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Abst rac t 

This paper describes a real-time decision­
making model that combines the expressiveness 
and flexibility of knowledge-based systems with 
the real-time advantages of anytime algorithms. 
Anytime algorithms offer a simple means by 
which an intelligent system can trade off com­
putation time for quality of results. Previ­
ous attempts to develop knowledge-based any­
time algorithms failed to produce consistent, 
predictable improvement of quality over time. 
Without performance profiles, that describe the 
output quality as a function of time, it is hard 
to exploit the flexibility of anytime algorithms. 
The model of progressive reasoning that is pre­
sented here is based on a hierarchy of reason­
ing units that allow for gradual improvement of 
decision quality in a predictable manner. The 
result is an important step towards the ap­
plication of knowledge-based systems in time-
critical domains. 

1 I n t r oduc t i on 

This paper describes a real-time decision-making model 
that combines the expressiveness and flexibility of 
knowledge-based systems with the real-time advantages 
of anytime algorithms. The application of knowledge-
based systems to real-time domains such as process con­
trol, automated navigation systems, medical monitor­
ing, and robotics is an important problem in artificial 
intelligence. A major difficulty in solving this problem 
arises since real-time domains require continuous opera­
tion and predictable performance while knowledge-based 
systems rely on time-consuming algorithms with highly 
variable performance. Performance variability has lim­
ited the application of knowledge-based systems to real-
time domains. 
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To avoid these problems, the AI community has con­
structed several general paradigms such as anytime algo­
rithms [Dean and Boddy, 1988; Horvitz, 1987], design-to-
time [Garvey and Lesser, 1993] and various types of pro­
gressive reasoning techniques [Winston, 1984; Mouad­
dib et a/., 1992]. Another approach has been to con­
struct special architectures for particular problem do­
mains such as the Guardian system for monitoring the 
patient's condition in an intensive care unit [Hayes-Roth 
et a/., 1991]. Among the general paradigms, anytime 
algorithms in particular are increasingly used in AI ap­
plications since they are easy to construct and monitor 
and since they can be efficiently combined to produce 
larger real-time systems [Zilberstein, 1993]. But success­
ful control of anytime algorithms require the use of per­
formance profiles that describe the dependency of output 
quality on computation time. Knowledge-based anytime 
algorithms that have been proposed in the past do not 
exhibit high correlation between computation time and 
output quality. Therefore, their performance profiles can 
not be constructed and their use as anytime algorithms 
is very limited. 

In this paper, we describe a model of knowledge-based 
progressive reasoning that meets the requirements of a 
"well-behaved" anytime algorithm. The model consists 
of a rule-based language and an associated inference 
mechanism. Problem solving is performed by an iter­
ative process that produces quickly a first solution and 
refines it step-by-step until interrupted by the control 
mechanism. In Section 2, we describe the problem of 
constructing knowledge-based anytime algorithms and 
the difficulties with current solutions to the problem. 
Section 3 describes the model of progressive reasoning 
in detail. In Section 4, we describe an application of the 
model to a collision avoidance system. We conclude with 
a summary of the contribution of this work and future 
research directions. 

2 Any t ime computa t ion and 
knowledge-based systems 

This section presents the advantages of anytime algo­
rithms for real-time decision making. The section de-
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scribes several efforts to develop knowledge-based sys­
tems as anytime algorithms and explains the difficulty 
of combining the two paradigms. 

2.1 Anyt ime algorithms 

Anytime algorithms are algorithms whose quality of re­
sults improve gradually as computation time increases, 
hence they offer a tradeoff between resource consump­
tion and output quality. The quality of the results pro­
duced by anytime algorithms can be measured by their 
level of certainty, accuracy, or specificity. A performance 
profile [Dean and Boddy, 1988] is a probabilistic descrip­
tion of the dependency of output quality on computation 
time. Zilberstein and Russell generalized this notion cap­
turing also the dependency on input quality using con­
ditional performance profiles. The latter can be used 
to optimally compose real-time systems using a library 
of anytime algorithms [Zilberstein, 1993]. To solve the 
composition problem, an important distinction is made 
between two types of anytime algorithms, namely inter­
ruption and contract algorithms. An interruptible algo­
rithm can be interrupted at any time to produce results 
whose quality is described by its performance profile. 
A contract algorithm offers a similar trade-off between 
computation time and quality of results, but it must 
know the total allocation of time in advance. Interrupt­
ible algorithms are more flexible, but they are also more 
complicated to construct. Zilberstein [1993] solved that 
problem by a general construction that produces an in­
terruptible version for any given contract algorithm and 
requires only a small, constant penalty. Subsequently, a 
set of programming tools for composition and monitor­
ing of anytime algorithms have been developed by Grass 
and Zilberstein [1995]. 

