
Gene D u p l i c a t i o n t o E n a b l e Gene t i c P r o g r a m m i n g t o C o n c u r r e n t l y E v o l v e 
B o t h the A r c h i t e c t u r e a n d W o r k - P e r f o r m i n g Steps o f a C o m p u t e r P r o g r a m 

John R. Koza 
Stanford University 

Computer Science Department 
Stanford, California 94305 U. S. A. 

Koza@Cs.Stanford.Edu 

Abstract 
Susumu Ohno's provocative book Evolution by Gene 
Duplication proposed that the creation of new proteins 
in nature (and hence new structures and new behaviors 
in living things) begins with a gene duplication and that 
gene duplication is "the major force of evolution." This 
paper describes six new architecture-altering operations 
for genetic programming that are patterned after the 
naturally-occurring chromosomal operations of gene 
duplication and gene deletion. When these new 
operations are included in a run of genetic 
programming, genetic programming can dynamically 
change, during the run, the architecture of a multi-part 
program consisting of a main program and a set of 
hierarchically-called subprograms. These on-the-fly 
architectural changes occur while genetic programming 
is concurrently evolving the work-performing steps of 
the main program and the hierarchically-called 
subprograms. The new operations can be interpreted as 
an automated way to change the representation of a 
problem while solving the problem. Equivalently, 
these operations can be viewed as an automated way to 
decompose a problem into an non-pre-specified number 
of subproblems of non-pre-specified dimensionality; 
solve the subproblems; and assemble the solutions of 
the subproblems into a solution of the overall problem. 
These operations can also be interpreted as providing an 
automated way to specialize and generalize. 

1 Introduction 
The goal of automatic programming is to create, in an 
automated way, a computer program that enables a computer 
to solve a problem. This goal (attributed to Arthur Samuel 
in the 1950s) can be stated as follows: 

How can computers learn to solve problems without 
being explicitly programmed? 

At IJCAI-89, genetic programming was proposed as a 
domain-independent method for evolving computer programs 
that solve, or approximately solve, problems (Koza 1989). 
Genetic programming extends the biologically motivated 
genetic algorithm described in John Holland's pioneering 
Adaptation in Natural and Artificial Systems (1975). 

Genetic programming starts with a primordial ooze of 
randomly generated computer programs composed of the 
available programmatic ingredients and then applies the 

principles of animal husbandry to breed a new (and often 
improved) population of programs. The breeding is done in 
a domain-independent way using the Darwinian principle of 
survival of the fittest and an analog of the naturally-
occurring genetic operation of crossover (sexual 
recombination). The crossover operation is designed to 
create syntactically valid offspring programs (given closure 
amongst the set of ingredients). Genetic programming 
combines the expressive high-level symbolic representations 
of computer programs with the near-optimal efficiency of 
learning of Holland's genetic algorithm. 

Genetic Programming: On the Programming of 
Computers by Means of Natural Selection (Koza 1992) 
provides evidence that genetic programming can solve, or 
approximately solve, a variety of problems from a variety of 
fields, including many benchmark problems from machine 
learning, artificial intelligence, control, robotics, 
optimization, game playing, symbolic regression, system 
identification, and concept learning. A videotape (Koza and 
Rice 1992) shows examples. Recent additional work is 
described in Kinnear 1994. The sequence of the work-
performing steps of the programs being evolved by genetic 
programming is not specified in advance by the user. 
Instead, both the number and order of the work-performing 
steps are evolved as a result of selective pressure and the 
recombinative role of crossover. However, this first book 
Genetic Programming has the limitation that the vast 
majority of its evolved programs are single-part (i.e., one 
result-producing main part, but no subroutines). 

1.1 Background on Automatically Defined 
Functions 

1 believe that no approach to automated programming is 
likely to be successful on non-trivial problems unless it 
provides some hierarchical mechanism to exploit, by reuse 
and parameterization, the regularities, symmetries, 
homogeneities, similarities, patterns, and modularities 
inherent in problem environments. Subroutines do this in 
ordinary computer programs. 

