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Abstract 
Mereological and topological notions of connection, 
part, interior and complement are central to spatial rea­
soning and to the semantics of natural language expres­
sions concerning locations and relative positions. While 
several authors have proposed axioms for these notions, 
no one with the exception of Tarski [18], who based his 
axiomatization of mereological notions on a Euclidean 
metric, has attempted to give them a semantics. We offer 
an alternative to Tarski, starting with mereotopological 
notions that have proved useful in the semantic analysis 
of spatial expressions. We also give a complete axioma­
tization of this account of mereotopological reasoning. 

1 Introduction 
Mereological and topological notions of connection, part, in­
terior and complement are central to spatial reasoning and to 
the Natural Language (NL) semantics of expressions 
concerning locations and relative positions. For example, 
reasoning about objects inside other objects or on them may 
involve complex inferences based on a semantics for the 
prepositions in and on that exploits these mereotopological 
notions properly [4]. Reasoning about these concepts is also 
present in many commonsense reasoning tasks about spatial 
position and navigation [13, 16]. We propose here a 
semantics and complete axiomatization of these notions that 
takes the linguistic semantics of spatial expressions to be a 
fundamental guide to commonsense spatial and geometrical 
reasoning. We do this for two reasons. First we are interested 
in reasoning about spatial situations from linguistically given 
information, in particular the spatial prepositions, movement 
verbs, and noun phrases referring to portions of space. In 
such a task we must understand exactly what sort of 
information spatial expressions in NL convey. Second, we 
are interested in how the narrative structure of discourse can 
convey spatial information [2]. 

When examining commonsense reasoning from this lin­
guistic perspective, two observations become apparent. The 
first is the absence in NL of a natural way of referring to 
points without measure. Such points are fundamental to the 
mathematical conception of topological spaces, geometry, 
and analysis. But they are foreign to space as it is usually 
expressed in narrative texts, newspaper articles and texts 
about how to get to a certain place, which are the sort of 
texts with which we have been concerned. At the very least, 
mathematical points are not needed to express spatial rela­
tionships within NL. Furthermore, the NL expressions that 
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we do use to refer to "points," "borders," and "surfaces" do 
not refer in the following examples to the mathematical 
notions: 

(1) The point of this pencil is actually an irregular 
surface with several peaks. 

(2) There is a scratch in the surface of the table. 
Mathematical points, unlike pencil points, can't be sur­

faces, nor can mathematical surfaces have scratches (which 
presuppose a depth). Even the points, surfaces and bound­
aries of our commonsense world are three dimensionally 
extended objects. 

The other observation is that agents use spatial information 
contained in texts even though this information does not 
contain any system of universal coordinates by means of 
which we may spatially situate the objects talked about in 
the text in the way we might use a coordinate system (e.g. 
longitude, latitude and altitude) to situate the position of a 
robot. NL strongly suggests that space is a relational concept 
as Leibniz argued, not an "absolute" concept as Newton 
thought. Our conception of space is constructed from or de­
pendent upon the relative positions of objects to each other.' 

This is not to say that our commonsense conception of 
space has nothing to do with mathematical conceptions of 
space. Commonsense reasoning approximates but simplifies 
the mathematical concepts, since the full power of mathe­
matical topology, geometry or analysis, is not needed in 
commonsense spatial reasoning tasks. That there should be 
this compatibility between mathematics and commonsense 
seems evident to us in that, for example, we can express 
mathematically precise locations in NL relative to a system 
of coordinates-north, south, east, west, longitude and lati­
tude, together with numerical expressions within these di­
mensions and the dimension of altitude. We can also when 
needed introduce the language of analysis. Indeed, one of the 
accomplishments of the theory we propose below is that we 
make this notion of approximation between commonsense 
and mathematics itself formally precise. But it is clear that 
mathematical expressions are not always present in NL when 
spatially useful information is present. Thus, the use of 
mathematically precise notions of space is not an essential 
part of our conception of space. 