Since their introduction in the late 1980's, anytime al­
gorithms have been applied to such real-time problems as 
mobile robot navigation, medical diagnosis and monitor­
ing, information gathering, and model-based diagnosis. 
In addition, several anytime algorithms have been de­
veloped for evaluation of probabilistic networks and for 
dynamic programming. But the technique has been less 
successful in the area of knowledge-based systems. 

2.2 Real-time knowledge-based systems 

In a 1988 comprehensive survey of real-time knowledge-
based systems [Laffey et a/., 1988], the authors concluded 
that "Currently, ad hoc techniques are used for making a 
system produce a response within a specified time inter­
val." Unfortunately, not much has been changed since 
that survey was conducted. The primary method for 
achieving real-time performance is based in many cases 
on speeding up individual algorithms in a generate-and-
test manner. This method slows down the development 
of real-time systems and makes them inefficient when 
operating in dynamic environments. 

One approach to deal with the problem has been 
to develop specialized architectures for particular do­

mains. One successful example is the Guardian system 
for monitoring the patient's condition in an intensive 
care unit [Hayes-Roth et a/., 1991]. The system inte­
grates perceptual capabilities with real-time reasoning 
and action. Closer to our approach is the patient moni­
toring system developed by Ash et al. [1993]. The sys­
tem exhibits an anytime behavior accomplished by orga­
nizing actions in a hierarchical structure. The result has 
been integrated into the Guardian system to provide a 
response when the slower, deliberative methods cannot 
complete their tasks. The work described in this paper 
extends the hierarchical decomposition approach to gen­
eral knowledge-based systems. Our motivation is best 
summarized by the conclusion of the above survey: 

"We concluded that one of the main reasons for 
this situation is that expert systems developers * 
have often tried to apply traditional tools to 
applications for which they are not well suited. 
Tools specifically built for real-time monitor­
ing and control applications need to be built. 
An immediate goal should be the development 
of high-performance inference engines that can 
guarantee response times." 

2.3 Knowledge-based anytime 
computation 

Knowledge-based systems rely on an inference engine 
combined with a body of declarative knowledge. Since 
the amount of relevant knowledge varies from situation 
to situation, it is hard to predict how problem solving 
will progress as a function of time. Hence, a naive im­
plementation of progressive reasoning techniques does 
not lead to "well-behaved" anytime algorithms. In this 
section we describe two attempts to construct anytime 
knowledge-based systems and their limitations. 

Elkan [1990] presents an abductive strategy for dis­
covering and revising plausible plans. In his approach, 
candidate plans are found quickly by allowing them to 
depend on assumptions. His formalism makes explicit 
which antecedents of rules have the status of default 
conditions. Candidate plans are refined incrementally 
by trying to justify the assumptions on which they de­
pend. The implementation of the model replaces the 
standard depth-first exploration strategy of Prolog with 
an iterative-deepening version. The result is an anytime 
algorithm for incremental approximate planning. 

As we pointed out earlier, it is hard to find the per­
formance profile of such a planner. Even in the context 
of particular domain knowledge, the performance of the 
inference engine (a theorem prover) is going to be highly 
dependent on the particular query and is hard to predict 
in advance. Another difficulty is to measure the quality 
of results in a meaningful way. Our model of progressive 
reasoning addresses successfully these two issues. 

Smith and Liu [1989] propose a monotone query pro­
cessing algorithm which derives approximate answers di­
rectly from relational algebra query expressions. An ap-
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proximate relation R of a standard relation 5 is a subset 
of the Cartesian product of all the domains of S that can 
be partitioned into two blocks, the certain set C and the 
possible set P such that: C C 5 and R = CuP > S. The 
algorithm assumes that the information stored in the 
database is complete and that the input data is precise. 
An incomplete answer to a query is generated when there 
is not enough time to complete processing the Query, or 
because some relation that must be read is not accessi­
ble. 

Vrbsky and Liu have implemented the approximate 
query processing algorithm in a system called APPROX­
IMATE [Vrbsky and Liu, 1992]. The operation associ­
ated with each leaf node of the tree is an approximate-
read that returns one segment of the requested relation 
at a time. Approximate relational algebra is used in or­
der to evaluate the tree. Initially, the certain set is empty 
for every approximate object and the possible set is the 
complete range of values for the particular object. After 
each approximate-read, a better approximate answer to 
the query is produced. The exact answer is returned if 
the system is allowed to run to completion. 

