
Explaining Subsumption in Description Logics
Deborah L. McGuinness

AT&T Bell Laboratories
Murray Hill, NJ 07974 U.S.A.

and
Dept. of Computer Science

Rutgers University
dlm(Oresearch. a t t . com

Abstract

This paper explores the explanation of sub-
sumption reasoning in Description Logics that
are implemented using normalization methods,
focusing on the perspective of knowledge en­
gineers. The notion of explanation is specified
using a proof-theoretic framework for present­
ing the inferences supported in these systems.
The problem of overly long explanations is ad­
dressed by decomposing them into smaller, in­
dependent steps, using the notions of "atomic
description" and "atomic justification". Imple­
mentation aspects are explored by considering
the design space and some desiderata for expla­
nation modules. This approach has been imple­
mented for the CLASSIC knowledge representa­
tion system.

1 Introduction
Knowledge-based systems, like other software systems,
need to be debugged while being developed. In addition,
systems providing "expert advice" need to be able to
justify their conclusions. Traditionally, developers have
been supported during debugging by tools which offer a
trace of the inferences performed by the system (e.g., a
sequence of rule firings in a rule-based expert system),
or, more generally by an explanation facility for the rea­
soner (e.g., [12]). Description Logics (DLs) form the ba­
sis of several recent knowledge-based systems, but do not
currently offer such facilities. This is especially trouble-
some since DL reasoners perform a considerable variety
of inference types, some of whose results have repeatedly
proven, in practice, to be unexpected by developers.

Some DL-based Knowledge Base Management Sys­
tems (DL-KBMS), such as KRIS, are implemented us­
ing theorem proving techniques such as refutation-style
tableaux techniques with rewrite rules [6]. Many other
systems, such as LOOM, BACK and CLASSIC, are imple­
mented using a Normalize-Com pare approach, where im­
plicit knowledge is first explicated into a normal form,
after which subsumption can be checked quite quickly
using simple so-called "structural" comparisons. This

"Supported in part by NSF Grant IRI-9119310.

Alexander T. Borgida*
Dept. of Computer Science

Rutgers University
New Brunswick, NJ 08903

U.S.A.
borgidaGcs.rutgers.edu

paper addresses the problem of explanation for this sec­
ond class of DL-KBMS, which, although occasionally in­
complete in terms of the inferences performed, tend to be
more efficient for large and long-term KB maintenance.

An ad-hoc solution to the problem of explanation
would be to take a particular implementation of a
DL-KBMS and intersperse at appropriate places print-
statements or other, more sophisticated operations,
whose result could be assembled into an explanation.
This approach is not only unprincipled but also unwork­
able, as we illustrate in Section 4.4 , because the declar­
ative knowledge is compiled into data structures and im­
perative code in order to achieve efficiency. Our solution
to this problem is to cast the various forms of DL reason­
ing into a single deductive framework based on rules of
inference in the "natural deduction"-style,1 and thence
offer proofs as explanations of the system's conclusions.

However, even in simple cases "raw" proofs turn out to
be too lengthy and non-modular. A second contribution
of this work is a scheme for breaking up an explanation
into steps, in a way which avoids superfluous details and
which is incremental. This scheme is based on the idea of
decomposing descriptions into "atomic" conjuncts, and
providing "atomic justifications", which stand alone and
may collapse several standard proof rules, or report only
certain aspects of the proof rule application.

Finally, we discuss some of the issues and choices that
arise in implementing such an explanation system as part
of an existing Normalize-Compare reasoner. (In fact,
we have implemented such a component for the CLASSIC
KR&R system [4].) A particularly subtle concept con­
structor (same-as) is used to show how it is possible to
integrate the theorem-proving aspect of searching for a
proof/explanation, with a performance reasoner already
available for the language.

2 Description Logics
Description Logics form a family of formalisms for repre­
senting and reasoning with knowledge, surveyed, among
others, in [8; 16; 2]. The three fundamental notions of
DLs are individuals, representing objects in the domain,
concepts, describing sets of individuals, and roles, binary

1 The rules of inference constitute a proof-theoretic seman­
tics for the DL. Such semantics have been proposed for DLs
in [1; 13].