Our aim here is to develop the foundations of a common -
sense geometry. In section 2, we present a language in which 

1Like time which may be construted out of events only, not 
taking states into account [12], space may be constructed from 
material objects only. Indeed, immaterial portions of space such 
as the space beneath the table are entities dependent of objects. 
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we cannot refer to points without extension and in which 
there are no expressions for referring to a coordinate system. 
We also present in section 2 a semantics for this language. In 
sections 3 and 4, we present a new sound and complete 
theory for the topological aspects of this qualitative, rela­
tional conception of space. In section 5, we develop a modal 
analysis of the approximation between this commonsense 
conception of space and the mathematical one. 

2 Structures for Relational Mereotopology 
Our attempt to build topology and geometry out of a domain 
of individuals or "bodies" instead of points is inspired by 
Whitehead [21], Tarski [18] and Clarke [6,7], as well as 
work in mereology [14]. Tarski is the only one we know 
who has presented an axiomatized and complete mereotopo -
logical theory besides ours, but he classified his domain of 
"bodies" into "spheres" and non-spheres, thus recovering 
topological concepts from metrical ones. Our topological 
theory most directly exploits Clarke's work which corrects a 
mistake of Whitehead's, leading to an inconsistency. 
However, since Clarke presents (in the Russellian philosoph­
ical style) only an axiomatic calculus, we will begin by 
describing the formal language and the semantic structures 
we have found necessary for the commonsense conception 
of space embodied in NL. 

To state our relational, topological theory, we use a first 
order language, L RT with one non logical two place relation 
symbol, C, and a denumerable infinity of individual nonlogi-
cal constants (a, a0, a*, b, b1, etc.) and variables (x, y, z, u, v, 
w, x i, etc.). C represents intuitively the notion of connection 
between individuals. There are intuitively two sorts, EC 
(external connection), in which two objects share a boundary 
and O (overlap) in which two objects have a common part 
which is an object. A further kind of contact is also needed, 
WCont (weak contact), in which two objects are not con­
nected but are in some sense "vanishingly close" to each 
other. Examples of weak contact are the relation between a 
glass and the table on which it is standing and the relation 
between the glass and the wine it contains, while an example 
of external connection or "strong contact" is the relation 
between the stem of the glass and the cup of the glass. To 
express this notion of vanishing closeness, it is natural to 
suppose that each object has surrounding it a smallest neigh­
borhood. While WCont may be defined in terms of C it 
seems natural to us to think of its semantics using neighbor­
hood. Further, neighborhoods may be useful if we wish to 
impose constraints on smallest neighborhoods that we cannot 
state within LRT (for example, that for some fixed real num­
ber 5, the neighborhood of x is within 6 of x). The presence 
of neighborhoods is also a useful feature if we wish to incor­
porate principles about how properties persist over spatial 
regions (see for instance [3]). 

Besides these notions, NL semantics requires us to capture 
the more classical topological notions of openness and clo­
sure (for details see [4]). To show that the right topological 
notions of open and closed properties are grasped, it suffices 
to show that our cognitive spaces are structures built over 
topological spaces. The fact that our structures are based on 
set-theory and have points as primary entities is not in con­
tradiction with our aims. It doesn't really matter how one 
chooses to express the models of a theory: once complete­

ness is proven, they are all equivalent in the sense that our 
language and inferential mechanisms cannot distinguish 
between them. Moreover, there are two clear advantages of 
expressing our structures in terms of classical topological 
spaces. First, it's a practical way to compare the concepts we 
introduced with better-known ones, and second, it will give 
us the opportunity to show in section 5 that classical topol­
ogy may be seen as a limit of mereotopology. 