APPROXIMATE suffers from the same problem as 
Elkan's approximate planning technique, namely the dif­
ficulty to derive the performance profile of the system 
due to its dependence on the contents of the database 
and the complexity of the query. It is also hard to evalu­
ate the quality of an approximate relation and represent 
it quantitatively. To summarize, existing knowledge-
based techniques are hard to convert to anytime algo­
rithms due to wide variability in performance improve­
ment over time. 

3 Progressive reasoning 

Progressive reasoning is an important technique to de­
sign knowledge-based systems that exhibit a highly pre­
dictable time-quality tradeoff. The technique uses multi­
level deliberation in order to gradually transform an ap­
proximate solution into a precise one. The mapping from 
the set of inputs (problem instance) to the set of outputs 
(solution) is based on progressive exploration of data and 
knowledge, hence the name progressive reasoning. Pro­
gressive exploration is facilitated by using a hierarchical 
structure of input elements defined by weights that the 
system's designer attaches to each input according to its 
importance. Correspondingly, knowledge is also orga­
nized in a hierarchical way. This mapping is especially 
suitable in domains where the reasoner uses abstraction 
to structure the search space (as in hierarchical plan­
ning) , and in problems that require the result to be ex­
pressed at varying levels of detail (as in model-based 
diagnosis). 

Furthermore, this organization is an important factor 
in reducing the unpredictability of knowledge-based sys­
tems by limiting the amount of knowledge and data that 
is the focus of the system at each level of the hierarchy. 
As a result, we can characterize precisely the tradeoff 

between computation time and quality of results offered 
by progressive reasoning systems. 

This section explains how progressive reasoning works. 
The two major issues in progressive reasoning are the 
hierarchical organization of knowledge and the control of 
the evolution of solution quality. We cover these issues 
by first describing the conceptual model and then its 
implementation and properties. The implementation is 
based on the GREAT (Guaranteed REAsoning Time) 
model [Mouaddib et a/., 1992]. 

3.1 Conceptual model 

The distinctive features of our progressive reasoning ap­
proach result from the combination of: (1) A generic 
knowledge representation language that facilitates pro­
gressive problem solving; and (2) A control mechanism 
that progressively feeds data and knowledge into the in­
ference engine using a preference criterion. 

Knowledge is represented using a rule-based language 
that refers to data by a set of attributes. The progressive 
problem solving process assumes that there are several 
solutions with different qualities each of which represents 
an intermediate (approximate) view of the final solution. 
The transition from one solution to a more precise one 
is done by using additional attributes and rules that are 
more precise than those previously used. Each rule can 
change the current solution by adding, deleting or mod­
ifying the attributes contained in the current solution. 
This process is shown schematically in Figure 1. 

Figure 1: The schematic structure of progressive reason­
ing. 

This organization is defined by a preference criterion 
representing the accuracy of the attributes specified by 
the system's designer. The attributes preference crite­
rion allows the solution to be represented at different 
levels of detail. This preference criterion, named crit-
icality by Knoblock et al. [1991], is generalized by the 
notion of granularity in the GREAT model. We also use 
the certainty of attributes to control progressive manip­
ulation of data of the same granularity. Based on the 
attributes preference criterion, the preference criterion 
of rules is computed automatically as will be shown in 
the next section. The preference criterion defines aggre­
gations of attributes and aggregations of rules that are 
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Figure 2: A single execution cycle consists of a reason­
ing cycle and an evaluation cycle at a distinct level of 
reasoning. 

Reasoning cycles 
Each reasoning cycle consists of using one region and one 
package of rules corresponding to the current level of rea­
soning. This approach limits the amount of relevant data 
and knowledge at each level. Reasoning is performed by 
exploring rules of the current package and attributes of 
the current region. The cycle of reasoning consists of 
activating relevant rules. The execution of rules modi­
fies the quality of the solution which is evaluated at the 
end of each cycle. When the quality is unsatisfactory, 
another execution cycle is activated. This process is re­
peated until the quality is satisfactory or the deadline is 
reached. 

Evaluation cycle 
At the end of each reasoning cycle, the evaluator judges 
the quality of the actual solution and decides whether 
further improvement is needed. When further reason­
ing is required, the evaluator decides whether it must be 
pursued at the same level or it is necessary to change the 
reasoning level and use more precise attributes. Quality 
is evaluated based on a multi-dimensional criterion that 
measures the level of completeness, certainty, and preci­
sion of the solution. The evaluator checks first whether 
completeness and certainty are insufficient, in which case 
another reasoning cycle at the same level is executed. 
Otherwise, the evaluator verifies the precision quality of 
the solution. If it is acceptable, the solution is returned 
and the process terminates. Otherwise, the evaluator 

778 KNOWLEDGE BASE TECHNOLOGY 



completeness and its certainty. If the evaluation fails, 
processing resumes at level Li until the evaluation suc­
ceeds or the deadline is reached. When the evaluation 
succeeds, the evaluator invokes the next level in order to 
improve the precision of the solution. 

