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Abstract

We develop a methodology for comparing
knowledge representation formalisms in terms
of their "representational succinctness," that
is, their ability to express knowledge situations
relatively efficiently. We use this framework
for comparing many important formalisms for
knowledge base representation: propositional
logic, default logic, circumscription, and model
preference defaults; and, at a lower level, Horn
formulas, characteristic models, decision trees,
disjunctive normal form, and conjunctive nor-
mal form. We also show that adding new vari-
ables improves the effective expressibility of
certain knowledge representation formalisms.

1 Introduction

Many important knowledge representation formalisms
have been proposed, used, and studied during the past
fifteen years, including various forms of propositional
logic, nonmonotonic formalisms, decision trees, and so
on. There is now a host of methods available for rep-
resenting complex knowledge, and for reasoning about
it. An interesting question thus arises: How is one
to evaluate and compare different knowledge represen-
tation formalisms? Besides the practical aspect of this
question with respect to choosing the "best" formalism
for a given application, environment, and resource con-
straints, a methodology for comparing and evaluating
knowledge representation methods may lead to useful in-
trospection, new insights, and to the discovery of better
approaches.

In this regard, one must consider several aspects of the
desirability and effectiveness of a knowledge representa-
tion formalism:
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(1) Does it support efficient reasoning? The most com-
mon use of a knowledge base is for deciding whether
a statement can be inferred from the available knowl-
edge, and hence this question is of central importance.
Much research effort has been invested in recent years to
clarifying this issue, and this aspect of knowledge repre-
sentation is by now very well understood. In brief, all
knowledge representation formalisms can be subdivided
into three categories with respect to the complexity of
their inference problem.

(la) Classical propositional logic, perhaps the most
basic knowledge representation formalism, has an NP-
complete inference problem [Cook, 1971].

(Ib) More sophisticated and non-monotonic for-
malisms, such as circumscription, default logic, non-
monotonic logic, autoepistemic logic, etc., have infer-
ence problems that are even harder: complete for the
second level of the polynomial hierarchy, see [Cadoli
and Lenzerini, 1994; Eiter and Gottlob, 1993; Gottlob,
1992]; model preference default theories [Selman and
Kautz, 1990] have even higher complexity [Papadim-
itriou, 1991].

(Ic) Finally, weaker versions of the above formalisms
provide polynomial-time inference at the expense of our
next criterion, expressibility. These include Horn clauses
[Dowling and Gallier, 1984], Horn model preference de-
faults [Selman and Kautz, 1990], restricted forms of de-
fault logic [Kautz and Selman, 1992], etc.

(2) An orthogonal criterion for the desirability and
usefulness of a knowledge representation method is, how
expressive is it? First we must formalize what we mean
by "expressive." The most natural notion of expressive-
ness is provided by model theory: Since the propositional
case of each of these formalisms has semantics in terms
of models or truth assignments, any knowledge base can
be thought of as representing a set of truth assignments,
that is, of "possible worlds." This suggests a notion of
equivalence: Two knowledge bases, possibly in different
formalisms, are equivalent if they encode the same set
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of possible worlds. Thus, here is a first try at a frame-
work for comparing formalisms in terms of expressibility:
Consider formalism A at least as expressive as formal-
ism B if and only if any knowledge base in B has an
equivalent knowledge base in A.

There are serious drawbacks to this proposal. First,
all diverse formalisms in la and I|b above are trivially
equally expressive, since any set of models can in princi-
ple be expressed by each of them. For example, proposi-
tional logic is exactly as expressive as the more sophisti-
cated default logics, even the (soon to be proved) much
more powerful preference defaults. Only the formalisms
in (Ic) above are provably inferior; however, this is the
result of a conscious sacrifice of expressibility in the in-
terest of efficiency. As we shall point out in Section 4,
where we compare sublanguages of propositional logic,
it is more meaningful to compare knowledge representa-
tion formalisms in terms of their relative performance at
sets of models that they can both express.

(3) A much more interesting, but also more subtle,
question one can ask about a knowledge representation
formalism is this: How succinctly can the formalism ex-
press the sets of models that it can? We think that this
is the more interesting expressibility criterion; it is the
main methodological contribution of this paper. That
is, we consider formalism A to be stronger than formal-
ism B if and only if any knowledge base in B has an
equivalent knowledge base in A that is only polynomially
longer, while there is a knowledge base in A that can be
translated to B only with an exponential blowup. Using
this criterion, we show that the known knowledge rep-
resentation formalisms form a hierarchy (Fig. 1) which
is rather surprising in its strictness, as well as in the
outcomes of the particular comparisons.