8 1 6 KNOWLEDGE REPRESENTATION

Table 1: Syntax and Denotational Semantics of Descrip­
tion Constructors (The symbols B,6 range over concepts, a
ranges over atomic/primitive concept names, 7r over roles, 6
over individuals, and n over numbers.)

relations between individuals. Composite descriptions
are formed using constructors, using a syntax such as
the one in Table 1. In the following three examples:

(and (prim WINE) (fills color Red))
(and (prim WINE) (fills grape

Cabernet) (fills color Red))
(and (prim WINE) (at-least 2 grape)

(all grape WINE-GRAPE))
the concept RED-WINE is defined using the and con­
structor to conjoin the primitive concept WINE with the
description of individuals whose color role is filled by
the individual Red; CABERNET further constrains wine by
specifying values for its color and grape roles.

The main deduction in DLs is subsumption: decid­
ing whether one description, Dl, is more general than
another one, D2 (i.e., whether being a D2 logically im­
plies being a Dl). For example, CABERNET is subsumed by
RED-WINE and is not subsumed by BLENDED-WINE. Most of
the other kinds of inferences performed by DL-KBMS,
such as detecting incoherent or disjoint concepts, and
even individual recognition, can be represented using
subsumption.

3 Explanation for Description Logics
An explanation is a justification of the system's beliefs.
In rule-based and PROLOG systems, an explanation fa­
cility is often based on a trace of rule firings since rule in­
vocation mimics modus ponens, which is the fundamen­
tal logical inference rule of the system. In DL-KBMS,
an execution trace is inappropriate since the procedural
implementation is too far removed from the underlying
logic. For example, the implementation may traverse
graph-like data structures to determine validity of co-
reference constraints, as illustrated in Section 4.4. This
is similar to the problems faced by deductive databases
such as LDL [l l] , where compilation for efficiency hides
the original program's rule structure. As in LDL, expla­
nation benefits from a declarative view of the reasoning,
and we turn to the proof theory of description logics
to obtain this. Proofs are built from logical axioms or

Figure 1: Subsumption and Equivalence Rules

MCGUINNESS AND BORGIDA 817

told assumptions using rules of inference. Our rules are
in the "natural semantics" style of [7], and show what
new assertion can be considered "proven" on the basis
of previously demonstrated ones. For example, modus
ponens can be expressed a s i n d i c a t i n g
that if the two antecedent assertions, and can
be deduced, then the consequent is deducible in the
next step of the proof. The subsumption rules of DLs
can also be expressed in this form [l] , by considering the
subsumption judgment For example, the sub-
sumption relationship between all-restrictions (namely,
that the value restriction of the subsumed all restriction
needs to be more specific than the value restriction of
the subsuming all restriction) is expressed by the rule

, Similar inference rules can
be obtained from the proof-theory based on the sequent
calculus for DLs proposed in [13].

3.1 Explanations as Proofs
Since subsumption can be captured by inference rules,
we can start by making the explanation of a subsumption
relationship be its proof.

In order to provide an example, we will limit ourselves
to a small DL, Mini-CLASSIC, which has one built-in con­
cept, THING, and concept constructors and, all, at-
least, and prim. Figure 1 provides the inference rules
for determining subsumption.2

Consider a concept A, defined as
2Symbols with a superscript tilde, indicate a set.

IA = (and (at-least 3 grape) (prim GOOD WINE))J

and let us consider the proof of the subsumption
A =► (and (at-least 2 grape) (prim WINE)).

We justify each line by the name of the rule used to de­
duce it, and the line numbers on which the antecedents,
if any, of the rule appear:

If such a proof is to be treated as an explanation, we
must resolve several problems: First, the proof is much
longer than one might have expected for such a simple
case. It includes some lines that are obvious to most
readers, e.g., applications of And Eq (creating an equiv­
alent expression by adding an enclosing and) and Eq
(creating an equivalent expression by substituting equiv­
alent subexpressions). These should be avoided if we are
to explain more complex DLs, which have many more
rules. In the example above, the proof should contain
just those steps that seem most critical: AtLst and Prim.

Second, we note that the proof has two major parts —
one focusing on at-least, and one on the primitives. To
deal with large, complex proofs, we propose to decompose
them into parts that can be presented independently.
This decomposition will be based on the use of And R and
And L to break the concept into its component conjuncts,
and then proceed with separate, smaller proofs of each
part.