Accordingly, Genetic Programming II: Automatic 
Discovery of Reusable Programs (Koza 1994a, 1994b) 
describes how to evolve multi-part programs consisting of a 
main program and one or more reusable, parameterized, 
hierarchically-called subprograms. 

An automatically defined function (ADF) is a function 
(i.e., subroutine, subprogram, DEFUN, procedure, module) 

734 GENETIC ALGORITHMS 



that is dynamically evolved during a run of genetic 
programming and which may be called by a calling program 
(or subprogram) that is concurrently being evolved. When 
automatically defined functions are being used, a program in 
the population consists of a hierarchy of one (or more) 
reusable function-defining branches (i.e., automatically 
defined functions) along with a main result-producing 
branch. Typically, the automatically defined functions 
possess one or more dummy arguments (formal parameters) 
and are reused with different instantiations of these dummy 
arguments. During a run, genetic programming evolves 
different subprograms in the function-defining branches of 
the overall program, different main programs in the result-
producing branch, different instantiations of the dummy 
arguments of the automatically defined functions in the 
function-defining branches, and different hierarchical 
references between the branches. 

When automatically defined functions are being used in 
genetic programming, the initial random generation of the 
population is created so that every individual program has a 
constrained syntactic structure consisting of a particular 
architectural arrangement of branches. When crossover is to 
be performed, a type is assigned to each potential crossover 
point in the parental computer programs either on a branch-
wide basis (called branch typing) or on the basis of the 
actual content of the subtree below the potential crossover 
point (called point typing). Crossover is then performed in 
a structure-preserving way (given closure) so as to ensure the 
syntactic validity of the offspring (Koza 1994a). 

Genetic programming with automatically defined 
functions has been shown to be capable of solving 
numerous problems. More importantly, the evidence so far 
indicates that, for many problems, genetic programming 
requires less computational effort (i.e., fewer fitness 
evaluations to yield a solution with a satisfactorily high 
probability) with automatically defined functions than 
without them (provided the difficulty of the problem is 
above a certain relatively low break-even point). Also, 
genetic programming is usually yield solutions with smaller 
average overall size with automatically defined functions 
than without them (provided, again, that the problem is not 
too simple). That is, both learning efficiency and 
parsimony appear to be properties of genetic programming 
with automatically defined functions. 

Moreover, there is also evidence that genetic programming 
with automatically defined functions is scalable. For several 
problems for which a progression of scaled-up versions was 
studied, the computational effort increases as a function of 
problem size at a slower rate with automatically defined 
functions than without them. In addition, the average size 
of solutions similarly increases as a function of problem 
size at a slower rate with automatically defined functions 
than without them. This observed scalability results from 
the profitable reuse of hierarchically-callable, parameterized 
subprograms within the overall program. 

Five major preparatory steps required before genetic 
programming can be applied to a problem, namely 
determining (1) the set of terminals (i.e., the actual variables 
of the problem, zero-argument primitive functions, and 
constants, if any) for each branch, (2) the set of functions 

(e.g., primitive functions) for each branch, (3) the fitness 
measure (or other arrangement for implicitly measuring 
fitness), (4) the parameters to control the run, and (5) the 
termination criterion and result designation method. 

1.2 The Problem of Architecture Discovery 
When automatically defined functions are added to genetic 
programming, it is also necessary to determine the 
architecture of the yet-to-be-evolved programs. The 
specification of the architecture consists of (a) the number of 
function-defining branches in the overall program, (b) the 
number of arguments (if any) possessed by each function-
defining branch, and (c) if there is more than one function-
defining branch, the nature of the hierarchical references (if 
any) allowed between the function-defining branches. 

Sometimes these architectural choices flow directly from 
the nature of the problem. Sometimes heuristic methods are 
helpful. However, in general, there is no way of knowing a 
priori the optimal (or sufficient) number of automatically 
defined functions that will prove to be useful for a given 
problem, or the optimal (or minimum) number of 
arguments for each automatically defined function, or the 
optimal (or sufficient) arrangement of hierarchical references. 