(4) We should mention here that another important
question is, how does the knowledge representation for-
malism fare in the face of change? Change is impor-
tant in knowledge representation (for example, non-
monotonicity is a dynamic property). There are many
formalisms in the literature for knowledge base updates
and revisions; as was pointed out in [Eiter and Gott-
lob, 1992; Gogic et al., 1994], none of the known for-
malisms supports efficient changes. [Gogic et a/., 1994]
propose a tractable revision mechanism using the theory
approximation technique of [Selman and Kautz, 1991;
Selman and Kautz, 1996]. Incidentally, change has its
own expressiveness aspect (which changes in the set of
models can be expressed, and how succinctly?), which is
not at all understood at present.

In this paper we find that the representational suc-
cinctness criterion (3) above can tell us interesting and
unexpected things about familiar knowledge represen-
tation formalisms. There is a tempting argument pur-
porting to prove that our criterion of representational
succinctness (criterion 3) is just a disguise of computa-
tional complexity of inference (criterion 1 above). The
argument would be this:

/I reasoning in formalism A is computation-
ally harder then reasoning in formalism B (ie.,
there is a polynomial-time reduction from the

satisfiability problem in the latter to the for-
mer) then any sentence from A can be trans-
lated (with polynomial blow up) to an equivalent
sentence in B.

This argument is wrong. The difference between
reductions and representational simulations between
knowledge bases is subtle but important. A reduction
must be computationally efficient, and must preserve the
answer to the satisfiability problem (the emptyness/non-
emptyness aspect of the corresponding set of mod-
els), whereas representational simulations must main-
tain the precise set of models, and need not be com-
putationally efficient (the simulating knowledge base
need not be efficiently computable, as long as it ex-
ists). This difference manifests itself in many compar-
isons. For example, one of our main results is that
default logic is strictly more succinct than circumscrip-
tion, despite the fact that their inference problems are
known to be computationally equivalent [Gottlob, 1992;
Eiter and Gottlob, 1993]. For another example, char-
acteristic models (whose satisfiability problem is trivial)
can be sometimes more succinct than CNF (whose sat-
isfiability problem is, of course, NP-complete). Finally,
we know how to translate default theories to model pref-
erence defaults only in a nonconstructive way (Proposi-
tion 2). Evidently, the complexity arguments involved
in such comparisons have to be much more subtle than
the crude one outlined above. (However, a more sophis-
ticated version of this "translation via complexity" ar-
gument is used in Proposition 2.)

We next highlight our results on the representational
succinctness criterion (see Fig. 1 for a full depiction of
our results).

1. Circumscription and default logic are more pow-
erful with respect to representational succinctness then
propositional logic (this had been observed for the case
of circumscription by [Cadoli et a/., 1994; Cadoli et a/.,
1995]). This result provides a "silver lining" for the high
intractability of circumscription and default logic: In
these formalisms one may need exponentially more suc-
cinct expressions, and thus increased intractability is not
necessarily a real threat.

2. Default logic can be exponentially more succinct
than circumscription. This is a rather surprising result
in view of the computational equivalence of the two for-
malisms, and it is perhaps quite revealing of the relative
power and desirability of these formalisms (heretofore in-
distinguishable in terms of their inference complexity).
Also, model preference defaults can be exponentially
more succinct than default logic, or any other formal-
ism whose inference problem can be done in polynomial
space; this is rather unexpected, since model preference
defaults had been considered as a rather crude and un-
sophisticated knowledge representation formalism.

3. Lower in the hierarchy, CNF and DNF have no
advantage over Horn formulas and characteristic models,
when a Horn set is to be represented (recall that we are
comparing knowledge representation formalisms at the
intersection of their expressibility domain); this suggests
that we should choose a Horn formula representation
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whenever at all possible. Similarly, every Horn set has
a set of characteristic models of size no lazger than the
one that of the best DNF representation. What is more
surprising, the reverse statement does hot hold, i.e. there
are some functions having a short characteristic models
representation but no short DNF representation. On
the other hand, Horn formulas and characteristic model
representations are mutually orthogonal, in that they
can take exponential advantage of each other.

