, i.e., the pro­
totype in the region assigned to category 1 should 
be labeled by a '+' and the prototype in the region 
assigned to category 1 should be labeled by a '-' 
(we will assume this is the case when describing the 
other problems). Such an orientation of the proto-

types means that any point in the upper triangle 
will be closer to the prototype in that triangle and 
hence classified correctly. The interesting thing to 
note here is that the above solution description al­
lows for an infinite number of minimal solutions3 to 
the problem (infinite number of perpendicular bi-
sectors of the diagonal, infinite number of pairs of 
points on any of these bisectors that are equidistant 
from the diagonal). One such solution is showed in 
the figure4. 

2/1 problem: In the particular 2/1 problem chosen for 
experimentation, a single diagonal strip associated 
with category 0 separates two triangular regions as­
signed to category 1. Once again, prototypes placed 
on any straight line perpendicular to the two diag­
onal lines can solve the classification problem per­
fectly. As a result, there are infinitely many mini­
mal solutions to this classification problem with the 
prototype representation we have chosen. One such 
placement of prototypes is shown in the figure. 

3/1 problem: The presented problem consists of a tri­
angular region associated with category 0, and the 
rest of the unit square associated with category 1. 

3 Minimal solutions refer to solutions that require the min­
imal number of prototypes for each category. 

4The placement of the prototypes in the figures are only 
approximately correct. 

728 GENETIC ALGORITHMS 



In contrast to the above problems, there is a unique 
minimal solution to this problem. This solution is 
found by first drawing perpendicular bisectors of the 
three sides of the triangle and placing the '-' proto­
type at the intersection of these three bisectors. The 
three ' + ' prototypes are then placed at points out­
side the triangles obtained by reflecting the position 
of the '-' prototype about each of the three sides of 
the triangle. 

4/1 problem: The presented problem consists of a 
square embedded within the unit square and with 
vertices placed on the midpoints of the sides of the 
unit square. The embedded square is associated 
with category 0 and the rest of the unit square is 
associated with category 1. Once again, there ex­
ists a unique minimal solution to this problem. This 
solution is obtained by placing the "-' prototype at 
the center of the square, and the four ' + ' prototypes 
at the four vertices of the unit square. 

The problem set, therefore, consists of problems of 
varying complexity, both in terms of the minimal num­
ber of prototypes required per category to solve the clas­
sification problems, as well as in terms of the number of 
minimal solutions existing for the problems. 

5 Exper imenta l results 
In this section, we present results from experiments con­
ducted to solve the previously mentioned classification 
problems using both PLEASE and CM.5. We have used 
the cross validation error estimation technique [Breiman 
el a/., 1984] for evaluating the performance of the algo­
rithms on the problem set. For each of the problems, 
1000 points were randomly generated from the input 
space and classified according to the region from which 
it was drawn. We used a five-fold cross validation, gen­
erating five different training/testing set splits. In each 
such split, 800 input instances were used for training, 
and the remaining 200 were used for testing. The con­
straint imposed on training/test split was that both the 
categories were equally represented in the training and 
test sets. Additionally, within a category, all the regions 
were also equally represented. Results obtained with the 
C4.5 system are averaged over these five training/testing 
set splits for each of the problems. Our PLEASE system 
uses genetic algorithms for learning prototypes, and the 
performance of the latter depends on the random initial 
population. As such, the PLEASE system was run on 
each training/testing split with 10 different random ini­
tializations. The results of PLEASE on each problem, 
therefore, is averaged over 50 runs. 

The parameters used for the PLEASE system in these 
experiments are as follows: population size = 150, num­
ber of generations = 200, pmut = 0.0001, pcreep - 0.3, 
s = 0.1, selection bias = 1.7, maximum number of pro­
totypes per category = 5. Table 1 contains the average 
and standard deviations of the percentage error rates of 
C4.5 and PLEASE on each of the four problems in the 
problem set. 