If the goal is to develop a single, unified, domain-
independent approach to automatic programming that 
requires that the user pre-specify as little direct information 
as possible about the problem, the question arises as to 
whether these architectural choices can be automated. 
Indeed, the requirement that the user predetermine the size 
and shape of the solution to a problem has been a bane of 
automated machine learning from the earliest times (Samuel 
1959). 

One way to automate these architectural choices for 
computer programs in general (called the technique of 
evolutionary selection of architecture) was described in 
chapters 21-25 of Koza 1994a. This technique starts with 
an architecturally diverse initial population (at generation 0) 
that has randomly-created representatives of a broad range of 
different architectures. As the evolutionary process proceeds, 
certain individuals with certain architectures will prove to be 
more fit than others at solving the problem. The more fit 
architectures will tend to prosper, while the less fit 
architectures will tend to wither away. Eventually a 
program with an appropriate architecture may emerge from 
this competitive and selective process. However, in this 
technique, no new architectures are ever dynamically created 
during the run. And, no architectures are ever dynamically 
altered during the run. There is only selection from amongst 
the architectures created at the beginning of the run. 

This paper asks, and affirmatively answers, whether it is 
possible to enable genetic programming to dynamically alter 
the architecture of a multi-part program during a run while it 
is concurrently solving the given problem. 

1.3 Recourse to Nature 
A change in the architecture of a multi-part computer 
program during a run of genetic programming corresponds to 
a change in genome structure in the natural world. 
Therefore, it seems appropriate to consider the different ways 
that a genomic structure may change in nature. 

KOZA 735 



In nature, sexual recombination ordinarily recombines a 
part of the chromosome of one parent with a homologous 
part of the second parent's chromosome. However, in 
certain rare and unpredictable occasions, recombination does 
not occur in this normal way. A gene duplication is an 
illegitimate recombination event that results in the 
duplication of a lengthy subsequence of a chromosome. 
Susumu Ohno's seminal book Evolution by Gene 
Duplication (1970) advanced the thesis that the creation of 
new proteins (and hence new structures and new behaviors in 
living things) begins with a gene duplication. 

The six new architecture-altering operations for genetic 
programming described in this paper are motivated by the 
naturally occurring mechanisms of gene duplication and gene 
deletion in chromosome strings. 

The six new architecture-altering operations can be viewed 
from five perspectives. First, the new architecture-altering 
operations provide a new way to solve the potentially 
vexatious problem of determining the architecture of the 
overall program in the context of genetic programming with 
automatically defined functions. Second, the new 
architecture-altering operations provide an automatic 
implementation of the ability to specialize and generalize in 
the context of automated problem-solving. Third, the new 
architecture-altering operations provide a way to 
automatically and dynamically change the representation of 
the problem while simultaneously solving the problem. 
Fourth, the new architecture-altering operations provide a 
way to automatically and dynamically decompose problems 
into subproblems and then automatically solve the overall 
problem by assembling the solutions of the subproblems 
into a solution of the overall problem. Fifth, the new 
architecture-altering operations provide a way to 
automatically and dynamically discover useful subspaccs 
(usually of lower dimensionality than that of the overall 
problem) and then automatically assemble a solution of the 
overall problem from solutions applicable to the subspaces. 

1.4 Outline of this Paper 
Section 2 of this paper describes the naturally occurring 
processes of gene duplication and gene deletion. Section 3 
describes the six new architecture-altering operations. 
Section 4 describes an actual run that solves that the 
problem of symbolic regression of the Boolean even-5-parity 
function while the architecture is being simultaneously 
evolved. Section 5 compares the computational effort 
required for five different ways of solving the problem. It 
concludes that the cost of automated architecture discovery is 
less than the cost of solving the problem without 
automatically defined functions (but more than that required 
with a fixed, user-supplied architecture that is known to be a 
good choice for this problem). 

