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Abstract

Knowledge compilation is the process by which
an initial theory X with respect to which in-
ference is intractable is transformed into one or
more "approximate" or equivalent theories with
respect to which inference can be performed ef-
ficiently. Selman and Kautz introduced Horn
lowest upper bound (LUB) approximations in
[SK91], and generalized them in [KS91; SK95]
to a number of target languages other than
Horn. In this paper, we analyze the problem
of knowledge compilation for arbitrary clausal
target languages, generalizing in several ways
previous results. We provide general character-
izations of the LUB that are independent of the
target language; analyze the properties of the
Generate-LUB algorithm of Selman and Kautz,
proving its correctness for any target language
closed under subsumption (including a wide
family of languages which guarantee polynomial
size approximations); and generalize the pro-
cedure to arbitrary target languages. We also
examine some computational aspects of these
procedures and the quality of Horn approxima-
tions.

1 Introduction

Knowledge compilation is the process by which an initial
theory £ with respect to which inference is intractable is
transformed into one or more "approximate" or equiva-
lent theories with respect to which inference can be per-
formed efficiently. The notion of Horn approximations,
more specifically of Horn lowest upper bound (LUB) and
Horn greatest upper bound(s) (GLB), was introduced by
Selman and Kautz in [SK91]. The idea is to map ("com-
pile") a clausal propositional theory X into two Horn
theories Ly and Iy such thal B,y is a weakest Horn
theory that entails X, and Yiup is the strongest Horn
theory entailed by ¥. These "approximate theories" can
be used to efficiently answer queries about the conse-
quences of I, as reviewed below. The key observation is
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that queries with respect to Ly ot Lyys can be answered
in polynomial time, since both theories are Horn, rather
than using an exponential algorithm to decide whether
Z | C. Though the cost of obtaining Ejyp and Egp can
and usually will be very high (which justifies thinking
of it as a preprocessing or compilation step), this cost
can be amortized over a sufficiently large set of queries
about X, which can be answered more efficiently after
compilation.

This framework was generalized by Kautz and Sel-
man to approximations written in target languages other
than Horn (see [KS91; SK95], and section 2 below). A
key aspect of the framework is given by two procedures
that generate the LUB and GLB in the given target lan-
guages, respectively the Generate-LUB and Generate-
GLB algorithms. Selman and Kautz provide no proof
of correctness for Generate-LUB either in its more re-
stricted form (which generates Horn LUBs) or in the
more general form in which it generates other kinds of
LUBs. In this paper, we establish general conditions for
Generate-LUB to be correct; these conditions are strictly
weaker than those cited by Kautz and Selman, as the
target language needs to be closed under subsumption,
but not under resolution. We thus improve and correct
Selman and Kautz's analysis of their general framework
for knowledge compilation, greatly expanding the set of
target languages for which the generic Generate-LUB al-
gorithm yields correct results. This set now includes, in
particular, any subset of K-CNF closed under subsump-
tion, for example the k-Horn language [DP92]; an im-
portant feature of such languages is that the LUB has
guaranteed polynomial size. In addition, a simple mod-
ification of the algorithm allows us to prove it correct
with respect to arbitrary propositional clausal target lan-
guages.

The structure of this paper is as follows. In the
next section, we review the main concepts of LUB and
GLB knowledge compilation. Section 3 offers two gen-
eral characterizations of the LUB for arbitrary target
languages; in particular, completeness with respect to
queries in the target language fully characterizes the
LUB. Section 4 analyses the Generate-LUB algorithm,
establishing general conditions for its correctness, and
generalizing it to deal with arbitrary clausal target lan-
guages. In section 5 we consider some complexity issues,
followed by an analysis of the quality of Horn approxi-
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mations in section 6. Related work, together with some
implications of our results on the goals of compilation,
is discussed in the final section.

2 LUB approximations: Review

In this section, we review the framework for knowledge
compilation, as described in [SK91; KS91]. The basic
idea is to approximate a theory in a given source lan-
guage by bounding from above and from below the set of
models of the theory, where the bounds can be expressed
in a computationally less difficult target language.