The main observations from these results are as fol­
lows: 

• PLEASE was consistently able to discover a set of 
prototypes that achieved near-perfect classification 
accuracy. 

• The error rates for PLEASE and C4.5 increased 
slightly with more complex problems. 

• Though C4.5 performed slightly better on training 
instances in the some of the problems, these dif­
ferences were not statistically significant. On the 
other hand, a two-sample t procedure shows that 
with at least 99% confidence level it can be stated 
that PLEASE produced lower error rates on the test 
instances than C4.5. The other notable difference 
between C4.5 and PLEASE was their relative per­
formance on the training and test cases. Training 
and test set errors were much more consistent in 
PLEASE than in C4.5. In fact, for the C4.5 system, 
test errors were approximately 5 to 8 times higher 
than errors on training instances. Since test set per­
formance is more important in supervised classifica­
tion problems, PLEASE seems to be able to better 
represent the underlying target concept. 

We now analyze the kind of solutions PLEASE gener­
ates for the given problem set. Table 2 presents the aver­
age number of prototypes used by the best solutions gen­
erated by PLEASE for each of the four problems. The 
numbers show that the solutions produced use more pro­
totypes than required by the minimal solutions to corre­
sponding problems. On analyzing individual solutions, 
we found that some of the solutions indeed were minimal, 
but in general, more prototypes were used. The decision 
trees produced by C4.5 for these problems contained, on 
the average, 44.2, 57.4, 69, and 70.2 nodes for the 1/1, 
2/1, 3/1, and 4/1 problems respectively. Hence, the data 
compression obtained with the PLEASE system is sig­
nificantly better compared to that obtained with C4.5. 

We will use a typical solution for the 4/1 problem 
to analyze both the nature of the solutions generated 
by PLEASE, and the classification errors made by such 
a solution. Figure 2 presents the 1000 data points for 
the 4/1 problem and also a typical solution produced by 
PLEASE together with the training and test set mis-
classifications of that solution. For the sake of clarity we 
have also drawn the lines outlining the embedded square 
for this problem. We find that the solution produced by 
PLEASE contains several prototypes for category 0, all 
clustered around the center of the unit square. The min­
imal solution contains just one prototype at the center. 
Similarly, there are two prototypes belonging to cate­
gory 1 placed close to each other at the left corner of 
the unit square. These two observations suggest the use 
of a prototype merging operator that will replace two 
prototypes by a new one in between them, if the dis­
tance between the two prototypes is less than a preset 
threshold. The placement of the prototypes in the solu­
tion generated by PLEASE is found to approximate, the 
prototype locations in the minimal solution. This close 
approximation to the unique minimal solution produces 
very low classification errors, 3 on the training set and 3 
on the test set. 

On analyzing the misclassifications produced we find 

SEN AND KNIGHT 729 



Table 2: Average number of prototypes learned by 
PLEASE for the two categories for each of the problem 
types. 

no "blatant" errors, i.e., all errors are located close 
to the boundary of separation between the categories. 
The other solutions that we have analyzed show similar 
trends in both the prototypes developed and the errors 
produced. 

6 Conclusions 
The choice of prototypes as a representation of target 
classes and the use of genetic algorithms to learn ap­
propriate prototypes for given classes has been shown 
to be an effective means for addressing supervised clas­
sification problems. In particular, we have provided a 
novel way of successfully addressing the difficult prob­
lem of on-line computation of prototypes from training 
data [Hintzman, 1986; Kahneman and Miller, 1986]. 

This paper contains an experimental evaluation of our 
proposed classification system, PLEASE, on a set of 
real-valued classification problems of varying complex­
ity. PLEASE produces near-perfect solutions to these 
problems and performs better than the well-known C4.5 
system on these problems. In a further study with an ex­
tended set of problems [Knight and Sen, 1995], we have 
found the PLEASE system performs favorably compared 
to simple exemplar-based classification mechanism like 
the nearest neighbor algorithm. 