Some of our comparison results are not proven to hold,
but are shown to be “very likely,” as their refutation
would disprove certain widely accepted conjectures in
compiexity theory. The scientific community has been
trying to resolve a number of class containments prob-
lemns for years {the question of whether P=NP is the best
known, but certainly not the only, important question in
complexity theory alinded to here), and although the fi-
nal answer to each of these questions continues to be
elusive, a certain amount of intuition toward the correct
answer has been obtained. For example, we think that
P#NP because, toughly speaking, if thete were a polyno-
mial algorithm for satisfiability or for the traveling sales-
man problem, we would probably have found it.' Sim-
ilarly, we believe that NP#co-NP, because we have not
found a polynomially succinct variant of resolution that
wor)ks {or a characterization of non-Hamiltonian graphs,
say).

}hut what about the following problem: Given 2 propo-
sitional formula ¢ and a subset £ of the set of all its
variables, 1s it possible o fix the variables in £ so that ¢
becomes a tautology? Not only there is no known poly-
nomial algerithm for this problem, but there is strong
evidence that it does not even belong to NP or in co-NP.
The class for which the problem is complete is called £,
and is at the second ievel of the pofyromial hicrarchy.
The polynomial hierarchy 1s extended in this way to Xz,
L4, and so on; their complementary classes are denoted
by [I3, 113, et¢. Finally, the class of all problems solvable
in polynomial space is even broader, as it contains all
of the polynomial hierarchy (and probably much more).
Exactly as we strongly believe that PZNP, although we
have no proof, we also strongly believe that all these
levels of the polynomial hierarchy, as well as polynomial
space, are distinct. That is, it is considered very unlikely
that the polyriomial hierarchy collapses at any level (the
lower the level, the stronger our confidence that collapse
does not occur there).

Therefore, once we show that a positive answer to
a problem would imply that the polynomial hierarchy
collapses, we can say that the answer to our problem
is wery likely 1o be negative. One well-known instance
of this line of reasoning involves non-uniform complez-
ily classes. Let P/poly be the set of all problems that
can be solved in polynomial time by Turing machines
that take, together with their input z, say of length
n, an advice siring a(n), depending only on n and not

"Netice the nonmenotonic reasoning going on here; in fact,
deriving results based on assumptions such as “the polyno-
mial hierarchy does not collapse® is a fine example of non-
monetonic and counterfactual reasoning, or, equivalently, of
buoilding an extension supported by given defaults.
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Figure 1: The representational succinctness hierarchy.
Arrows go from weaker to stronger formalisms. Two-
way arrows denate representational equivalence. In ar-
rows marked with a = the lower bound (A+bB) depends
on the non-coilapse of the polynomial hierarchy. In the
uppermost arrow, our proof that DL ~+M P requires the
introduction of new variables.

on z, and of length polynomial in n. Similarly for
NP/poly. Although these classes now contain unsolv-
able problems, it is known that they “very likely” do not
extend far beyond the corresponding classes in the hier-
archy. That is, it was shown in [Katp and Lipton, 1980,
Yap, 1983] that, if NP is contained in P/paly, or even
in co-NP/poly, then the polynomial hierarchy collapses.
For more details about this and some other complexity
issues mentioned in this paper see [Papadimitriou, 1993].

2 Definitions

in this seclion we introduce several well-known knowl-
edge representation formalisms, the notien of the size of
a knowledge base or expression in this formalism, and
what it means for a bit vector to be a model of a knowl-
edge base in the formalism.

PL is the class of all formulas in propositional logic.
An assignment to the variables is model of a given propo-
sitional formula if i¢ satisfies it. The size of a formula is
the total number of connectives in it.

Let €'C be the class of all circumscribed propositional
formulas [MeCarthy. 1980]. Vector « is a model of a
formula F' cireumscribed over variablea with indices from



set M if o is a model of F, and no other model of F is
contained in a with respect to M. The set of all such
models is denoted as CTRCy(F), and when M contains
all indices it is omitted and we write CIRC(F). The
size of a circumscribed propaositional formula is that of
the uncircumscribed formula.

DL is the class of sll pairs (D, W) where D is a set
of defaults [Reiter, 1980] and W is set of propositional
formulas. We say that « is a model of (D, W) iff there
is an exiension of (I}, W) satisfied by e {this is some-
times called sceptical reasontng). The size of 2 default
theory is the total number of defaults in I}, plus the to-
tal number of connectives appearing in W. Similatly for
AEL, autoepistemic logic (this formalism is not treated
extensively here).