Kautz and Selman define a general framework for
knowledge compilation in terms of arbitrary source and
target languages and consequence relations. In this pa-
per, we will focus only on clausal propositional and first
order languages, with the classical consequence relation.

Let £ be a propositional or first order ¢clausal language.
For any given “target language” L7 € £ we can define
Lr-upper and lower bounds of any theory ¥ expressed
in £ as follows.

Definition 1 For any £ C £, the theortes Ty, 5, C
Lz ore respeclively an Ly-lower bound and an Lyp-upper

bound of L iff Xy = X |= Eup.
Letting Mod(I') denote the set of models of T', we have:

Mod(Ip) € Mod(Z) C Mod(X,),

Thus, Iy approximates & “from below”, whereas I,
approximates L “from above”. The “best” approxima-
tions are defined as follows:

Definition 2 Y, C L7 is an Lp-greatest Jower bound
(GLB) of EC L iff Egp = and forno &' C Ly #l 15
the rase that Ty E X E L but &' £ Lon.

A GLB of T is thus a weakesl theory of ihe target
language £7 lhat entails £. Similarly, a LUB ol Eis a
strongest theory of Ly that is entailed by L:

Definition 3 Iy, C L1 is en Lr-lowest upper bound
{LUB) of LC L ff T = Tyyp and for no &' C L it is
the cese that T £ | Dy bl B B

We can use the Lp-LUB I,y and the £7-GLB £ g of
% for answering queries whether £ = C, for any clause
C,asfollows. HE EC then = Cand il Egp £ C
then T j& C (otherwise, answer “don’t know”, of use a
complete theorem prover to answer). Furthermore, il is
a consequence of theorem 1 below that for C € L7, if
i £ C then I j= C. Thus, if the query language is a
subset of L1 then only the L1-LUB is needed to answer
queries. Of course, the use of the £7-LUB and L7-GLB
instead of the original theory for answering queries only
makes sense if one can reason more efficiently (either
analytically or empirically} about the former than about
the latter.

We will only be concerned with LUBs in this pa-
per. Note that only the LUB can be used to derive
logical consequences of £, as oppesed to rejecting non-
consequences. We speak of the £7-LUB, since it always
exists (the empty theory is an Lr-upper bound of any
theory), and it must be unique up to logical eguivalence:
the conjunction (union) of eny two upper bounds L'

and E” is by definition also an upper bound, which is -
at least as strong as both T’ and ", Hence the Lr-
LUB is equivalent to the conjunction of all Lr-upper
bounds. Further general characterizations of the Cp-
LUB ate given below.

3 Characterizing the LUB

In this section we provide two alternative characteriza-
tions of the £p-LUB. We first prove a result that will be
useful throughout the paper, namely: completeness for
L queries about I is both sufficient and necessary for
a theory of L7 to be the £p-LUB of 5.

Theorem 1 Let £y € Ly,  C L. The following

stalements are equivalent:

¢ Dy isthe Lr-LUB of E.
¢ ForeveryCELr: ERCifSmEC

Proof (=) Suppose I, is the Lr-LUB of Z, and let
Celr. T EC then T = Ty k= C. Suppose on
the other hand that £ = € yet i £ €. Then &' =
(Z;uf, U] {C}) is such that &' C Ly and E |= b |= By,
yet Ty B B, This contradicts the fact that Ty is the
Lr-LUB of L.

(+=) Suppose iy is net the Lr-LUBof . If X} Epyp
then there exists C € Xi,p € L7 such that I} ', where
trivially Eiy; | C. Suppose therefore that £ | Ziup-
Then iy i5 an Lr-upper bound of %. If it’s not the Lp-
LUB then there exists Z' C Ly such that T R Z' E By
yet B [ I'. Hence there exists £ € £ C Ly such
that Sy FCand TR E = C. m]

It is interesting to note that this characterization of
the Lr-LUB, which holds for arbitrary clausal target
languages, opens up a somewhat different perspective
on the goals of compilation. Namely, the choice of & tar-
get language can now be guided not (only) by efficiency
in answering queries about the original theory, but by
the desire to obtain completeness with respect to certain
query languages, for some perhaps task specific purposes,
while ignoring parts of the theory irrelevant to the task.
We will briefly come back to this point at the end of the
papet.