2 Gene Duplication in Nature 
Gene duplications are rare and unpredictable events in the 
evolution of genomic sequences. In gene duplication, there 
is a duplication of a lengthy portion of the linear string of 
nucleiotide bases of the DNA in the living cell. After a 
sequence of bases that code for a particular protein is 
duplicated in the DNA, there are two identical ways of 

manufacturing the same protein. Thus, there is no 
immediate change in the proteins that are manufactured as a 
result of a gene duplication. 

Over time, however, some other genetic operation, such 
as mutation or crossover, may change one or the other of the 
two identical genes. Over short periods of time, the changes 
accumulating in a gene may be of no practical effect or 
value. As long as one of the two genes remains unchanged, 
the original protein manufactured from the unchanged gene 
continues to be manufactured and the structure and behavior 
of the organism involved may continue as before. The 
changed gene is simply carried along in the DNA from 
generation to generation. 

Ohno's Evolution by Gene Duplication corrects the 
mistaken notion that natural selection is a mechanism for 
promoting change. Natural selection exerts a powerful force 
in favor of maintaining a gene that encodes for the 
manufacture of a protein that is important for the survival 
and successful performance of the organism. However, after 
a gene duplication has occurred, there is no disadvantage 
associated with the loss of the second way of manufacturing 
the original protein. Consequently, natural selection usually 
exerts little or no pressure to maintain a second way of 
manufacturing a particular protein. Over time, the second 
gene may accumulate additional changes and diverge more 
and more from the original gene. Eventually the changed 
gene may lead to the manufacture of a distinctly new and 
different protein that actually does affect the structure and 
behavior of the living thing in some advantageous or 
disadvantageous way. When a changed gene leads to the 
manufacture of a viable and advantageous new protein, 
natural selection again works to preserve that new gene. 

Ohno also points out that ordinary point mutation and 
crossover are insufficient to explain major changes, 

"...while allelic changes at already existing gene loci 
suffice for racial differentiation within species as well 
as for adaptive radiation from an immediate ancestor, 
they cannot account for large changes in evolution, 
because large changes are made possible by the 
acquisition of new gene loci with previously non­
existent functions." 

Ohno continues, 
"Only by the accumulation of forbidden mutations at 
the active sites can the gene locus change its basic 
character and become a new gene locus. An escape 
from the ruthless pressure of natural selection is 
provided by the mechanism of gene duplication. By 
duplication, a redundant copy of a locus is created. 
Natural selection often ignores such a redundant 
copy, and, while being ignored, it accumulates 
formerly forbidden mutations and is reborn as a new 
gene locus with a hitherto non-existent function." 
(Emphasis in original). 

Ohno concludes, 
"Thus, gene duplication emerges as the major force 
of evolution." 

Ohno's provocative thesis is supported by the discovery of 
pairs of proteins with similar sequences of DNA and similar 
sequences of amino acids, but distinctly different functions. 
Examples include trypsin and chymotrypsin; the protein of 

736 GENETIC ALGORITHMS 



microtubules and actin of the skeletal muscle; myoglobin 
and the monomeric hemoglobin of hagfish and lamprey; 
myoglobin used for storing oxygen in muscle cells and the 
subunits of hemoglobin in red blood cells of vertebrates; 
and the light and heavy immunoglobin chains. 

In gene deletion, there is a deletion of a subsequence of 
nucleiotide bases that would otherwise be translated into 
work-performing proteins in the cell. 

Analogs of the naturally occurring operation of gene 
duplication have been previously used with genetic 
algorithms operating on character strings and with other 
evolutionary algorithms. Holland (1975, page 116) 
suggested that intrachromosomal gene duplication might 
provide a means of adaptively modifying the effective 
mutation rate by making two or more copies of a substring 
of adjacent alleles within an overall string. Cavicchio 
(1970) used intrachromosomal gene duplication in early 
work on pattern recognition using the genetic algorithm. 
Gene duplication is implicitly used in the messy genetic 
algorithm (Goldberg, Korb, and Deb 1989). Lindgren 
(1991) analyzed the prisoner's dilemma game using an 
evolutionary algorithm that employed an operation 
analogous to gene duplication applied to strings. Gruau 
(1994) used genetic programming to develop a clever and 
innovative technique to evolve the architecture of a neural 
network at the same time as the weights are being evolved. 