M P is the class of all sets of model-preference defaults
[Selman and Kautz, 1990]. A model preference default
is an object of the form (4 — b), where A is a set of
literals and b is a literal. If D is a set of model-preference
defaults, D induces a directed graph Gp on {0,1}" as
follows: If &, 8 € {0,1)%, then (a,8) € Gp (we say
that & is preferred to 8 with respect to D) if there is a
default (A — b) in D such that {a) a and J are identical
with respect to all variables outside b; (b) both o and 8
satisfy all literals in A, and (¢) # satisfies b and o does
not. Fipally, we say that « is 2 model of D if whenever
there is a path in Gp from a to some other bit vector
{3, then there is a paih from & back to o. The size of 2
sel, of defaults is the total number of literals in all of its
defaults.

We also examine certain imporiant special cases of
propositional logic. By DNF we denote the class of
all formulas in disjunctive normal form. A formulais in
disjunctive normal form if it is a disjunction of conjuncts,
where conjunct is a conjunclion of literals. The size of
a DNF formula is the total number of connectives. A
hit vecior is medel of given DNF formula if it satisfies
at least one disjunct. Similarly, CNF is the class of all
formulas in conjunctive normal form. The size is again
the total number of connectives, and a vector is model
of given CNF formula if it satisfies all conjuncts.

By H we denote the class of all formulas in conjunc-
tive normal form such that each clause has at mosi one
unnegated literal. The formalism is very popular be-
rause there is a fast algerithm for satisfiability checking
of Horn formulas (see %Dow]ing and Gallier, 1984]) and
because of its connection to logic programming. Un-
forlunately, niol every sel can be represented by Horn
formulas,

CM denotes the class of all sets generated by a set
of chargcteristic models. The idea oniginated in }[’Kautz
et al., 1993]. Since every Horn set is closed under bit-
wise multiplication, it makes sense to try to represent a
Horn set not as the sei of all its models but as the set
of its “characteristic models,” so that the original set is
ohtained as the closure of the set of characteristic mod-
els under bitwise multiplication.? For a set of vectors
M we define closure{M) as the set of all vectors rep-

¥The idea is later generalized in [Khardon and Roth, 1954]
to capture non-Horn sets, and was successfully applied to
model-based reasoning.

resentable as bitwise product of some vectors from M.
The set of models of a set of characteristic vectors M is
precisely closure{M). In {Kautz et al., 1993] it has been
proved that f and C'M are orthogonal, i.e. there are
situations when one is better than the other for com-
pact knowledge representation. However, in Section 4
we give an intriguing method for simulating CM by H.
It is also proved in [Kautz ef af., 1993] that abduction in
CM can be done in pelynomial time {the same problem
is NP-complete for Horn formulas). The size of & set of
characteristic modela M C {0,1}" is |M| - n.

DT is the class of functions represented by decision
irees. A decision tree is a binary tree such that each
internal node has two edges emanating out of it —one
labeled z;, the other labeled ;. Each leaf i labeled 0
or 1. A decision tree computes a Boolean function f(a),
where a = (&), ...,an), as follows: we start at the root
of the tree and repeatedly foliow the edge that evaluates
to 1 {i.e. if &; = 0 then we chose edge labeled &j, if
&; = 1 we chose the edge labeled o). We repeat the
step until we arrive at a leaf, and the label of the leaf
tells us the value that function at o. An assigniment is a
model of a given decision tree if it evaluates to 1. Notice
that for every o there is exactly one path that can be
traversed starting from the root. The size of a decision
tree is the number of nodes in it.

Finally, let AC3 be the class of all disjunctions of CNF
and conjunctions of DNF. In other words, this is the
ciass of ali depth-3 unbounded fan-in circuits with OR
and AND gates, and literals as leaves. The size of an
AC? circuit is its number of gates. This is an interesting
generalization of both CNF and DNF |

Lei A and B be any knowledge representation for-
malisms such as the ones defined above. We say thal
Ais af least as representationally succinct as B, writlen
B~+A if the {ollowing is true: For each knowledge base
¢g in B there is a knowledge base ¢4 in A such that (a)
¢4 and ¢z are defined over the same variables and have
the same set of models, and (b) the size of ¢ 4 is polyno-
mially bounded in the size of ¢5. Nolice that we have
no provision that ¢4 should be efficiently computabie,
give ¢5. Also, A+ B means that there is 2 knowledge
hase in A that has no equivalent polynomial knowledge
base in B. We say that A is representationelly sirictly
more sucemnel than B if B~ A and A4+ B (these are the
arrows in Fig. 1). We say that A and B are represen-
tationally equivalent if A~+B and B~ A, We say that A
and B are representationally incomparable if A+ B and
B4+ A. Since H and CM are not complete formalisms,
in that they cannot represent all sets of models but only
Horn sets, comparison with other formalisms will be re-
stricted to Horn sets. That is, we compare incomplete
formalismns only al the intersection of the sets of models
that they can express.