A second characterization of the L+-LUB can be given
in terms of implicates of the sousce theory. For target
Janguages closed under subsumption, the £r-LUB of &
18 logically equivalent to the set of prime implicates of &
that are in Lr.

Definition 4 A clausal longuege L1 is closed under
subsumption iff for every C € L7, of a clause ' sub-
sumes C thes C' € L.

Definition 5 A clausal language L1 is closed under res-
olution iff for every B,C € Ly, if A is a resolvent of B
and C then A € Ly

Theorem 2 Let II{X} be the sel of prime implicates of
T C L. If L is closed under subsumption then the Lp-
LUB of ¥ is legically equivaleni to I{X) N L.

Proof Thie is a corollary of theorem 3 below. x]

To see that theorem 2 does not hold in general for
languages not closed under subsumption, let L+ be the
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Janguage of definite clauses {clauses with exactly one
positive literal). The Lp-LUB of & = {-p,~gV r} is
equivalent to {~pV g, -qVr}, which is clearly not equiv-
alent to () N Lyt

It is easy however to generalize theorem 2 to targel
languages not closed under subsumnption. For this, we
need the notion of prime Lr-implicates.

Definition 6 A cleuse O is an Lp-implicate of £ iff
CeLy and E = C. C 15 a prime Ly-implicate of & iff
C is an Ly-implicate of & not stricily subsumed by any
other Lp-implicate of £, The sel of prime Ly-implicates
of T is denoted I1-.(E).

Theorem 3 The L7-LUB of T s equivalent 1o Nl 2, (E).

Proof By theorem 1, it suffices to show that for any
Cely, TECIU,L(BYEC LtCeg Ly If
N (E) E C then £ & 0. () | C. For the other
direction, if £ |= C then C is an Lp-implicate of I,
hence there exists C' € Iz (X) such that &' subsumes
C. Thus I, (DY C"EC. o

Note that if £r is closed under subsumption then
N (E) = (I{) N L), from which theorem 2 follows
as a corollary. More generally, M, (E) and therefore
the L7-LUB of T can be characterized in terms of 11{X)
through a certain form of weakening of the prime impl-
cates, a notion which can be seen as a dual of Selman
and Kautz’s notion of strengthenings.

Definition 7 A nron-teutologovs clause C is arn Lp-
weakening of ¢ clause O ff C € Lr, C' subsumes
C, ond no C" € Lr subsumed by C' stricily subsumes
C. The set of Lr-weekenings of a clavse C is denoled
Wen(C).

For example, if £y is the language of definite clauses
over a vocabulary {p,...,pn} then the set of Lo-
weakenings of —p; s W, (-p ) = {~mVpi [l < i< nl.
On the other hand, if C € Lr then W, (C) = {C}.
Finally, £y-weakenings may not always exist. If Ly
is closed under subsumption then there are no Lp-
weakenings of any clause C € £y. There is for example
no Horn-weakening of a non-Horn clause in the proposi-
tional case: and while Horn clauses have definite clause
weakenings, non Horn clauses do not.

Despite these complexities, the next theorem shows
that the £p-LUB can be obtained by collecting the Lp-
weakenings of the prime implicates of £ (u(I'} denotes
the result of removing subsumed clauses from T'.)

Theorem 4 M¢, (E) = u(lcenez; Wer(C)).

Proof {C) Suppose €' € Iz, (L) Then X  C, hence
there exists C" € II(X) that subsumes . If C” € Ly
then € subsumes C" as well (otherwise C ¢ . (%),
which would be a contradiction}; hence C € IFZE), and
since (" € L7, C is an Lp-weakening of itself. Suppose on
the other hand that C" ¢ L. Because € € He (X)) C
Ly, if C is not an Ly-weakening of " then there exists
C' € Ly subsumed by C*¥ which strictly subsumes C.
Since T | C" = ¢, this contradicts € € I¢,.(E).