The system as it stands today can be improved in a 
number of ways. We envision the following experiments 
with and extensions to the current system: 

• Developing a representation for both structured and 
nominal attributes in addition to the ordinal at­
tributes that are used currently. 

* Evaluating PLEASE for noisy immunity. 
• Using prototypes with a subset of attributes (nec­

essary to handle domains with large number of ir­
relevant attributes); this goes back to the more tra­

ditional view of prototypes [Kahneman and Miller, 
1986]. 

• Collapsing two prototypes into a single prototype if 
they are closer to each other than a given threshold. 

• Using the inversion operator in GAs, to allow swap­
ping of prototypes between any two classes in a chro­
mosome. 

• A prototype add (delete) operator that randomly 
selects a class in the chromosome and then adds 
(deletes) a prototype to (from) that class. The pro­
totype to be added may be constructed by averag­
ing feature values of a subset of the instances in the 
training set of that class that have been rnisclassi-
fied by this chromosome. A prototype may also be 
deleted if it did not classify any instance. 

* Seeding of the population by chromosomes con­
structed from possibly useful prototypes; these pro­
totypes can be formed by averaging feature values 
over a certain number of instances of a class that 
are randomly selected from the training set. 

We also plan to develop a prototype-based Michigan-
style classifier system. 

References 
[Aha et a/., 199l] David W. Aha, Dennis Kibler, and 

Marc K. Albert. Instance-based learning algorithms. Ma­
chine Learning, 6(1), 1991. 

[Breiman et al., 1984] L. Breiman, J.H. Friedman, and R.A. 
Olshen. Classification and Regression Trees. Wadsworth, 
Belmont, CA, 1984. 

[Cheeseman et ai, 1988] P. Cheeseman, J. Kelly, M. Self, 
J. Stutz, W. Taylor, and D. Freeman. Autoclass: A 
bayesian classification system. In Proceedings of the Fifth 
International Conference on Machine Learning, pages 54-
64, 1988. 

[Cherkauer, 1992] K.J. Cherkauer. Genetic search for 
nearest-neighbor exemplars. In Proceedings of the Fourth 
Midwest Artificial Intelligence and Cognitive Science Soci­
ety Conference, pages 87-91, 1992. 

[Corcoran and Sen, 1994] A.L. Corcoran and S. Sen. Using 
real-valued genetic algorithms to evolve rule sets for clas­
sification. In Proceedings of the IEEE Conference on Evo­
lutionary Computation, pages 120-124, 1994. 

[DeJong, 1990] Kenneth A. DeJong. Genetic-algorithm-
based learning. In Y. Kodratoff and R.S. Michalski, ed­
itors, Machine Learning, Volume III. Morgan Kaufmann, 
Los Alamos, CA, 1990. 

730 GENETIC ALGORITHMS 



[Fisher, 1987] Douglas H. Fisher. Knowledge acquisition 
via incremental conceptual clustering. Machine Learning, 
2:139-172, 1987. 

[Goldberg, 1989] David E. Goldberg. Genetic Algorithms 
in Search, Optimization & Machine Learning. Addison-
Wesley, Reading, MA, 1989. 

[Goldberg, 1991 ] David Goldberg. Real-coded genetic algo­
rithms, virtual alphabets, and blocking. Complex Systems, 
5:139-168, 1991. 

[Hintzman, 1986] D.L. Hintzman. "schema abstraction" in 
a multiple trace memory model. Psychological Review, 
93:411-428, 1986. 

[Holland et al, 1986] John H. Holland, K.J. Holyoak, R.E. 
Nisbett, and P.R. Thagard. Induction: Processes of Infer­
ences, Learning, and Discovery. MIT Press, Cambridge, 
MA, 1986. 

[Holland, 1975] John H. Holland. Adpatatton in natural and 
artificial systems. University of Michigan Press, Ann Ar­
bor, MI, 1975. 