The domain of our structures is a subset of the power set 
of a topological space. Every subset corresponding to the 
space occupied by a physical object must clearly have a non-
empty interior. However, few people working on mereotopo­
logy have noticed an additional important feature of cogni­
tive space, emphasized in qualitative spatial reasoning by 
[10] and [8]: the subsets of a topological space correspond­
ing to physical objects are three dimensional throughout or 
"regular". Regularity has two defining features: for any n-
dimensional regular space, (1) every part of the objects in 
that space must be also n-dimensional (smooth boundaries); 
(2) these objects must have no "holes" of a lower dimension 
(full interiors). This means that subsets including a single 
isolated point, as well as subsets with a single interior point 
deleted are not in the structure. This feature has a further 
consequence: we must modify the union and intersection 
operators to ensure that they are internal composition laws 
on our domain of objects. To make this clear, consider this 
example. Suppose we have the one-dimensional space, <R+, 
{any union of open intervals}>. Then, clearly any open in­
terval is "regular" but the union of (0,1) and (1,2) has a 
deleted point, 1. The correct union operator of two regular 
subsets preserving "regurlarness" is, not ordinary u, but a 
new operator u * , introduced below. Similarly its dual n* 
replaces set intersection. 

This discussion leads naturally to our definition of the 
models 



f(x) is called the (smallest) neighborhood of x, a straightfor­
ward extension of the topological notion of neighborhood of 
a point. It is important to note that X cannot be dense (in the 
sense that (open(x) & open(y) (open(z) 
)), because the notion of a mini­
mal open set is vacuous then, since the intersection of any 
set of open sets may not be an open set. 
3) [] is a function assigning individual terms a denotation in 
Y. The interpretation of C will be given below. (We assume 
the usual extension of the interpretation of constants 0 to an 
interpretation of terms where g is an assignment of ob­
jects in the domain to the variables occurring free in the 
term.) 

Of all these constraints only conditions (vii) and (viii) 
above have not yet been motivated. They are needed to 
ensure that our structure is nontrivial in the sense that it does 
have instances of weak contact and external connection. 

2.2 Semantics for L 

2.3 Axiomatization 
Our axiomatization extends and corrects that of [6]. Classical 
mereology [14], as well as [6], contains a fusion operator for 
summing up any collection of individuals into a new indi­
vidual. This general fusion operator is in fact unnecessary. In 
addition, removing Clarke's axiom stating the existence of 
the fusion of any collection of individuals is a simple way of 
making the theory first-order, and gives a response to a criti­
cism often given of mereology, that it is neither cognitively 
nor ontologically acceptable to assume the existence of indi­
viduals having as parts any collection of individuals. This 
change is visible in axioms (A4-8). The next change is in the 
definition of connectedness (D10). Clarke's definition makes 
it impossible to have connected spaces as soon as it is split 
into two externally connected parts, since the sum of two in­
teriors equals the entire space and thus is not connected 
according to his definition3. Finally, we added WCont, and 
axioms that ensure that the theory is not trivially verified in 
any topology (because, e.g., there is no external connection). 

3 The Soundness Proof 
When added to the axioms and rules for first order logic, the 
set of axioms we have set up for relational mereotopology 
(RT0) form the basis of a proof relation l-RTo. A proof in RTo 
is as usual a finite sequence of sentences of L, each one of 
which is either an axiom or derivable from the other lines 
using Modus Ponens or Universal Generalization. We now 
provide a class of models for RT() to show that it is sound. 
Clarke did not do this, nor have any of the people following 
his work done this. This has led researchers, including 
Clarke, to miss certain important features of the theory~e.g., 
the models are not just the power sets of topological spaces 
with the subsets having an empty interior removed, and the 
difficulty of defining points within this theory (attempted in 
[7], but proved in [20] to be incorrect). 

