
Inter-diagrammatic Reasoning

Michael Anderson*
Computer Science Department

University of Hartford
Dana Hall 230

West Hartford, Connecticut 06117
U. S. A.

Abstract

Endowing a computer with an ability to reason
with diagrams could be of great benefit in terms of
both human-computer interaction and computa­
tional efficiency through explicit representation.
To date, research in diagrammatic reasoning has
dealt with intra-diagrammatic reasoning (reasoning
with a single diagram) almost to the exclusion of
inter-diagrammatic reasoning (reasoning with re­
lated groups of diagrams). We postulate a number
of general inter-diagrammatic operators and show
how such operators can be useful in various dia­
grammatic domains. We develop a heuristic in the
domain of game notation, derive fingering infor­
mation in the domain of musical notation, and infer
new information from related cartograms.

1 Introduction
Humans possess a highly developed ability to reason with
visual information such as diagrams. It has been shown that
endowing a computer with such an ability could be of great
benefit in terms of both human-computer interaction and
computational efficiency through explicit representation
[Larkin and Simon, 1987]. To date, research in diagram­
matic reasoning has dealt with intra-diagrammatic reasoning
[Chandrasekaran et al, 1993; Narayanan, 1992; Narayanan,
1993] almost to the exclusion of inter-diagrammatic
reasoning.

Intra-diagrammatic reasoning can be defined as a process
of inference realized by the application of various operators
to a given single diagram (for example, see [Furnas, 1992]).
Inter-diagrammatic reasoning, on the other hand, can be
defined as a process of inference realized by the application
of operators to groups of related diagrams (for example, see
[Anderson, 1994; Anderson and McCartney, 1995]). Dia­
grams are related if they can be combined in ways that pro­
duce useful information. Two types of related diagram
groups can be defined, sequences and suites. These differ in

*Previously at Sacred Heart University, Fairfield, CT, U.S.A.

Robert McCartney
Computer Science and Engineering

University of Connecticut
260 Glenbrook Road

Storrs, Connecticut 06269-3155
U. S. A.

the way in which a single diagram within a group is related
to other diagrams in the same group.

A diagram sequence [Anderson, 1994; Anderson and
McCartney, 1995] will be defined as a meta-diagram com­
posed of a number of diagrams arranged in an order that in­
corporates some manner of forward moving time. Often,
each of the diagrams in the sequence can be considered a
discrete snapshot of some continuous phenomenon de­
scribed by the sequence as a whole. Examples of such dia­
gram sequences include game notation, chordal musical
notation, weather maps, assembly instructions, and instruc­
tions for a product's use.

A diagram suite will be defined as a meta-diagram com­
posed of a number of diagrams that present different facets
of a given entity at the same moment in time. Each of the
diagrams of the suite can be considered as a view of the en­
tity from some single, unique perspective. When combined,
the suite can present the entity as a whole. Examples of such
diagram suites include architectural renderings, anatomical
drawings, and cartograms.

We present a syntax and semantics of inter-diagrammatic
reasoning and then introduce a number of inter-
diagrammatic operators and functions. Next, example uses
of these operators and functions are provided in various do­
mains. A brief discussion of related work follows and, fi­
nally, we offer our conclusions.

2 Diagram Syntax and Semantics
Most generally, we will syntactically define a diagram to be
a tessellation of a planar area such that it is completely cov­
ered by atomic two dimensional regions or elements. The
semantic domain will be defined as {v0,.... v1} denoting an /'
valued, additive gray scale incrementally increasing from a
minimum value v0,WHITE, to a maximum value v1, BLACK.
Intuitively, the gray scale values correspond to a discrete set
of transparent gray filters that, when overlaid, combine to
create a darker filter to a maximum of BLACK.

3 Diagrammatic Operators and Functions
The following primitive unary operators, binary operators,
and functions provide a set of basic tools to facilitate the
process of inter-diagrammatic reasoning. We have striven

8 7 8 KNOWLEDGE REPRESENTATION

for simplicity and generality in the hope that these tools
might be applicable in a wide variety of diagrammatic
domains.

3.1 Unary operators

NOT, denoted ~d, is a unary operator taking a single dia­
gram that returns a new diagram where each element is
BLACK if the corresponding element in d is WHITE, and
WHITE otherwise.

3.2 Binary operators
Binary operators take two diagrams, d, and d2, of equal di­
mension and tessellation and return a new diagram where
each element has a new value that is some function of the
two corresponding elements in the operands.

OR, denoted dy v d2, returns the maximum of each pair of
elements. The maximum of two corresponding elements is
defined as the element whose value is closest to BLACK.