[Holland, 1986] John H. Holland. Escaping brittleness: the 
possibilities of general-purpose learning algorithms applied 
to parallel rule-based systems. In R.S. Michalski, J.G. Car-
bonell, and T. M. Mitchell, editors, Machine Learning, an 
artificial intelligence approach: Volume II. Morgan Kauf-
mann, Los Alamos, CA, 1986. 

[Kahneman and Miller, 1986] D. Kahneman and 
D.T. Miller. Norm theory: Comparing reality to its al­
ternatives. Psychological Review, 93:136-153, 1986. 

[Kelly and Davis, 1991] James D. Kelly and Lawrence Davis. 
A hybrid genetic algorithm for classification. In Proceed­
ings of the International Joint Conference on Artificial In­
telligence, pages 645-650, 1991. 

[Knight and Sen, 1995] Leslie Knight and Sandip Sen. 
PLEASE: A prototype learning system using genetic al­
gorithms. In Proceedings of the 6th International Confer­
ence on Genetic Algorithms, San Mateo, CA, 1995. Mor­
gan Kaufman. 

[Kruschke, 1992] J.K. Kruschke. ALCOVE: An exemplar-
based connectionist model of category learning. Psycho­
logical Review, 99:22-44, 1992. 

[Mitchell, 1986] T. Mitchell. Generalization as search. Arti­
ficial Intelligence, 18:203-226, 1986. 

[Quinlan, 1986] Ross J. Quinlan. Induction of decision trees. 
Machine Learning, 1:81-106, 1986. 

[Quinlan, 1993] Ross J. Quinlan. C4.5: Programs for Ma­
chine Learning. Morgan Kaufmann, San Mateo, Califor­
nia, 1993. 

[Reed, 1972] S.K. Reed. Pattern recognition and categoriza­
tion. Cognitive Psychology, 3:382-407, 1972. 

[Rumelhart et al., 1986] D.E. Rumelhart, G.E. Hinton, and 
R.J. Williams. Learning internal representations by error 
propagation. In D.E. Rumelhart and J.L. McClelland, edi­
tors, Parallel Distributed Processing, volume 1. MIT Press, 
Cambridge, MA, 1986. 

[Schaffer, 1978] D. L. Medin & M.M. Schaffer. Context the­
ory of classification learning. Psychological Review, 85:207-
238, 1978. 

[Shepard, 1974] R.N. Shepard. Representation of structure 
in similarity data: Problems and prospects. Psychome-
trika, 39:373-421, 1974. 

[Smith and Medin, 1981] E.E. Smith and D.L. Medin. Cate­
gories and concepts. Harvard University Press, Cambridge, 
MA, 1981. 

[Smith et al., 1984] E.E. Smith, D.L. Medin, and L.J. Rips. 
A psychological approach to concepts: Comments on rey's 
"concepts and stereotypes'1. Cognition, 17:265-274, 1984. 

[Smith, 1980] Steve F. Smith. A learning system based on 
genetic adaptive algorithms. PhD thesis, University of 
Pittsburgh, 1980. (Dissertation Abstracts International, 
41, 4582B; University Microfilms No. 81-12638). 

[Smith, 1989] Edward E. Smith. Concepts and induction. In 
Michael I. Posner, editor, Foundations of Cognitive Sci­
ence. MIT Press, Cambridge, MA, 1989. 

[Stanfill and Waltz, 1986] C. Stanfill and D. Waltz. Toward 
memory-based reasoning. Communications of the ACM, 
29:1213-1228, 1986. 

[Vosniadou and Ortony, 1989] S. Vosniadou and A. Ortony. 
Similarity and Analogical Reasoning. Cambridge Univer­
sity Press, Cambridge, MA, 1989. 

[Whitley, 1989] D. Whitley. The genitor algorithm and selec­
tion pressure: Why rank-based allocation of reproductive 
trials is best. In Proceeding of the 3rd International Con­
ference on Genetic Algorithms, pages 116-121, San Mateo, 
CA, 1989. Morgan Kaufman. 

SEN AND KNIGHT 731 