The question arises as to whether the constraints we have 
imposed on Y and hence on RTT, though intuitively moti­
vated, are consistent. It will suffice to show that, under the 
hypotheses that and , } (needed to satisfy the con­
straints corresponding to (Al 1) and (A12)): 
Fact 4: Let X and Y be as defined above for RTTand sup­
pose that and }; then, the elements asserted to 
exist in Y in clauses (i) and (iv)-(vi) verify the constraints on 
their interiors and closures imposed by clauses (ii) and (iii). 3 We owe this observation to Carola Eschenbach. 
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We assume that every consistent RTo set can be extended 
to a maximal, RT0 consistent saturated set. Given a maximal 
RTo-consistent, saturated set , we have a collection of con­
stants occurring in that will form the basis of our 
mereotopology; equivalence classes of these constants repre­
sent our objects. But since we must model C by non-empty 
intersection, we must in the model , constructed from 
represent these objects by sets of points. We will in fact 
define points by means of our basic objects, by appealing to 
an ultrafilter-like construction. It is similar to that used e.g., 
by [12] to construct temporal instants from temporally ex­
tended intervals and states. Clarke [7] also suggests that the 
ultrafilter construction can be used to reconstruct points, but 
he uses just one construction adapted from Russell and 
Wiener that actually makes the system inconsistent as soon 
as there is one external connection [20]. We use two sorts of 
ultrafilter constructions, one for interior points (IP) and one 
for boundary points (BP). 
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5 Extension : Microscopization 
In this section, we explore one refinement of commonsense 
mereotopology. RT0 meets our requirements for a topology 
exemplifying a relational conception of space without math­
ematical points. For many reasoning tasks and for the 
semantics of NL expressions this information is sufficient 
(See e.g. [4] for details). When, for instance, a cup is on top 
of a table, the proper semantics for the relation between the 
cup and the table is weak contact. However, looking much 
closer we may see that there are objects or a space between 
the cup and the table. As we refine the granularity of our 
space (that is, as we consider smaller and smaller size 
objects), we eliminate weak contact relations. Note that this 
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revision never happens for an external connection, for we 
cannot find any object between the stem and the cup of the 
glass, or between one's hand and one's wrist. 

This sort of refinement is also present in changes of granu­
larity signified by the use of certain modals in NL. Consider 
again, for example, the sentences (1) and (2) above in which 
there is arguably a shift in granularity-passing, e.g., from 
the description of an object as a point to one where it is de­
scribed as a surface. Superficially, these descriptions are in­
consistent5, so we suppose that there is some sort of shift 
from one model or world to another. We call this sort of shift 
of granularity microscopization. We can suppose that this 
process of refinement of granularity continues to a "limit" as 
follows. We suppose that we can find parts of each object in 
the space. Next, we suppose we could find parts of those 
parts, and so on forming a sequence of objects decreasing in 
size. These sequences of objects are, mathematically speak­
ing Cauchy sequences; and if we suppose that the limits of 
these sequences exist, then we will have constructed dense 
spaces of points by partitioning the original objects of our 
commonsense conception of space based on middle-sized 
objects. 

The use of modal adverbs like actually (in sentence (1) 
above) suggests that we should model this process of reflec­
tion modally, each world will reflect an increasingly fine-
grained view of what the parts of objects are. At the end, we 
pass from the notion of a physical part to a mathematical 
part. We can axiomatize the idea that there are worlds of 
commonsense mereotopology and there are refined worlds 
with traditional, mathematical conceptions of topology. 

The modal extension for LRT that we envision will include 
a modal operator [m]. To the usual clauses for a first order 
language, we add: if is a formula of L RT, then is also 
a formula. A modal RTo model is a quintuple, R, c, 
[[]]>, where W is a nonempty set (of worlds), D a function 
from W into a discrete, "pseudotopological" structure of the 
sort outlined in the semantics for LRT in section 1 above; R a 
transitive and asymmetric alternativeness relation in W; c an 
injective counterpart function from D(w) into D(w') for each 
w and w' such that wRw' such that if in w then for 
all w' such that and II an assign­
ment to each nonlogical constant of an appropriate intension 
(function from worlds to extensions). 