3 New Architecture-Altering Operations 
The six new architecture-altering genetic operations provide 
a way of evolving the architecture of a multi-part program 
during a run of genetic programming. Meanwhile, 
Darwinian selection continues to favor the more fit 
individuals in the population to participate in the operations 
of crossover and mutation. 

3.1 Branch Duplication 
The operation of branch duplication duplicates one of the 
branches of a program in the following way: 

(1) Select a program from the population. 

(2) Pick one of the function-defining branches of the 
selected program as the branch-to-be-duplicated. 

(3) Add a uniquely-named new function-defining branch to 
the selected program, thus increasing, by one, the number of 
function-defining branches in the selected program. The new 
function-defining branch has the same argument list and the 
same body as the branch-to-be-duplicated. 

(4) For each occurrence of an invocation of the branch-to-
be-duplicated anywhere in the selected program (e.g., the 
result-producing branch or any other branch that invokes the 
branch-to-be-duplicated), randomly choose either to leave 
that invocation unchanged or to replace that invocation with 
an invocation of the newly created function-defining branch. 

The step of selecting a program for all the operations 
described herein is performed probabilistically on the basis 
of fitness, so that a program that is more fit has a greater 
probability of being selected to participate in the operation 
than a less fit program. 

Figure 1 shows an overall program consisting of one two-
argument automatically defined function and one result-
producing main branch. Figure 2 shows the program 
resulting after applying the operation of branch duplication 
to Figure 1. Specifically, the function-defining branch 410 
of Figure 1 defining ADFO (also shown as 510 of Figure 2) 
is duplicated and a new function-defining branch (defining 
ADF1) appears at 540 in Figure 2. There arc two 
occurrences of invocations of the branch-to-be-duplicated, 
ADFO, in the result-producing branch of the selected 
program, namely ADFO at 481 and 487 of Figure 1. For 
each occurrence, a random choice is made to either leave the 
occurrence of ADFO unchanged or to replace it with a 
reference to the newly created ADF1. For the first 
invocation of ADFO at 481 of Figure 1, the choice is 
randomly made to replace ADFO 481 with ADF1 581 in 
Figure 2. The arguments for the invocation of ADFl 581 
are Dl 582 and D2 583 in Figure 2 (i.e., they are identical 
to the arguments Dl 482 and D2 483 for the invocation of 
ADFO at 481 in Figure 1). For the second invocation of 
ADFO at 487 of Figure 1, ADFO is left unchanged. 

Figure J Program consisting of one two-argument function-defining branch (ADFO) and one result-producing branch. 

K0ZA 737 



The new branch is identical to the previously existing 
branch (except for the name ADF1 at 541 in Figure 2). 
Moreover, ADF1 at 581 is invoked with the same arguments 
as ADFO at 481. Therefore, this operation does not affect 
the value returned by the overall program. 

The operation of branch duplication can be interpreted as a 
case splitting. After the branch duplication, the result-
producing branch invokes ADFO at 587 but ADF1 at 581. 
ADFO and ADF1 can be viewed as separate procedures for 
handling the two subproblems (cases). Subsequent genetic 
operations may alter one or both of these two presently-
identical function-defining branches and these subsequent 
changes to lead to a divergence in structure and behavior. 
This subsequent divergence may be interpreted as a 
specialization or refinement. That is, once ADFO and 
ADF1 diverge, ADFO can be viewed as a specialization for 
handling for subproblem associated with its invocation at 
587 and ADF1 at 581 can be viewed as a specialization for 
handling its subproblem. 

The operation of branch duplication as defined above (and 
all the other new operations described herein) always produce 
a syntactically valid program (given closure). 
3.2 Argument Duplication 
The operation of argument duplication duplicates one of the 
dummy arguments in one of the automatically defined 
functions of a program in the following way: 

(1) Select a program from the population. 
(2) Pick one of its function-defining branches. 
(3) Choose one of the arguments of the picked function-

defining branch as the argument-to-be-duplicated. 
(4) Add a uniquely-named new argument to the argument 

list of the picked function-defining branch of the selected 
program, thus increasing, by one, the number of arguments 
in its argument list. 