![SK91] prove theorems 1 and 2 for the Horn case. After

writing this paper, we found a much more indirect proof of
theorem 1 in [KR94].
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(2) Suppose C is an Ly-weakening of C* € [I{E), and
C is not subsumed by any clause in the right hand side.
Then £ = C' &= C snd € € Ly. Hence C is an Lp-
implicate of 3, and cleatly no other Lp-implicate of T
can strictly subsume C. u]

We remark that all the resuits of this section hold for
both propositional and first order clausal Janguages. In
the rest of the papet we restrict our attention to propo-
sitional languages.

4 Computing the LUB

In this section, we provide procedures to compute the
Lr-LUB for arbitrary propositional clausal target lan-
guages. We begin by considering the case in which £r is
closed under subsumption, and later extend the results
to the general case. .

The following procedure computes an Lr-LUB for any
target language L7 that is closed under subsumption, as
we will show; the procedure differs from the one given
in [SK91] only in the incorporation of a tautology dele-
tion strategy. The algorithm is a brute foree resclution
algorithm modified to avoid resclving together pairs of
clauses both of which belong to the target Janguage Cr,
in the expectation that this will lead to smaller compiled
theories (smaller, that is, than what theorems2-4 would
give us).

Procedure Generate-Lp-LUB(L)

begin
Ep = {C€ L|C € Ly and C is not tautologous}
Env:={CeX|C¢Lr and C is nol tautologous}
loop
choose clauses C) € By UEN, G € En
with a non-tautologous resolvent €' which
is not subsumed by any clause in Ex UEx
if no such choice is possible then exit loop endif

HCECLr

then delete from X¢ ard Ty any clause subsumed by ¢

Er:=EZrU{C}
else delete from Ep any clause subsumed by
v =En Ui}
endif
endloop
return Dy

end

In order to establish the correctness of the algerithm
for target languages closed under subsumption we need
two lemmas, whose proofs are omitted for lack of space.?
In what follows, we write I' - €, for a ciause C and a set
of clauses T, iff there exists a resolution deduction from
T of a clause ' that subsumes ' also, E7 and En refer
to the final values of these variables in the Generate-L£p-
LUB algorithm.

Lemma5 ff Y7 + B, C € Ey, and A 13 & non-
teuiologous resclvent of B and C, then etther Zp F A
or there exisizs A’ € En 5.1, A" subsumes A.

2They are available from the author in a longer version of
this paper.



This lemmain effect tells us that it is possible to trans-
form certain resolution trees, so that all resolutions be-
tween two clauses of the target language occur in the
bottom part of the transformed tree. Using these trans-
formations, the next lemma in turn establishes that ET
and En completely characterize the set of clausal conse-
quences of the source theory E.

Lemma 6 If £ & A then cifher £y F A or there exists
A" € Ly 5.l A subsumes A.

Suppose now that Lr is closed under subsumption.
Then no A’ € Ly can subsume A when A € £y, s0
lemma 6 has the following immediate corollary:

Lemma 7 Suppose Lr is closed under subsumption. Jf
rFAand Ac Lp thenZp - A,

Theorem 8 Generate-Lp-LUB(L} computes the Lp-
LUB of & for any clausal language L closed under sub-
sumplion.

Proof By theorem 1, i suffices to show that for any
Ce Ly, Ciff Er E C. The right to left direction
follows from the fact that & = Zp. The other direction
follows directly from lemma 7 and the compleleness of
resolution as an inference procedure. a

It was previously thought [SK95] that closure under
resolution was also required for Generate-L7-LUB to be
correct. That this is not the case is fortunate, since im-
portant languages such as &-Horn (Horn clauses with at
most £ literals) and k-quasi-Horn (clauges with at most
k positive literals) are closed under subsumption but not
under resolution. Imporiant uses of k-Horn approxima-
tions are discussed in [DI92; KS9Zb]. More generally,
any subset of &-CNF c¢losed under subsumption (which
includes k-Horn) can now be the target language for
Generate-L7p-LUB. Nete that the use of any such subset
as fgrgel language guaranices that the compiled approzi-
mafe theory has polynomial size.