Finally, note that the current proof needs to be pre­
sented in its entirety since it contains inference rule ap­
plications that take proof line numbers as arguments. If
proofs are very long, it might be more helpful to present
individual steps of a proof that can stand alone. In other
words, proof steps might take arguments that do not
change according to the order of inference application,
and do not draw their meaning by being a part of a par­
ticular proof. For example, a proof step might have the
form

(all wines RED-WINE) (all wines WINE)
because All(7r=wines, B-RED-WINE, 6=WINE)

3.2 Explanations as Proof Fragments
According to Hempel and Oppenheim[5], the "basic pat­
tern of scientific explanation" consists of (i) the ex-
planandum — a sentence describing the phenomenon
to be explained, and (ii) the explanans — the class of
those sentences which are adduced to account for the
phenomenon. The latter fall into two classes: one con­
taining sentences which state certain antecedent condi­
tions; the other is a set of sentences representing general
laws.

8 1 8 KNOWLEDGE REPRESENTATION

En) , we should eliminate redundant conjuncts, i.e., Ei
should not subsume Ej for i j.) An atomic justifica­
tion has the form

A B because ruleld(< argument list>).
where B is an atomic description, ruleld is the name of
an inference rule, and argument list is a set of bindings
for variables in the inference rule.

The simplest atomic justification is told information:
a relationship holds because it was explicitly asserted by
the KB builder, usually as part of a definition:

A (and (p r i m GOOD WINE) (at-least 3 grape))
because told-info

We also report told-info as the reason why A is subsumed
by each of the syntactically occurring conjuncts of its
definition:

A (at- least 3 grape) because told-info.
Concept definitions are expanded by the "inheritance"
inference: If a concept B is defined as (and A . . .) , then
one reason why Bs have at least 3 grapes is because of
transitive inheritance through A:

B (at-least 3 grape) because inheritance
Suppose we are given an additional concept C, having B as
a conjunct; then C B A, so C would have (at-
least 3 grape) by transitivity and inheritance through
both B and A, whether or not B stated anything explic­
itly about the grape role. We may therefore limit inher­
itance to report only from the concept that contains the
description as "told information":

C (at-least 3 grape) because inheritance(5=A).
Another atomic justification is based on the All rule:

(all wines RED-WINE) (all vines WINE)
because

Observe that this is not a complete explanation, since it
leaves us with an intermediate explanandum: why was
RED-WINE subsumed by WINE? To answer this, the user
may request a separate atomic justification or may en­
ter another mode where the system will automatically
ask all appropriate follow-up questions. Prom the above
example we can see that atomic justifications naturally
chain backward, until one stops at (i) inference rules
without antecedents (e.g., told information), (ii) rules
whose antecedents are theorems of mathematics (e.g.,
AtLst), (iii) user-specified rules that are deemed unnec­
essary or stopping points (e.g., in CLASSIC explanation
chains can be stopped when a user-defined rule fires).

There may be cases where there are multiple justifi­
cations (e.g., inheritance from several ancestors). For
this, one might allow multiple (disjunctively branching)
explanation chains. Of course, if an inference rule has
multiple antecedents, the explanation "chain" needs to
branch conjunctively. Because it is possible for explana­
tion chains to become long and branching, we provide
user control of chaining.

To conclude, we review the example from Sec­
tion 3.1. Explaining A (and (at-least 2 grape)
(prim WINE)) is now equivalent to explaining why A
is subsumed by each of the two atomic descriptions of
the subsumer:

For readability, in applications such as [10] we associate
templates with the various inference rules, so that the
above justification is actually reported as

"AtLeast-Ordering" on role grape: 3 is greater than 2.
Our work on such such "surface" presentation is still
preliminary.