AND, denoted dy A d2> returns the minimum of each pair of
elements. The minimum of two corresponding elements is
defined as the element whose value is closest to WHITE.

OVERLAY, denoted d1, + d2, returns the sum of each pair of
elements. The sum of values of corresponding elements is
defined as the sum of their respective values' subscripts.

PEEL, denoted d, - d2, returns the difference of each pair
of elements. The difference of values of corresponding ele­
ments is defined as the difference of their respective values'
subscripts.

ASSIGNMENT, denoted d1 <= d2, modifies of, such that each
element has the value of the corresponding element in d2.
(Note that non-diagrammatic assignment will be symbolized
as := and the equality relation as =.)

3.3 Functions over diagrams
NONNULL, denoted NONNULL(d), is a one place Boolean
function taking a single diagram that returns FALSE if all
elements of d are WHITE else it returns TRUE.

3.4 Functions over sets of diagrams
ACCUMULATE, denoted ACCUMULATE (d, ds, o), is a three
place function taking an initial diagram, d, a set of diagrams
of equal dimension and tessellation, ds, and the name of a
binary diagrammatic operator, o, that returns a new diagram
which is the accumulation of the results of successively ap­
plying o to d and each diagram in ds .

MAP, denoted MAP(f, ds), is a two place function taking a
function f and a set of diagrams of equal dimension and tes­
sellation, ds, that returns a new set of diagrams comprised
of all diagrams resulting from application of f to each dia­
gram in ds.

FILTER, denoted FILTERS ds), is a two place function tak­
ing a Boolean function, f and a set of diagrams of equal di­
mension and tessellation, ds, that returns a new set of
diagrams comprised of all diagrams in ds for which f returns
TRUE.

CARDINALITY, denoted CARDINALITY(s), is a one place
function taking a finite set that returns the number of ele­
ments in 5.

4 Example Domains
As example uses of the previously postulated inter-
diagrammatic operators and functions, we 1) develop a heu­
ristic for a game, 2) infer the correct fingering of a sequence
of instrumental chord diagrams, and, 3) infer the quality of
precipitation in a suite of cartograms.

4.1 Battleship
We have chosen the simple game of Battleship as one do­
main in which to test the diagrammatic operators and func­
tions. The domain and its constraints are described first
followed by a description of the inference goal and a de­
tailed account of a working system based on this domain.

Battleship, Figure 1, is a game for two in which both
players place ships (groups of two, three, or five contiguous
blocks— a block being the atomic element of this domain)
diagonally, horizontally, or vertically on a indexed, ten by
ten grid. Each player then tries to sink the other player's
ships by shooting them (marking all of the blocks compris­
ing the ship) without ever seeing the grid on which they are
placed. This feat is accomplished by the currently attacking
player sending a salvo of shots (announcing the coordinates
of seven blocks) and the other player providing a damage
report that details the number of hits sustained by each of
his/her ships but not the indices of each hit. The winner is
the player who sinks the other player's ships first.

We are interested in applying the proposed diagrammatic
operators and functions to the end of predicting the best
shots a player might take given the progress of the game so
far. To clarify this process, we will discuss it in terms of a
subset of Battleship. The subset will consist of the game as
described limited to only a single ship, namely the battle­
ship (a five block group). Further, we will consider the
placement of the battleship as being completely random.
Within these constraints, it is possible to construct a dia­
gram via the proposed diagrammatic operators that displays
the entire set of possible battleship positions and, by simple
inspection, discover the blocks that are most likely to be in­
cluded in the battleship being sought. The intuition is that
we would like to combine information from each possible
configuration of a battleship onto a single diagram. The
"darkness" of a given block in this diagram indicates the
number of possible battleships it could be a part of and,
hence, its likelihood of being a good candidate for a next
shot. This is equivalent to numerically calculating the prob­
abilities for each cell.

In the next section, we describe the process of displaying
all possible positions of a ship on a single diagram. An ex­
ample is then provided that details the diagrammatic reason­
ing required to develop a heuristic from a sequence of
battleship shot boards.

Displaying a set
Figure 2 details the process by which an entire set of ships
can be displayed on a single diagram. A diagram with only
WHITE blocks (denoted D1) is OVERLAYed with another dia­
gram (denoted D2). D2 has one possible position of a battle­
ship on it, represented as a contiguous five block region
containing the first level of gray above WHITE (GRAY,).
OVERLAYing produces another diagram that, after this single
step, happens to be identical to D2. This newly created dia­
gram becomes the new D1 which, in turn, is OVERLAYed with
another diagram that has a different possible position of the
battleship on it. Yet another diagram is produced that con­
tains a representation of both of the ship positions so far in­
cluded. This is due to the additive nature of the domain
values previously defined combined with the semantics of
the OVERLAY operator. The effect on the diagram is that
ships that overlap each other make blocks they have in com­
mon darker than the blocks they don't have in common. In
the example, the common blocks will now have the value of
GRAY2 (GRAY, + GRAY,) whereas the other blocks will have
the value GRAY, (WHITE + GRAY,). This process is repeated
until all possible positions of a ship have been overlayed
onto a single diagram.