Let us now turn our atteniion to target languages
which are aof closed under subsumption. One could use
theorem 3 1o compute the Lp-LUB for any such Lp:
compute al} prime implicates, and then collect those in
L1 plus the L3 weakenings of those not in Lr. For-
tunately, the space oplimization used in the Generate-
Ly-LUB algorithm can still be used. The next theorem
implies that, for gny targel language L7, we can com-
pute the £7-LUB of an arbitrary clausal theory I by
computing Er and Lx using the originai Generate-Lr-
LUB algorithm, returning the union of Ly with the set
of Lr-weakenings of clauses in Ix;? resolutions within
L7 can still be avoided for such languages.

Theorem 9 For any T C L, the theory Dy = (E7 U
Ucez, Wer(C)) is the Lr-LUB of E.

Proof By theorem 1, it suffices to show that for any
C € Ly, L C il £ = C. The right to left direc-
tion follows ftom the fact that T = Ly, For the other
direction, det € € Lr and suppose £ &= C. By lemma 6,

3E><cept that in the "else" clause we should also delete
from ET any clause subsumed by C if we do not want to end
up with some subsumed clauses.

eithet ©r = C (in which case trivially Zr. | C), or
there exists C' € Iy such that € subsumes C'. In the
latter case, since C € L, there exista an Lp-weakening
C*" of C* such that C*" subsumes C {possibly C" = C).
Since C” e Wi (C) and C' € B, B FC"EC. D

Note that theorern B is a special case of theo-
rem 9, since if £7 is closed under subsumption then
Ueeg,, Wer(C) = B (see observations after definition 7).

We thus conclude that there exists a procedure that
computes the L7-LUB for arbitraty clausal target lan-
guages.

5 Computational complexity

The perhaps surprising power of the Generate-Cr-LUB
algorithm is not without serious costs, however. As
shown in this section, the space requirements of the pro-
cedure are exponential in the combined size of input and
output.

Before proving this result, it ia worlh mentioning first
the following simple generalization of theorem 1 from
{SK91], which has an essentially identical proof.

Theorem 10 [f L7 can ezpress unsatisfiable theories*

then the Lp-LUB of X is satisfiable iff & is satisfiable.

1t does not follow from this, in general, that computing
the Lp-LUB is intractable (consider the degenerate case
in which L7 = £). It does follow however that for any
such Lr either there is no polynomial time algerithm
for computing the Cp-LUR, or inference in Ly cannot
be performed in polynomial time {provided P £ NP).
For if both tasks could be performed in polynomial time
we could decide satisfiability in polynomial time.

Let us now turn to the space requirements of Generate-
Lr-LUB, the main goal of this section. An unfortunate
consequence of lemma 6 is that if {r is closed under
resolution then Iy contains all prime implicates of X
not in Lp.

Theorem 11 If £7 s closed under resclulion then
(I{T)\ L7} € T

Proof Suppose C € (I(E)\ £7). Then T+ C, hence
by lemma 6 either Ep F C or there exists C' € Ly such
that ¢* subsumes C.

Case 1: Ep b . Since L7 is closed under resolution
and £r C L1, 7 F ' for some ! € Ly that subsumes
C. But since C & L7 by hypothesis, £’ must strictly
subsume C. Since £ E Er | C', this contradicts C €
[I{Z}. Hence this case is impossible.

wase 2: there exists €' € Ly that subsumes C. Since
Lk Iy ¢, and C € TI{T}, C must subsume ¢’ as
well, hence C € Dy. o

The converse inclusion does not hold. For a counterex-
ample, let L7 be the language of Horn clauses, and let
T = {pV~g,qvor,pv-rvs} Then Ey = {pvorvs} €

4The language of definite clauses, for example, cannot ex-
press unsatisfiable theories: the valuation which assigns true
to every symbol satisfies any set of definite clauses. On the
other hand, any language closed under subsumption includes
the empty clause.
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O{E). Nor does the theorem hold in general for lan-
guages which are not closed under resolution: let L+ be
the language 3-Horn, with £ = {-pV—-gV-r,rv-sv-t].
Then Ey =8, yet I{E)\ L = {-pV ~gV =8 V ~t}.