4 Developing an Explanation System
In order to build an explanation system based on the
preceding theory, we need to accomplish the following
tasks:

e Identify a (sub)language of atomic descriptions.
• Present "atomization" rules for normalizing a de­

scription into atomic conjuncts.
• Identify rules of inference for subsumption.
• Develop algorithms for (re-)Constructing subsump­

tion proofs.
4 . 1 A t o m i c D e s c r i p t i o n s a n d A t o m i z a t i o n
To define the grammar of atomic descriptions, one
may begin with the grammar of the concept language,
and eliminate those constructs that can be written
as conjunctions of other, more general descriptions.
Such constructs might be signaled by the presence
of inference rules involving and, or having the form

The following is a grammar of atomic descriptions for
Mini-CLASSIC:
<atomic-descr> : : - THING |

(at-least <integer> <role-name>) |
(pr im <identifier>) |
(all <role-name> <atomic-descr>)

One should verify that this grammar has the property
that every description is equivalent to the conjunction
of some set of atomic descriptions. If such a proof is
constructive, it will usually identify a subset of inference
rules that are needed for converting to normal form (see
[9]).

For DL-KBMS using a Normalize-Compare algorithm
for subsumption, the normal form of a concept can be
mapped onto a set of atomic descriptions relatively eas­
ily, and hence forms a good basis for the atomization pro-
cess. For example, CLASSIC'S normal form is not quite
atomic because it contains nested conjunctions, as in (all
r (and C D)) , and implicit conjunctions such as (fills
r b1 b2). However, a simple routine can be written to
break apart such nested conjunctions to yield atomic de­
scriptions.

The following is the grammar of additional atomic de-
scriptions needed for full CLASSIC:

I

MCGUINNESS AND BORGIDA 8 1 9

4.2 Finding Subsumption Rules and
Atomic Justifications

An explanation designer needs to identify the inference
rules and the appropriate arguments that will be reported
in explanations. It is wise to begin with a complete set of
the inference rules required to derive all subsumptions.
Royer and Quantz [13] describe an interesting systematic
technique for obtaining inference rules for a DL from its
translation to first order logic. One can also analyze the
DL-KBMS implementation, looking for all updates to
data structures, and expressing these as inference rules.

In order to control the verbosity of explanations, the
developer can choose to limit the set of inferences that
will actually be reported in explanations. This may mean
skipping certain inferences, or merging two or more infer­
ences together for the purposes of reporting. In CLASSIC,
for example, we reduced the set of inference rules from
the 100 or so original ones, to about half that number
used in (the default settings for) our explanations. We
also gave the user the option to add or delete some in­
ferences to the set that will be reported.

In reporting an atomic justification, the implementer
may choose to eliminate arguments that appear obvious.
In CLASSIC we generally do not report arguments that
appear in the denominator of the inference rule. For
example, the Prim rule is reported only by name since
all of its arguments appear in the denominator. Also,
we do not report arguments like at-least values that
can only have one value, but we do report which of the
many potential parent concepts from which something
was inherited. More details on filtering given context
appear in [9].

4.3 T h e E x p l a n a t i o n C o n s t r u c t i o n Process
Typically, it requires too much space and effort to main­
tain enough information to allow a reconstruction of a
formal subsumption proof for every deduction in a DL-
KBMS. Thus, we expect that any extensive explana­
tion facility will need to reconstruct proofs on demand,
by "replaying" the normalization and subsumption algo­
rithms. To do this, we need to choose between augment­
ing the core system code or writing separate explanation
modules. In a tradeoff between impact on the core sys­
tem and extra code that must be maintained, we agree
with [14] and choose to minimize dual algorithm devel­
opment. Thus, we have instrumented the main code to
store more information when it is replayed in explanation
mode.

Our implementation tries to explain a deduction from
the current state information. If that is impossible, the
system destroys certain derived information, and reruns
the deductive part of the core system. This deductive
core has been modified to include a rerun mode that
calls an explanation update function whenever the sys­
tem applies an inference rule that should be reported.
The explanation update functions build structures that
record the proof structure, and it is from these structures
that the final explanations are generated. The only mod­
ifications to the core system are an extra pointer in the
main data structures (for the explanation structure) and
the rerun mode calls to explanation functions.