The construction of the reasoning levels (Li) guaran­
tees the improvement of the solution quality as the sys­
tem moves from one level to another. This is true since 
the attributes computed by a new level Li are always 
more precise than those contained in the current result. 
The level Li deletes, from the current solution, attributes 
judged incorrect at the current level of granularity (for 
example, the attribute time that contains the value 6h 
can be replaced at another level of granularity which 
takes minutes into account by the value 6hl5min). That 
is why the quality of the solution Sl

rea is preferred to that 
o f * - 1 . 

4 App l ica t ion : A col l ision avoidance 
system 

Consider the problem of collision avoidance in a railway 
network. Assume that a railway network consists of n 
horizontal railway tracks and n vertical tracks each of 
which is used by one train. Each horizontal track in­
tersects all the vertical ones. The main objective is to 
prevent two trains from colliding with each other at one 
of the n2 crossings. The system needs to detect potential 
collisions and to optimally modify the speeds of the train 
to avoid any chance of collision. The rest of this section 
describes how the GREAT model was used to construct 
this collision avoidance system [Mouaddib, 1993]. 

4.1 Collision avoidance w i th progressive 
reasoning 

In our implementation, the collision avoidance task is 
achieved using different levels of approximation depend­
ing on how much time is available. The deadline is de­
fined as the time remaining before a collision may oc­
cur. In this domain, there are several different policies 
to avoid collision. The system can either control the 
train in a qualitative manner (stop, slow, speed) or it 
can compute the actual speed at various levels of pre­
cision. Different constraints can be taken into account, 
such as passenger comfort (this means that acceleration 
or slowing down have to be limited), the time-table of 
each train, and the priorities or time-dependent utilities 
of the different trains. 
To capture these types of knowledge, we used the com­
ponents of GREAT as follows: 

• The set of data attributes is defined as: 
D — {speed, tendency, nextcross, distance, railpri-
ority, maxspeed, minspeed, timetable} 

• The context of a situation is defined as: 
C — ControlCollision. In this context the set D is 
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4.2 Experimental results 

The performance of GREAT is summarized by the 
graphs shown in Figure 4. We examine the performance 
as a function of two parameters: (1) the deadline, that 
causes gradual improvement of solution quality as it in­
creases, and (2) the size of the network, that causes grad­
ual degradation of solution quality as it increases. This 
is because control time increases as a function of the 
size while the deadline decreases. Measuring the precise 
"objective" quality of the solution is hard in knowledge-
based systems, but the level of reasoning is a good in­
dication of solution quality in our system. Hence we 
use the ratio between the number of activated levels and 
the total number of levels as our overall quality measure. 
We are currently investigating possible improvements in 
measuring overall quality, but the above measure is suffi­
cient to show that the system exhibits gradual improve­
ment/degradation of quality as computational time in­
creases/decreases. 

To summarize, our experimental results show that 
GREAT establishes a correlation between solution qual-

ity and computation time which can be quantitatively 
described by a performance profile. 

5 Conclusion 

We have presented a model of progressive reasoning - a 
knowledge-based approach to real-time decision making 
- and its implementation. Our preliminary results show 
that by structuring the available knowledge in a hierar­
chical way and by limiting the amount of data and knowl­
edge used at each level, we can construct knowledge-
based systems that have all the characteristics of a "well-
behaved" anytime algorithm. In particular, our system 
exhibits gradual improvement/degradation of quality as 
computation time increases/decreases (or problem size 
decreases/increases). Moreover, the behavior of the sys­
tem is consistent and can be characterized by a perfor­
mance profile, typically used in control of anytime com­
putation. This result is an important step toward the 
adaptation of knowledge-based systems, that normally 
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exhibit high variability in performance, to real-time do­
mains where predictability of performance is essential. 

Further work is needed on several aspects of the im­
plementation including the designer's task of mapping 
domain knowledge into a hierarchical structure, the de­
velopment of more precise quality measures, and the use 
of a utility-based approach to control the operation of 
the system. Other research directions include the appli­
cation of the model to construct a multi-agent system 
and implementation of a larger application. 
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