Consider now any theory with an exponential number
of prime implicates (examples can be found in [KT90;
CM78]). By adding two new positive literals to every
clause, any such theory will have an exponential number
of non-Horn prime implicates, since those two literals
will occur in any clause entailed by the theory; in fact,
all prime implicates will be non-Horn. And since the
language of Horn clauses is closed under resolution, all
these prime implicates will be computed and stored by
Generate-Lt-LUB, for LT — Horn, despite the fact that
the Horn-LUB of any such theory will be empty. Similar
or identical examples can be used to show that the same
holds for many other target languages. These include, to
begin with, subsets of the Horn language, such as definite
clauses, k-Horn clauses (Horn with at most k literals, for
any fixed k), and unit clauses (at most one literal per-
clause); but also languages such as reverse Horn (clauses
with at most one negative literal) and its subsets, binary
clauses (clauses with at most two literals), or a language
that allows only a subset of the symbols of the language.
The following corollary summarizes this discussion.

Corollary 12 The Generate-LT-LUB algorithm  re-
quires exponential space (hence time), even in cases in
which it outputs the empty theory as the CT-LUB.

Cases in which Generate-Lt-LUB has exponential size
output have already been described in [KS92a], Corol-
lary 12 is stronger in that the exponential space require-
ments are not justified by the size of the output, in
other words, time and space are exponential in the com-
bined size of input and output. Notice furthermore that
for all the above mentioned theories with empty LUB,
Generate-LT-LUB reduces to a brute force prime impli-
cate algorithm, which is likely to be extremely inefficient.

There are other complexity results from the litera-
ture on Horn approximations that readily generalize to
a wide variety of target languages. In particular, the
proof [K592a] that Horn approximations most likely re-
quite worst case exponential space (unless non-uniform
P C NP} applies with little or no modification to many
other target languages, as was already noted in [KR94].
Another result thai can be generalized deals with the
complexity of inference with respect to the Lp-LUB,
that is of deciding whether Ly | C, given as input
T and . The reason behind this question is that we
may want to constder this inference problem without ex-
plicitly computing the L7-LUB. Cadoli [Cad93] shows
that this problem has exactly the same complexity as
that of deciding whether X | C, for Horn €. Using
the notion of £7-strengthening introduced in [KS91] aa
a generalization of Horn strengthenings [SK91], one can
easily generalize this result to arbitrary target languages
r]mpﬂ 'I\l'lf‘P'l‘ wmlntinn

6 The quality of approximations

There are at least two important aspects in assessing the
quality of an approximate theory: its size, and its "close-
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ness" to the original theory. In this section, we discuss
the latter from a worst case perspective. For concrete-
ness, we will focus on Horn approximations. We show
that the weakening of the original theory represented by
the LUB can result in failing to answer an exponential
number of queries, and in adding an exponential number
of models to those of the original theory. We leave the
reader the task of identifying further target languages
for which the conclusions of this section apply.

Example 1 The examples used to establish corol-
lary 12 have an exponential number of prime implicates
which do not follow from the Horn LUB. There is there-
fore an exponential number of queries entailed by the
original theory that the LUB will fail to answer.

Example 2 Given aset of variables zy,..., 25, let £ =
{zive; |1 <1{i<j<n)} be the sel of all binary positive
clauses on this vocabulary, This theoty iz satisfied by
exactly the set of interpretations that satisfies at most
one negative literal, hence 1t has n 4+ 1 models. The
Horn LUB is empty, however, so it has 2® models. The
ratio between the number of models of the LUB and
the number of models of T is therefore exponential. A
simtiar asymptotic ratio holds for any fixed k, with I =
{k-ary positive clauses}.

In the last example, it is possible to work around the
problem by observing that & can be brought to Horn
form by an uniform renaming of all symbols, i.e. Eis in
the class "renamable Horn" and is therefore tractable.
The next example does not have this property.