3 The Representational Succinctness
Hierarchy

In this section we show that the formalisms defined above
are related in terms of representational succinctness as
shown in Fig. 1.
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1. CC 4+ PL unless NPC P/paly (which would imply
that the polynomial hierarchy collapses).

Lemma 1 For every n there is a propositional formula

T, of size polynomial in n such that to every 3CNF

propositional formula F over n variables can be assigned

a vector mg (in polynomial time) such that F is unsal-

----able iff mg is in CIRC(T,).

Proof: The variables that T, will contain are: ci- c¢i
where 1 < ¥ < B{ § ) (i.e.,, one ¢, and ¢ for each
possible 3-variable clause Ci), Iy, Tg,..., X» (one
variable for each variable from F) and y (an ex-
tra variable). We define the set of clauses H as
H = Hy U HylU Hy where:

H1 =
{tavyvasvazva,) : for every Ci = (g, V ag V a,)}
Hy = {(eivcf):for1<i<8( 7))}, and Ha =
{(y —~a): for 1 <4< n)

Our formula T, will be the conjunction of clauses

in H. For given F we chose mg to have cj, set to 1
iff C; appears in F, c; being the opposite of ¢, and

y=m=...=a,=1.
Claim 1 F is satisfiable iff mg is NOT a minimal
model of T.

Proof: (=>) If F has a satisfying assignment a
then we built an assignment m' of T, by ex-
tending a with y — 0 and setting each ¢, and
c'i like in mp.

(i) Each clause C from H; is satisfied because
either
o gset toDor
¢ ¢; = 1 which implies that Cj is in F and
knowing that € € €' we have that C is
satisfied.
(ii) Each clause in H, is satisfied by mp so it
is satisfied by m!/
(iii) Each clause in Hj is satisfied because y =
0
We have now that m' is a model of T, and it
is less than mp which means that mp is not in
CIRC(T,).
(<=) Suppose now that T, has a model m! less
than mp. It is easy to see that mp and m’
must coincide on each Cj and c\. Notice that
m' must have y = 0 (otherwise #3 forces mp —
m!) and after plugging all ¢* c\ and y from m!
into In we will be left with some clauses yet
to be satisfied. Those are exactly the clauses
from F and they can be satisfied only with a
proper choice ofai,..., a, which means that F
is satisfiable. ]
This proves the lemma. []
Suppose now that for any formula T there is a poly-
size formula V such that CIRC(T) - T', ie., the set
of models for T' is the set of minimal models for T.
From Lemma 1 we can then conclude that any prob-
lem from co-NPhas a poly-size circuit in the following
way: reduce given instance of co-NPproblem to the ques-
tion of whether a formula F is a tautology (which is
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a co-NPcomplete problem,) find my and 7, from the
lemma, take then 7' and check whether mp satisfies
T {which can be done in polynomial time}. Therefore,
our suppoeition would then imply co-NPC P/poly, which
implies that NPC P/poly because P/poly is closed un-
der the complement. This theorem was proven indepen-
dently in [Cadoli et al., 1995]. The above proof builds on
a construction introduced in [Kautz and Selman, 1992],
and our result strengthens an eatlier result in [Cadoli e
al., 1984).3

2. CC ~DL

Proof: Let us take a propositional formula T with vari-
ables {p1,p2.....pn}. We define default logic & =
(D.W), with W=Tand D= {d.-:-;%!- :1<€i<
n}. Suppose now that m €CIRC(T). Then there
is an extension obtained by applying those dy’s for
which the i-th bit of m is 0, and that extension has
only one model, m. No more defaulis can fire be-
cause m would not be the minimal mode]. The other
direction follows the same line: if S is an extension
of A then it has only one model (the one that has
bit 7 set ta 0 only if d; bas fired), and that model is
minimalin T. This reduction beiongs to the folklore
of NMR community. =

3. DL A€ unless NP C co-NP/poly (which would
imply that the polynomial hierarchy collapses}.

Proof sketch: Because of space limitations, we can
only provide an outline of the proof.