In more formal terminology, the function ACCUMUI_ATE(
0, Suppositions, +) is applied where 0 (null diagram) is the
diagram initialized to WHITE and ShipPositions is a domain
specific set of all diagrams of possible single battleship po­
sitions. In each of these diagrams, the blocks that are part of
the battleship take the value v1 while all other blocks take
the value v0. The final result of this application of ACCUMU­
LATE is a diagrammatic representation of all possible ship
positions with those blocks most likely to be included in a

ship being the darkest and those that are least likely, the
lightest.

Developing the heuristic
Figures 3 and 4 detail an example of the process by which
the set of possible ships is constrained as the game pro­
gresses and a diagrammatic representation of the heuristi-
cally best shots is developed. First, a new salvo of shots is
placed on the previous game board as BLACK blocks. At the
start of the game, the board will contain only WHITE blocks
but, as each turn is taken, this board will fill with shots from
each turn. To differentiate between previous and new shots,
the previous board (denoted PreviousBoard) is NEGATEd and
ANDed with the current board (denoted CurrentBoard) giving
the current salvo (denoted CutrentSalvo) of shots. Formally:

CurrentSalvo <= - PreviousBoard A CurrentBoard
Next, the number of hits (denoted Hits) scored by the

salvo is determined. This is accomplished diagrammatically
by ANDing the diagram containing the current salvo of shots
with the diagram that contains the battleship in its actual po­
sition represented as GRAY1 blocks (denoted Actual-
Battleship). Since ANDing is defined as taking the minimum
of each block of a diagram, the resulting diagram will con­
tain GRAY1 blocks for each hit in the current salvo and
WHITE blocks everywhere else. Hits can then be counted,
diagrammatically, by ANDing the resulting diagram with
each member of a predefined set of inspection diagrams —
diagrams used to isolate elements . In the current domain,
the set of inspection diagrams is comprised of all possible
diagrams containing a single BLACK block (denoted Single-
Blocks). As each of these are ANDed with the diagram con­
taining GRAY1 blocks for each hit in the current salvo, only
those that have their single BLACK block in the element cor­
responding with the GRAY1 block will yield a new non-null
diagram. The result of each operation is tested with the
Boolean NONNULL function and its successes are counted
thus producing the number of hits. The entire process can be
formally, and more compactly, stated using the diagram­
matic operators and functions (X is used in the standard way
to denote function abstraction):
Hits :=

The First Salvo
In the example, the first salvo, Figure 3, results in no shot
hitting the battleship as placed in Figure 1. This information
is then reflected on a diagram by a process of overlaying
similar to that previously described. Every possible instance
of the battleship is overlayed as a contiguous five block re­
gion of GRAY1 onto a diagram initialized to WHITE. Now,
however, a possible instance of a battleship must also con­
form to the number of hits specified. That is, in order to be
considered possible, each five block region must overlap the
number of hits (BLACK blocks on the current salvo diagram)

exactly. In the current example, since there were no hits, a
five block region that overlaps any BLACK block is not con­
sidered possible and, therefore, will not become part of the
new set when displayed.

This effect is achieved by ANDing a given instance of a
battleship, represented with GRAY1 blocks, with the diagram
representing the current salvo. The resulting diagram will
contain GRAY1 blocks for each hit that the given instance of
a battleship overlaps and WHITE blocks everywhere else.
These GRAY1 blocks are counted via the inspection dia­
grams as previously detailed and this count compared with
the number of hits needed. If these numbers are equal, the
given battleship instance is OVERLAYed on the accumulated
result otherwise it is discarded. When all such battleship in­
stances have been so OVERLAYed, the resulting diagram rep­
resents the current set of possible battleships newly
constrained by the information in the damage report con­
veyed by the defending player. This process can be more
formally stated using the diagrammatic operators and func­
tions as:
ACCUMULATE(

The resulting diagram is a collection of blocks with values
ranging from WHITE to BLACK. If the placement of the bat­
tleship is random, BLACK blocks are most likely to be con­
tained in the battleship given the hit information so far with
lighter shades of gray becoming decreasingly less likely.
Further, given the damage report information, WHITE blocks
are guaranteed not to be included as part of the battleship a
player is seeking. This result (denoted HeuristicDiagram),
then, can be considered a diagrammatic heuristic that indi­
cates the probabilistically best shots for the next salvo.