(5) For each occurrence of the argument-to-bc-duplicatcd in 
the body of picked function-defining branch of the selected 
program, randomly choose either to leave that occurrence 
unchanged or to replace it with the new argument. 

(6) For each occurrence of an invocation of the picked 
function-defining branch anywhere in the selected program, 
identify the argument subtree corresponding to the argument-
to-be-duplicated and duplicate that argument subtree in that 
invocation, thereby increasing, by one, the number of 
arguments in the invocation. 

Because the function-defining branch containing the 
duplicated argument is invoked with an identical copy of the 
previously existing argument, this operation leaves 
unchanged the value returned by the overall program. 

The operation of argument duplication can also be 
interpreted as a case-splitting. The particular instantiations 
of the second and third arguments in the invocations of 
ADFO provide potentially different ways of handling the two 
separate subproblems (cases). 

3.3 Branch Creation 
The branch creation operation creates a new automatically 
defined function within an overall program by picking a 
point in the body of one of the function-defining branches or 
result-producing branches of the selected program. This 
picked point becomes the top-most point of the body of the 
branch-to-be-created. The operation of branch creation is 
similar to, but different than, the compression (module 
acquisition) operation of Angeline and Pollack (1994). 

3.4 Argument Creation 
The argument creation operation creates a new dummy 
argument within a function-defining branch of a program. 
Details of all the new operations are in Koza 1994c. 

3.5 Branch Deletion 
The operations of argument duplication, branch duplication, 
branch creation, and argument creation create larger 
programs. The operations of argument deletion and branch 
deletion can create smaller programs and thereby balance the 
persistent growth in biomass that would otherwise occur. 

The operation of branch deletion deletes one of the 
automatically defined functions. 

738 GENETIC ALGORITHMS 



When a function-defining branch is deleted, the question 
arises as to how to modify invocations of the branch-to-be-
deleted by the other branches of the overall program. The 
alternative used herein (called branch deletion with random 
regeneration) randomly generates new subtrees composed of 
the available functions and terminals in lieu of the 
invocation of the deleted branch. 

3.6 Argument Deletion 
The operation of argument deletion deletes one of the 
arguments to one of the automatically defined functions of a 
program. When an argument is deleted, references to the 
argumenl-to-be-deleted may be corrected by argument 
deletion with random regeneration. The operations of 
argument deletion and branch deletion affect the value 
returned by the overall program. They may be viewed as a 
generalization in that some information that was once 
considered in executing the procedure is now ignored. 

3.7 Creation of the Initial Population 
When the architecture-altering operations are used, the initial 
population of programs may be created in any one of three 
ways. One possibility (called the minimalist approach) is 
that each multi-part program in the population at generation 
0 has a uniform architecture with exactly one automatically 
defined function possessing a minimal number of arguments 
appropriate to the problem. A second possibility (called the 
big bang) is that each program in the population has a 
uniform architecture with no automatically defined functions 
(i.e., only a result-producing branch). This approach relies 
on branch creation to create multi-part programs in such 
runs. A third possibility is that the population at generation 
0 is architecturally diverse (as described in Koza 1994a). 

3.8 Structure-Preserving Crossover 
When the architecture-altering operations arc used, the 
population quickly becomes architecturally diverse. 
Structure-preserving crossover with point typing (Koza 
1994a) permits robust recombination while simultaneously 
guaranteeing that any pair of architecturally different parents 
will produce syntactically valid offspring. 

4 Example of an Actual Run 
The architecture-altering operations described herein will 
now be illustrated by showing an actual run of the problem 
of symbolic regression of the cven-5-parity function. 
Boolean parity functions are often used as benchmarks for 
experiments in machine learning because a change in any 
one input (environmental sensor) toggles the outcome. The 
problem is to discover a computer program that mimics the 
behavior of the Boolean even-k-parity problem for every one 
of the 2k combinations of its k Boolean inputs. The 
primitive functions are AND, OR, NAND, and NOR. 