Definition: A formulain CNF is called pureif each
clause has at most three literals and either all of
themn are negative or all of them are positive. The
problem of deciding whether a pure formula is satis-
fiable is known to be NP-complete [Garey and John-
son, 1879)].

We next obtain a lemma concerning the complexity
of model checking in default logic.

Lemma 2 For every n there is o defaull logic the-
ory An = (Dn, Wa) such that lo every pure formule
F over n variables can be assigned (in polynomial
time} & model mp that belongs lo some extension of
An tff F is sefisfiable.

Proof; Assume that F{a;,...,a,) 18 a pure for-
muila. Our default theory will be formed over a
set of variables e1,..., 65,8, 21, 23,. .., 2, With
& = 2( 5 ). To simplify the presentation we
use X; to stand for the formula

bAZ AL Az AFAZi A Az, Torl €ign
and ¥; for

BADA. AL ATAZI A Az, forl<ign
Now we define a set D of defaults:

dir:a-}-/_)-(-'_ and df:é forl<i<n

3We thank Marce Cadoli for useful discuasionn on the issue
of the size of representations.



For every positive clause C; = (n;, v a, Va,)
we introduce default ¢}:

?.—:VEV?:::.—
o

For every negative clause C; = (ag; v, V&)
we introduce default d):

X_,',VHVY;:: ci

Ci

For each clange C; we will also introduce a de-
fault ¢f = : §/5. We take

W=X,v.. NXavYv.. .VY,,V{EH'\Z“’\. A

Our lemma now follows directly from the fol-
lowing claim (details appear in full version of
paper).

Set ¢; to 1 if Ci is tn F and fo O other
wise. Thern F is salisfisble if and only of
m = ciez...cell ... ] is in some ezfension of

(D,W). m

Suppose now that for any default logic A there is a
formula whose circumscription produces the same
set as the union of extensions for A. Then by
Lemma 2 we conrclude that checking satisfiability
of every pure formula of fixed size can be reduced
to checking whether a given model belongs to cir-
cumscription of 4 fixed formula, which is in co-NP.
{Note that to show thai & model is nef a minitnal
model, one simply has to provide a model that is
contained in the original model). In other words,
it would imply that NPC co-NP/poly (the fixed
formula is the advice a{n) in the definition of the
P/poly ete. classes [Karp and Lipton, 1980]). =

4. MPA4 DL unless the polynomial hierarchy eol-
lapses.
We need the following lemma.

Lemma 3 Fir M {to be any Tering machine thet op-
crales in linear space. For every n there is o sel of
madel preference defaults An such that to every mput 2
of length n we can assign (in polynomial lime} g model
my such that my 5 6 model of A, if end oxly if M
greepls x.

Proof: Assume without loss of generality that M, after
accepting, restores its input tape 1o the initia] con-
figuration (which it has saved) and starts its com-
putation anew on the same input; when it rejects,
it halts. Suppose that there are at most 2* symbol-
slate combinations in M, and p moves {each move 1s
of the form “if three contiguous symbol-state combi-
nations are (g, b, ¢}, then replace them by (', ¥, c"l}”.
We can assume that in any reachable configuration
only one such move applies. We shall represent any
configuration of M with n tape squares as 2nk + p
Boolean variables #;;, 3,1 = L,....,mj=1,...k
and z;,j5 = 1,...p. The x varables will represent
the tape contents; the y variables will ordinarily be

equal to the » variables but will facilitate the im-
plementation of the moves; and the z variables will
be ordinarily zero, unless a move is in progress, in
which case the z variable corresponding to the move
being implemented will be one.