Example 3 Given variables 2,,. .., z,, the non-parity
theory is given by the sentence —(x; & ...® 1,), where
@ denotes the exclusive-or connective. The models of
this theory are all interpretations that satisfy an even
number of positive literals, for a total of 2, 1 models. In
prime implicate form, it can be written as

A v.vi

{h, . la b0

where 0~ is the set whose elements are those sets con-
sisting of exactly one literal for each variable in the lan-
guage, such that the total number of negative literals
is odd. (See the discussion of the parity function in
[Weg87].) If n is odd (the case with n even is left to
the reader), then the Horn LUB approximation of non-
parity, equivalently the set of Horn prime implicates of
non-parity, contains the single clause =z V.. .V~z, (any
other implicate contains at least two more positive liter-
als). This clause rules out exactly one model, hence the
LUB has 2" - 1 models, or 2" - 1 more models than
the original theory. Any model containing at least one
negative literal will satisfy the LUB, rather than only
those models with an even number of positive literals.

Example 4 There is also at least one fairly natural
class of theories that yield inadequate approximations.



Consider the propositional encoding of constraint sat-
isfaction problems (CSP). For each variable X7 of a
given C8P, its propositional enceding I contains a clause
Ci = (X; =71 V...V X; = &l ) specifying its initial
demain, clauses specifying that distinct values of a vari-
able are incompatible, and where n-ary constraints for
n > 2 are encoded by negative clauses ( “nogoods”) stat-
ing which combinations of values are incompatible.

For each clause C, there must exist & unique clanse
C% € II(E) which subsumes C;. Now, it is easy to see
that Zjys, being Horn, ean only entail Cy iff €] is & unit
clause, i.e. if the CSP uniquely determines a smgle pos-
sible value for the given variable. For any variable for
which this is not the case, the information that the vari-
able must have at least one value will be lost by the Horn
LUB, and the LUB will be consistent with a number of
variables having no value. If k is the number of variables
for which the CSP does not uniquely determine a value,

this gives at least £F_, ( ’k‘ ) additional models. Inde-

pendently of quantitative measures, moreover, we would
argue that there is a qualitative sense in which these
approximations are inadequate — for example, if Xj de-
notes the position of an object, the compiled theory may
be consistent with the object mysteriously vanishing (i.e.
with Xj having no value), so a robot may have no reason
to look for it. Note incidentally that combining the LUB
with a GLB would be of little help for such problems, as
any GLB of £ must entail a complete assignment of val-
ues to every variable (because all Horn strengthenings of
the various clauses Xj are positive unit clauses.)

In conclusion, it is easy to find examples which defeat
Horn approximations, even in theories (such as CSPs)
with a very small proportion of non-Horn clauses. While
this is an important fact, we emphasize that it in no way
precludes a profitable use of Horn approximations for
large classes of theories which do not include the ones
discussed here.

7 Discussion

Tn this paper, we have provided an analysis of approx-
imate knowledge compilation on the basis of the ap-
proach introduced by Selman and Kautz in [SK91; KS91;
SK95]. Highlights of the analysis, which generalize the
results of Selman and Kautz in a number of ways, are:

+ the characterization of the L;-LUB for arbitrary
clausal languages used as target of the compilation,
both in terms of completeness with respect to LT-
queries and of prime Lr-implicates;

+ an analysis and proof of correctness of the generic
procedure Generate-Lt-LUB, as introduced in
[KS91], showing that it can be used without mod-
ification for any target language closed under sub-
sumption;

« for languages not closed under subsumption, we
have shown that the main computational attractive
of the procedure, namely the avoidance of resolu-
tions among clauses of the target language, can be
preserved, providing a new generic algorithm that

computes the LT-LUB for arbitrary propositional
clausal languages.

As already mentioned, there is an important class
of languages, closed under subsumption but not under
resolution, for which, contrary to what was previously
thought, GenerateLT-LUB gives correct results. This
class of languages includes any subset of k-CNF closed
under subsumption; the LUB with any such subset as
target language has polynomial size. Of special interest
among them is the language k-Horn, which is tractable,
and which has been explored in detail as an approxima-
tion tool in [DP92; KS92b].

We have also analyzed some points which are crucial to
the evaluation of the concepts and procedures discussed.
First, either computation of the Lt-LUB, or inference in
LT is likely to be intractable. Second, for many target
languages Generate-Lt-LUB has exponential space and
time requirements even in cases where theL - L U Bis the
empty theory. Finally, we have analyzed the quality of
Horn approximations in terms of closeness to the initial
theory.