A population size, M, of 96,000 was used. All runs 
solved well before the targeted maximum number of 
generations, G, of 76. The run uses the minimalist 
approach in which each program in generation 0 consists of 
one result-producing branch and one two-argument function-
defining branch. On each generation, there were 74% 
crossovers; 10% reproductions; 0% mutations; 5% branch 

duplications, 5% argument duplications; 0.5% branch 
deletions; 0.5% argument deletions; 5% branch creations; 
and 0% argument creations. Other minor parameters were 
chosen as in Koza 1994a. 

The problem was run on a home-built medium-grained 
parallel computer system. In the so-called distributed 
genetic algorithm or island model for parallelization (Tanese 
1989), different semi-isolated subpopulations (called demes 
after Wright 1943) are situated at the different processing 
nodes. The system consisted of a host PC 486 type 
computer running Windows and 64 Transtech TRAMs 
(containing one INMOS T805 transputer and 4 megabytes of 
RAM memory) arranged in a toroidal mesh. There were D 
- 64 demes, a population size of Q = 1,500 per deme, and a 
migration rate of B = 8% (in each of four directions on each 
generation for each deme). Generations are run 
asynchronously. Details of the parallel implementation of 
genetic programming on a network of transputers can be 
found in Koza and Andre 1995. 

On generation 13 of one run, a 100%-correct solution to 
the even-5-parity problem emerged in the form of a 
computer program with one three-argument automatically 
defined function and one two-argument automatically defined 
function. Three-argument ADF0 (which originally had only 
two arguments in generation 0) performs Boolean rule 106, 
a non-parity rule. Two-argument ADF1 (which did not exist 
at all in generation 0) is equivalent to the odd-2-parity 
function. The result-producing branch of this program 
invokes both ADF0 and ADFl. 

5 Performance of the New Operations 
We now use the Boolean even-5-parity problem to compare, 
over a series of runs, the performance of the architecture-
altering operations for the following five approaches: 

(A) without automatically defined functions 
(corresponding to the style of runs discussed throughout 
most of Genetic Programming), 

(B) with automatically defined functions, evolutionary 
selection of the architecture (corresponding to the 
style of runs in chapters 21-25 of Genetic Programming II), 
an architecturally diverse initial population, and structure-
preserving crossover with point typing, 

(C) with automatically defined functions, the 
architecture-altering operations described herein, an 
architecturally diverse population (after generation 0), and 
structure-preserving crossover with point typing, 

(D) with automatically defined functions, a fixed user-
supplied architecture that is known to be a good choice for 
this problem (i.e., one three-argument and one two-argument 
automatically defined function), and structure-preserving 
crossover with point typing, and 

(E) with automatically defined functions, a fixed, user-
supplied, known-good architecture, and structure-preserving 
crossover with branch typing (corresponding to the style 
of runs throughout most of Genetic Programming II). 

The comparisons are made for the following three 
performance characteristics: computational effort, E (with 
99% probability); the wallclock time, W(M,t,z) in 
seconds(with 99% probability); and the average structural 

KOZA 739 



complexity, S. These three measures are described in detail 
in Koza 1994a. 

As Table 1 shows, all four approaches employing 
automatically defined functions (B, C, D, or E) require less 
computational effort than not using them (approach A). 
Approach E (which benefits from user-supplied architectural 
information) requires the least computational effort. 

Approach C (using the architecture-altering operations) 
requires less computational effort than solving the problem 
without automatically defined functions (approach A), but 
more than with the fixed, user-supplied, known-good 
architecture (approach E). 

Approach D isolates the additional computational effort 
required by point typing (relative to approach E). Greater 
computational effort is required by approach D than approach 
E. Since the computational effort for approach C is 
virtually tied with approach D, the cost of architecture-
altering operations for this problem is not much greater than 
the cost of point typing. 

Approach E consumes less wallclock time than approach 
C (using the architecture-altering operations), which, in 
turn, consumes less wallclock time than approach A 
(without automatically defined functions). 