We shsll next define the set of defaults A, that
simulates the moves of M. Thal is, if a configura-
tion C of M yields another C’, then in the graph
(Ga, there is an arc from bit vector C to bit vec-
tor C’. Suppose that the gth move of M is of the
form (a,b,¢) = (o', ¥,¢'). Since the total number
of aymhbols is at most 2*, we can think of a etc. as
k-tuples of bits. Let z,[s, b, c] be the sei of literals
stating that the values of 2,7, withi=r—1r r+1
and j = 1,...,k, spell abe, and let g [a,b,¢] be
the set of literals stating that the values of y;,
i=r—-1,rr+1,5=1,...,kspell abe. Then we
add the following defsults to A,,:

For each ¢, 1 < i < m», we have a default
(zela b, e) wela,b,¢), 7 — z,) (this default sels the
bit z, that says “move g in progress”). We have
3k defaults that change, one-by-one, the y-bits cor-
responding to squares i — 1 to i + 1 from (a,b,¢)
to {a’,¥ ¢}, whenever move ¢ is in progress (we
omit the straightforward details of these defaults).
Similarly, we have 3k more defaults that copy the
(o', ¥, ") from the y bits back to the z bits, Finally,
a default resets z, to zero, whenever z.[d',}’ ¢},
y[a", ¥, ], and only 2, among the 2’z i one: The
move has been implemented.

Let x be an input of length n of M, and let m; be
the starting configuration of M on input # {(and the
corresponding bit veclor in our z,y, z variables). It
is easy to see that the following holds: The pari of
the graph Ga_ reachable from my is either o cycle
or a path, depending on whether M accepts the input
or nef.

Herce m; is a model of A, if and only if M accepts
r, concluding the proof of the lemma. =

Hence, if for any given set of model preference defaults
there is an equivaleni default theory {(or autoepistemic
logic theory, etc.), this would mean that there is a £,
method for simulating any polynomial-space machine,
which would collapse the hierarchy (polynomial space
includes all levels of the polynotmial hierarchy).

Notice thal we have not proved that DL ~~MP; we
de not know how to directly simulate default theories
by model preference defaults. However, in Section 5
we show something slightly weaker but almost as com-
pelling: M P can simulate any knowledge representation
formalism whose model-checking problem is soivable in
polynomial space by adding exira verighles -—and this
includes default logic, autoepistemic logic, and a host
of others [Gottlob, 1992; Eiter and Gottlok, 1993]. On
the other band, 4 holds even if adding extra variables
is allowed (because polynomial space is very likely more
powerful than any level of polynomial hierarchy}, which
gives evidence that M F is in some sense stronger than
default logic.
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4 Sublanguages of propositional logic

Although some of the following relations follow from
well-known properties of propositional logic, proofs of
all are provided for completeness.

5. H 4CM , H 4+DNF

Proof: Let f(zl,a:g‘...,a'g,,) =
(ITVEnEEV ) . . (F2no1 V Tom). This function
is already given as a conjunction of n Horn clauses
g0 it has a short represeniation in H . Notice that
any set of characteristic models for f must contain
the maximal models of f and it is easy to see that f
has 2" maximal models (for any i €{1,..., n}we can
take 3,1 = 0, 29y = lor zoj_y = 1, z2;_1 = 0).
The size of its DNF representation is also expo-
nential, because it is a monotone formula and any
term we get by multiplying one variable from each
clause is a prime implicant (so there are 2" prime
implicants). So, f has a polynomial representation
in H whereas every representation of f in CM or
DNF is of exponential size. m

6. CM ADNF

Proof: Let flzr, 20, 22m) =
(TIV )TV z4) .. (TmTVz2n). Let k < n,
and let 1 < 4 < ... < i £ n be a given set of
indices. Then we define the vector e} ;. to have
bits y,..., i; equal to 0 and all other bits equal to
1.

The set of characteristic models that generates f is
{521'—1 01 S 1 S n}U{"?i—l,?i -1 S H S H}U{lzn}

{it has 2r+1 vectors). By the same line of reasoning
a5 in the previous proof we can conclude that the
DNF representation of f will have exponential size.
n

7. CM 4H , DNF 4 H

Proof sketch: {Ka.ut.z el al, 1998] use the function
flzy 22, . Bam) = (FTAT V.V (Tan_ | A TT)
to separate CM from H. f has a short DN F and
CM 1epresentation. The function is dual to the
function used in 5, and by applying the same idea
we conclude that f must have an exponential size
representation in CNF |, and therefore in . »

B. ONF ~H , H ~CNF

Proof: Let M be a Horn set of models. We will prove
that shortest CNF representing M must be a Horn
formula. Suppose the shortest CNF representing
M contains a non-Horn clause . Then there is a
Horn clause Cy € C that can be entailed from M
{see {Setman and Kantz, 1991; Selman and Kautz,
1996] for the proof) and we can put Cy in the CNF
instead of C {the set of models will not change).
This gives an even shorter formula representing M;
contradiction. w

9. DNF ~CM
The proof is given in the full version of the paper.
Note that since CM cannot represents all possible sets
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of models, we consider here only sets of models repre-
sentable in both formalisms. The relationship between
DNF and CM has also been analyzed in [Khardon and
Roth, 1994] in a slightly different setting.