4.4 Explaining Co-reference Constraints
It will not always be possible to calculate explanations
using the code implementing the DL reasoner. Consider
the class of persons who share their name with both their
parents, which is defined using the same-as constructor:
(and (same-as (mom name) (name))

(same-as (dad name) (name)))
This description is equivalent to:
(and (same-as (dad name) (mom name))

(same-as (dad name) (name)))
The canonical form for same-as involves a graph data
structure [3], in which subsumption by a description of
the form (same-as (pp) (r r)) is checked by tracing the
paths pp and rr to verify that they end at the same
node. Unfortunately, the two concepts above may gen­
erate the same graph (in the same way that different reg­
ular expressions may generate the same finite automa­
ton), though we would expect different explanations of
why (same-as (mom name) (dad name)) subsumes them:
in the second case it is told information, while in the first
case there are inferences to be made.

It is possible to encode the subsumption inferences
for same-as as a logic program for predicate eq(R,S),
which, given certain "told equalities", finds all pairs of
role paths R and S whose equality follows from them4.
The rules include:
told-eq([dad,name], [name]).
base-eq(X.Y) : - told-eq(X,Y).
•q(X,X).
eq(X,Y) :- base-eq(X,Y).
eq(X,Y) :- append(Xa,Xb,X), base-eq(Xa,Va),

append(Va.Xb,V),eq(V,Y).

where a description such as (all p (same-as q r)) is
encoded as the term base-eq([p,q] , [p , r]) .

Readers familiar with Prolog will realize that this pro­
gram will easily enter an infinite loop. This can be
avoided by forcing a breadth-first search of the goal tree,
or equivalently, by putting a bound on the depth to be
explored. This latter approach is feasible if we can bound
a priori the number of inference rule applications. Al­
though this could be done on purely theoretical grounds,
we can obtain a much more accurate bound by consid­
ering the implementation data structure: if (same-as
(pp) (qq)) holds on some concept graph G, then only
those equalities are potentially relevant which end up
pointing to nodes on the paths traced from the root
by following paths labeled by pp and qq. Therefore, by
counting the in-degree (minus 1) of every node in the
set traversed when following paths pp and qq (the ini­
tial node is not counted, and the final, common, node
is only counted once) an upper bound on the depth to
which to search is obtained. In other words, the maxi­
mal depth to be given for any particular search can be
computed from the existing implementation structure,
and then passed to the explanation component; in turn,

4Because of the added overhead of adding this algorithm
and Prolog to our system, our current implementation offers
a less detailed (and hence less accurate) explanation, which,
in this case, produces the same result for both of the above
examples.

8 2 0 KNOWLEDGE REPRESENTATION

this does an (inefficient, but bounded) exhaustive search
of all possible inferences unt i l a proof is found. This
illustrates our point that the implemented description
reasoner can be used as a source of hints for reconstruct­
ing detailed formal proofs, which can then be presented
as explanations.

5 Conclusions
DL-KBMS require an explanation service in order to
help knowledge engineers wi th debugging. In systems
implemented using a normalize-compare algorithm (as
opposed to a refutat ion technique), the task of provid­
ing such a service in a principled way is made difficult
by the presence of procedural code manipulating data
structures.

As a foundation for explanations of subsumption, we
propose the use of a deductive framework based on proof
rules in the "natural semantics" style. As part of this
plan, we presented the rules of inference for a simple
description logic, and showed how formal proofs of sub-
sumptions are like explanations, albeit ones that are too
onerous for users to read because of a surfeit of details.
The advantage of the natural deduction style is that
the resulting proofs have the familiar form of "backward
chaining trees".

In order to simplify and break up explanations, we
decompose concepts into atomic descriptions, for which
subsumption is explained independently. Furthermore,
rather than presenting complete proof trees, we explain
individual nodes in the proof tree through atomic jus­
tifications, which make symbolic references to the an­
tecedents, thereby allowing the user to choose if and
when proofs for these should be presented.

Finally, we drew on our implementation and applica­
t ion experience to provide some general guidelines for
developing explanation components for DLs. In partic­
ular, rather than developing an entirely separate "theo­
rem prover" for f inding proofs, we suggest augmenting
the DL implementation w i th facilities for reconstructing
proofs, when these are needed. The synergism between
these two components was i l lustrated using the same-as
constructor of CLASSIC.

We have only reported on subsumption explanation
in a l imited D L . Our fu l l system explains every inference
that CLASSIC makes, and also includes explanations of
individual reasoning, errors detected, and why a con­
cept does not subsume another object. We also provide
extensive f i l ter ing methods based on meta-information
for l imi t ing presentations and explanations of objects.