The domain of each accessible world is strictly larger than 
its R-predecessors (it is this that allows us to capture the 
asymmetry of R), reflecting the refinement of the granularity 
size of objects. We further suppose that for each object a in 
w and wRw', w' contains additional objects that are parts of a 
(or strictly speaking the counterpart of a). The collections of 
points in one world need not be the same collection in an­
other, but an object (collection of points in one world) will 
always have a counterpart in each accessible world. Finally, 
we suppose a limit to the R chains in which every object is 
the sum of points without interiors. This falsifies certain ax­
ioms of RTo at the limit worlds-namely the axiom that every 
object has a nonempty interior. These limit worlds are clas-

5The "points" referred to here are in effect extended objects, i.e. 
they have nothing to do with the abstract points in the models, 
but they are subject to constraints that are incompatible with 
those constraints that define surfaces (see [4] for the definitions 
of NL notions of point, border and surface objects in RTo). 

6 Related Work 
Qualitative spatial reasoning has in the past focussed more 
on reasoning about orientations than on topology. A number 
of authors have defined topological relations from orienta-
tional primitives, extending Allen's interval calculus [1] to 3 
dimensions (for instance [15]), but it is easily shown that 
mereotopological concepts such as overlap or external con­
nection can be correctly grasped in this case only for a quite 
limited domain of parallelepedic objects [20]. 

Others such as [8] use a domain of points and all the po­
wer of classical topology (and Euclidean geometry), on the 
grounds that it was the only sound theory modelling these 
concepts. Our work shows that an alternative based on a 
naive conception of space as it is expressed in NL can be de-
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veloped rigorously at least as far as the topology is 
concerned. Furthermore, the full topology of R3 is a higher 
order concept and we have proposed a first-order and 
axiomatizable alternative. 

As far as we know, the only other mereotopological ap­
proach in qualitative reasoning apart from ours has been ta-
ken by the AI group in Leeds, the last version of their theory 
being presented in [16]. While also based on Clarke's propo­
sal, they remove the topological definitions of interior and 
closure. They also change the complement definition so that 
it is equivalent to the two following axioms Vx 3y Vu 
(C(u,y) - -nNTPP(u,x)) and P(x,y) - Vu 3v (C(u,v) & 
(C(x,v) - NTPP(v,y))). As shown in [16], these imply that 
there can be no atoms, and that it is now impossible to assert 
the existence of interiors-otherwise the theory is inconsis­
tent. This last feature is one of the motivations for the 
change in the theory, since for them, differentiating between 
an individual, its closure and its interior has no cognitive 
support. On our point of view, it is on the contrary cogniti-
vely important to be able to view material objects as closed 
individuals and their complements as open ones, so that their 
interpretations don't share any point. Indeed, we don't want 
the air around the glass to have a "glass boundary" belonging 
to it, that is why in RT 0 , the glass and the air are in weak 
contact. But in [16], an object and its complement are exter­
nally connected, and so in that theory the unintuitive conse­
quence about glass boundaries seems to follow unless one 
does a lot of fiddling with the way we refer to objects in NL. 
We have two strong motivations for wanting topological 
operators in our theory, one being the possibility of defining 
strong contact and weak contact, the other being that we 
think it ontologically important to be able to recover classical 
topology as a "limit" model, which we do in the process of 
microscopization. Note that the authors of [16] don't provide 
any soundness or completeness proofs for their theory. 

Recently, in formal ontology there has been much work 
done on the ontological relation between mereological con -
cepts and topological ones. [19] provides a nice description 
and a classification of this work. One active trend in this 
field is to show that mereology alone supports topology, at 
the cost of having domains containing both extended indivi­
duals and boundaries [9, 5, 17]. It seems to us important to 
guarantee the ontological homogeneity of the domain, in or­
der to avoid the need to classify a priori the spatial entities 
we will represent in the theory, which even if metaphysically 
justifiable does not seem to us relevant to spatial reasoning 
tasks in AI . Besides, we have already stressed the fact that 
no linguistically described entity corresponds to an infinitely 
thin mathematical object, so that considering boundaries as 
constructs more abstract than extended individuals, as we do, 
is cognitively grounded. In addition, we note that none of 
these authors provide a soundness or completness proofs to 
support their intuitions about the kind of models their 
theories are supposed to have. 
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