In the category of related work, the great debt of this
paper to the work of Selman and Kautz should be ob-
vious to any reader; credit for specific results or proofs
due to them has been explicitly indicated where appro-
priate. We should also mention that our results may have
consequences for other approaches to knowledge compi-
lation, specifically for the work of del Val in [dV94]. del
Val presents procedures to compile propositional theo-
ries into equivalent, not just approximate, theories for
which unit resolution is complete. One of these proce-
dures uses the skeleton of the Generate-L;-LUB algo-
rithm as instantiated for the Horn target language, and
the question arises whether the cited procedure can be
generalized to take advantage of the results of this paper.

Finally, let us mention the work of Inoue [In092] on lin-
ear resolution procedures for finding the "characteristic
clauses" (prime Lr-implicates) of a "production field"
(target language LT)- Just like us, Inoue considers the
problem for arbitrary target languages, providing proce-
dures that compute the characteristic clauses of a theory
for any target language closed under subsumption (what
he calls an "stable" production field). Interestingly, he
discusses multiple applications of the notion of charac-
teristic clauses, which suggest a somewhat different per-
spective on the goals of compilation. For example, in ab-
duction we are interested in certain kinds of entailments
of the database, namely the implicates that involve only
literals describing allowable hypothesis (abducibles) and
some literal to be explained in terms of those hypoth-
esis. Similarly, in determining the circumscriptive con-
sequences of a propositional theory we are interested in
particular in clauses that involve only positive literals
whose symbol is being "minimized" or literals made from
the set of "fixed", non-variable symbols. In diagnosis,
we are interested in the "minimal conflicts", that is, the
prime implicates that contain only AB-literals. In either
case, the desired class of implicates can be designated
as target language Lt the Generate-Lt-LUB procedure
can then be used to ensure completeness for queries ex-
pressed in Lr- One can also think of less sophisticated
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but equally useful task specific reasons for choosing the
target language. For example, we may want to com-
pile the input-output behavior of a device assembled by
means of some other more elementary components de-
scribed propositionally. One possibility is to compute
the prime implicates of the theory resulting from com-
bining the theories corresponding to the device's com-
ponents, throwing out all those which involve "internal"
variables which do not refer to the initial input or final
output of the assembled device. The other possibility,
which may require much less space, is to designate the
clauses involving only input and output variables as tar-
get language, and compile using the standard Generate-
Lt-LUB.

In summary, achieving completeness with respect to
a given target or query language is a worthwhile goal
for LUB compilation. Even if the query language is not
tractable, one can benefit from ignoring irrelevant parts
of the initial theory, and there is always the possibility
of further compiling the LUB into a tractable form in a
second pass, possibly using some other method. There
is in fact an interesting alternative when the query lan-
guage CQ is not tractable but its complement is closed
under resolution. In this case, we can choose the comple-
ment as target language LT for Generate-Lt-LUB, and
obtain in Ty the prime implicates of & which belong
to Lo (as implied by theorem 11), hence the CQ-LUB.
This guarantees completeness and tractability (relative
to the size of L) with respect to Lo, while avoiding
all resolutions among clauses which do not belong to
the query language. As an example, one can obtain the
k-quasi-Horn LUB, in prime implicate form, by desig-
nating its complement as target language; no pairs of
non k-quasi-Horn clauses will ever be resolved together
by Generate-Lt-LUB in this case.

Both Inoue's linear resolution procedure and the pro-
cedures of this paper can be used to obtain completeness
with respect to the selected query language (Inoue's re-
sults are limited in this regard to languages closed under
subsumption, though the results of the present paper can
be easily used to lift this restriction). There are two main
differences. First, the restrictions imposed by his version
of linear resolution have no analogous in Generate-Lt-
LUB; the latter is therefore much more likely to gen-
erate redundant resolution derivations. However, and
this is the second crucial difference, his procedure does
compute all prime Lt-implicates, producing "compiled"
theories which in general will require much more space
than those generated by the LUB algorithm; this fact
limits the usefulness of the linear resolution procedures
for compilation purposes.
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