Acknowledgments: We are indebted to Lori Alperin
Resnick for her collaboration in implementing the explana­
tion system for CLASSIC. We also gratefully acknowledge the
enlightening comments on the work and its presentation of­
fered by R. Brachman, W. Cohen, H. Hirsh, S. Hofmeister,
H. Kautz, C. Kulikowski, P. Patel-Schneider, J. Moore, W.
Swartout, R. Thomason, E. Weixelbaum, and J. Wright. Of
course, all remaining errors are ours.

References
[1] A. Borgida. From Type Systems to Knowledge Rep­

resentation: Natural Semantics Specifications for De­

scription Logics. In International Journal of Intelli­
gent and Cooperative Information Systems, pp.93-126,
March 1992.

[2] A. Borgida. Description Logics in Data Management.
To appear in IEEE Trans, on Knowledge and Data
Management. An earlier version is available as Rutgers
Tech. Report DCS-TR-295.

[3] A. Borgida and P. F. Patel-Schneider. A Semantics and
Complete Algorithm for Subsumption in the CLASSIC
Description Logic. In Journal of Artificial Intelligence
Research, vol. 1, 1994, pp. 277-308.

[4] R. J. Brachman, D. L. McGuinness, P. F. Patel-
Schneider, L. A. Resnick, and A. Borgida. Living with
CLASSIC: When and How to Use a KL-ONE-Like Lan­
guage. In Principles of Semantic Networks: Explo­
rations in the representation of knowledge, J. Sowa, ed­
itor, Morgan-Kaufmann, 1991, pp. 401-456.

[5] C. G. Hempel and P. Oppenheim. Studies in the Logic
of Explanation. In The Structure of Scientific Thought,
E. H. Madden, editor, Riverside Press, 1960, pp. 19-29.

[6] B. Hollunder, W. Nutt, and M. Schmidt-Schauss. Sub­
sumption algorithms for concept description languages.
In Proc. 9th ECAI, Stockholm, August 1990, pp.348-
353.

[7] G. Kahn. Natural Semantics Rapport de Recherche No.
601, INRIA, Sophia Antipolis, France.

[8] R. M. MacGregor. The Evolving Technology of
Classification-based Knowledge Representation Sys­
tems. In John Sowa, editor, Principles of Semantic Net­
works: Explorations in the Representation of Knowl­
edge. Morgan Kaufmann, 1991.

[9] D. L. McGuinness and A. Borgida. Explaining Sub­
sumption in Description Logics. Technical Report
LCSR-TR-228, Dept. of Computer Science, Rutgers
University, September 1994.

[10] D. L. McGuinness and L. Alperin Resnick. Descrip­
tion Logic in Practice: A CLASSIC Application. In Proc.
IJCAI, Montreal, August 1995.

[11] O. Shmueli and S. Tsur. Logical Diagnosis of LDL Pro­
grams. In New Generation Computing, OHMSHA, LTD
and Springer-Verlag, Volume 9, pp. 277-303, June 1991.

[12] R. Neches, W. R. Swartout and J. Moore. Explainable
(and Maintainable) Expert Systems. In Proc. IJCAI-
85, Los Angeles, CA., 1985, pp. 382-389.

[13] V. Royer and J. Quantz. Deriving inference rules
for terminological logics. In Logics in AI, Proc. of
JELIA '92, D. Pearce, G.Wegner (eds), Springer Verlag,
1992, pp.84-105.

[14] W. R. Swartout and J. D. Moore. Explanation in Sec­
ond Generation Expert Systems. In Jean-Marc David,
Jean-Paul Krivine, and Reid Simmons, editors, Second
Generation Expert Systems. Springer-Verlag, in Press.

[15] G. Teege. Making the Difference: A Subtraction Op­
eration for Description Logics. In Proc. KR-94, Bonn,
Germany. May, 1994. pp. 540-550.

[16] W. A. Woods and J. G. Schmolze. The KL-ONE family.
Computers and Mathematics With Applications. 23(2-
5), March 1992.

MCGUINNESS AND BORGIDA 8 2 1