The average structural complexity, S, for all four 
approaches (B, C, D, or E) employing automatically defined 
functions is less than that for approach A (without 
automatically defined functions). Approach C (using the 
architecture-altering operations) has the lowest value of S 
(i.e., produces the most parsimonious solutions). 

Acknowledgements 
David Andre and Walter Alden Tackett wrote the computer 
program in C to implement the above. 

References 
Angeline, Peter J. and Pollack, Jordan B. 1994. 

Coevolving high-level representations. In Langton, 
Christopher G. (editor). Artificial Life III, SFI Studies in 
the Sciences of Complexity. Volume XVII Redwood 
City, CA: Addison-Wesley. Pages 55-71. 

Cavicchio, Daniel J. 1970. Adaptive Search using 
Simulated Evolution. Ph.D. dissertation. Department of 
Computer and Communications Science, University of 
Michigan. 

Goldberg, David E., Korb, Bradley, and Deb, K.. 1989. 
Messy genetic algorithms: Motivation, analysis, and first 
results. Complex Systems. 3(5): 493-530. 

Gruau, Frederic. 1994. Genetic micro programming of 
neural networks. In Kinnear, Kenneth E. Jr. (editor). 

Advances in Genetic Programming. Cambridge, MA: The 
MIT Press. Pages 495-518. 

Holland, John H. 1975. Adaptation in Natural and Artificial 
Systems: An Introductory Analysis with Applications to 
Biology, Control, and Artificial Intelligence. Ann Arbor, 
MI: University of Michigan Press. The second edition is 
currently available from The MIT Press 1992. 

Kinnear, Kenneth E. Jr. (editor). 1994. Advances in Genetic 
Programming. Cambridge, MA: The MIT Press. 

Koza, John R. 1989. Hierarchical genetic algorithms 
operating on populations of computer programs. In 
Proceedings of the 11th International Joint Conference on 
Artificial Intelligence. San Mateo, CA: Morgan 
Kaufmann. Volume 1. Pages 768-774. 

Koza, John R. 1992. Genetic Programming: On the 
Programming of Computers by Means of Natural 
Selection. Cambridge, MA: The MIT Press. 

Koza, John R. 1994a. Genetic Programming II : Automatic-
Discovery of Reusable Programs. Cambridge, MA: The 
MIT Press. 

Koza, John R. 1994b. Genetic Programming II Videotape: 
The Next Generation. Cambridge, MA: The MIT Press. 

Koza, John R. 1994c. Architecture-altering operations for 
evolving the architecture of a multi-part program in 
genetic programming. Stanford University Computer 
Science Department technical report STAN-CS-TR-94-
1528. October 21, 1994. 

Koza, John R. and Andre, David. 1995. Parallel Genetic 
Programming on a Network of Transputers. Stanford 
University Computer Science Department technical report 
STAN-CS-TR-95-1542. January 30, 1995. 

Koza, John R., and Rice, James P. 1992 .Genetic 
Programming: The Movie. Cambridge, MA: MIT Press. 

Lindgren, Kristian. 1991. Evolutionary phenomena in 
simple dynamics. In Langton, Christopher, Taylor, 
Charles, Farmer, J. Doyne, and Rasmussen, Steen 
(editors). Artificial Life II, SFI Studies in the Sciences of 
Complexity. Volume X. Redwood City, CA: Addison-
Wesley. Pages 295-312. 

Ohno, Susumu. 1970. Evolution by Gene Duplication. 
New York: Springer-Verlag. 

Samuel, Arthur L. 1959. Some studies in machine learning 
using the game of checkers. IBM Journal of Research and 
Development. 3(3): 210-229. 

Tanese, Reiko. 1989. Distributed Genetic Algorithm for 
Function Optimization. PhD. dissertation. Department of 
Electrical Engineering and Computer Science. University 
of Michigan. 

Wright, Sewall. 1943. Isolation by distance. Genetics 28. 
Page 114-138. 

740 GENETIC ALGORITHMS 