10. DT ~DNF, DT ~CNF, DNF DT,
CNF 4DT

Proof sketch: In the full version of the paper, we show
how to construct a short CNF formula and a DNF
formula directly from a given decision tree. 1t fol-
lows that each polynomial size dacision tree has both
a short DNF and a short CNF representation. Since
there exist short DNF formulas that do not have a
short CNF representation, it follows that there can-
not exist a short decision tree for such formulas, and

thus DN F DT . Similatly, CNF -4DT . n

1. AC? ~PL, CNF ~AC?, CM ~AC?
PLLAC? | ACS LCONF , ACP ACM

Proof sketch: The first two relations follow directly
from the definition of AC? . For the third obser-
vation, we can show that, given a set of charac-
teristic models M, one can construct a short for-
mula in AC™® that represents M. From a result in
[Hastad, 1986), it follows that the parity function
does not have a short AC™® representation. Since
the parity function has a shorl encoding in FL il
follows that PL 4 4C? . Combining 8. and 9. we
get DNF ACNF that AC® is a gencralization of
DNF we conclude that AC* ACNF . Similarly,
AC? is a generalization of H which combined with
5. gives AC® 4CNF . n

5 Adding Extra Variables

In this section, we show that adding extra variables im-
proves the representalional succinctness of certain for-
malisms. We state our tesults here without the proofs.
Our first result shows that by introducing additional
variables, Horn formulas can efliciently encode sets of
characteristic models. This result should be contrasted
with thal obtained in [Kautz e? af., 1993], where it is
shown that without the introduction of extra variables
there are sets of models that have short characteristic
mode] encodings but no short Horn formula encoding.

Definition: For a set S of m-bil vectors and given
nuraber n < m we define proj,{5) as the set of n-bit
vectors £ = (zy,...,2,) for which there exists a vector
s=(51,....,8m)ESsuch that z; = s, s for 1 < i < n.

Proposition 1 For every set M = {m!,...,m*} of n-
bit charecteristic models there is a sef 5 with o Horn
representation of size polynemial tr n + k such thot
proja(S) = closure(M).

We can in fact also show that using additional vari-
ables is provably more powerful. That is, we can prove
that by adding extra variables it is possible to represent
sets that otherwise require an exponential representation
in H and CM .

Firally, we consider the power of model preference de-
faults, when we aliow for additional variables. Here we
obtain a surprisingly general result:



Proposition 2 Let A be any knowledge representation
formalism such that the model-checking problem of A can
be carried out in polynomial space in the number of vari-
ables and the size of the representation. Then for any
knowledge base K in A on n variables and representa-
tion size s there is a set of model preference defaults A of
size at most polynomial inn + s such that the projection
of the set of models of A to the original n variables is
precisely the set of models of K.

As noted earlier, this result implies that by allowing
for additional variables MP can simulate any knowledge
representation formalism whose model-checking prob-
lem is solvable in polynomial space. Default logic and
autoepistemic logic are just two examples of such for-
malisms [Gottlob, 1992; Eiter and Gottlob, 1993].

6 Conclusions

Knowledge representation formalisms are usually com-
pared with respect to their computational properties and
expressive power. Expressive power is characterized in
terms of what can and cannot be represented in a formal-
ism. Often little consideration is given to the question
to what extent the formalisms allow for a compact en-
coding of information. We presented a series of results
showing that systems with similar expressive power can
differ dramatically in the size of the shortest encoding of
certain kinds of information.

Fig. 1 summarizes our main results. Each upward ar-
row leads to a provably more succinct representation
formalism. (Some results are based on certain stan-
dard complexity theoretic assumptions.) For example,
we have shown that there exist sets of models with short
(polynomial) encodings in default logic, but that can
only be captured by exponential size circumscriptive the-
ories. On the other hand, however, any set of models
with a compact encoding using circumscription can also
be captured by a short default logic theory. One surpris-
ing aspect of our analysis is that we found many strict
separations between formalisms. This suggests that suc-
cinctness is indeed useful dimension along which to com-
pare representation formalisms.
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