The Second Salvo
The second salvo, Figure 4, uses the information previously
derived by including within it the seven darkest blocks on
the heuristic diagram. First, the previous board is NEGATEd
and ANDed with the current board giving the current salvo of
shots. The number of hits is determined as described

previously and results in a count of one. The set of possible
ships, Suppositions, is updated so as not to include any ship
instances that were deemed impossible by the previous
salvo and the remaining possible ship instances are then
OVERLAYed as before.

Lastly, since blocks of the salvo itself will be included in
the heuristic diagrams generated from damage reports of
one or more hits, these blocks need to be removed from the
final diagrammatic heuristic as they are not available for fu­
ture salvos. This is accomplished by ANDing the negation of
the current board with the heuristic diagram developed so
far. Thus the entire process of developing a heuristic dia­
gram for the constrained game of Battleship can be formal­
ized as:

• /•
In summary, this heuristic diagram is computed from in­

formation about where ships cannot be from previous salvos
(in the previous heuristic diagram) and the hit information
from the current salvo. It provides guidance for the aggres­
sor's next shots and provides information for the next heu­
ristic diagram in the sequence.

4.2 Guitar Chord Notation
Guitar chord notation attempts to denote positions of fingers
for a given chord by diagrammatically representing strings
and frets of a fingerboard along with dots to represent finger
positions. Syntactically, vertical lines represent the strings
of a guitar whereas horizontal lines represent its frets. A dot
on a string represents where some finger is placed to pro­
duce a desired pitch. Semantically, a fingering is a

ANDERSON AND MCCARTNEY 8 8 1

specification of exactly which of four fingers to use to real­
ize the dots of the diagram. For example, given that num­
bers 1 through 4 represent the index finger to the little
finger, the following is a chord diagram complete with a

fingering:

Chord diagrams are superior to standard musical notation
for inferring fingering information since the fingerboard po­
sitioning of the chord is explicitly shown on the diagram but
must be inferred from standard musical notation. Even so,
semantic ambiguity arises in guitar chord diagrams because
1) fingerings are often not specified and 2) there exists a
one-to-many mapping between the dots and possible finger­
ings. A given chord can sometimes be fingered many ways
with the preferred way often being context dependent. That
is, the preferred fingering of a chord will often depend on
one or both of the chords preceding and following it in the
diagram sequence. For example, when

there is no dot in common between them and, therefore, the
fingering for the second chord defaults to its least demand­
ing state as shown. If, however,

precedes

there is a dot in common and the fingering for the second
chord attempts to conserve finger movement by leaving the
fourth finger in place as shown.

The atomic element in this domain is represented as dots.
Each dot can either be black or white; no intermediate gray
values are necessary for this domain. Applications of simple
diagrammatic operators to sequences of chord diagrams (C,
and C2) produce useful information.

ANDing two such diagrams will yield a new diagram that
is comprised of all black dots these diagrams have in com­
mon, more formally C1 A C2 => CommonFingers. For
example,

ANDing the sequentially first diagram with the negation of
the second will yield a new diagram that is comprised of
only those black dots that were removed over time, more
formally, Ct ^C2 => RemovedFingers. For example,

ANDing the negation of the sequentially first diagram with
the second will yield a new diagram that is comprised of
only those black dots that were introduced over time, more
formally, - C1 A C2 => IntroducedFingers. For example,

(Note that a background grid of strings and frets must also
be merged to the above in order to produce the indicated
results.)

Inferring a Chord Fingering
The reasoning goal in this domain is to infer a fingering for
a chord in a sequence of chord diagrams given a fingering
for the chord immediately preceding it. For example, given

be inferred via diagrams generated by the postulated opera­
tions in concert with two simple, domain specific rules: 1)
whenever possible keep fingers in the same position, and 2)
when a new finger is needed, use next numerically available
finger.

Since there can only be one significant finger on any
given string, we can represent a fingering for a given chord
by a fingering vector, [s6, s5> S4, s3, s2* s1, where each s, is a
finger number 0 through 4 signifying which (if any) finger
is to be placed on the string i. (The strings on a guitar are
numbered from lowest pitch to highest pitch as 6 through
1.) The fingering that will be used for the first chord in this
example will be represented as [0,3,2,0,1,0]. A list of avail­
able fingers can be represented by an available finger set
that contains the numbers of all fingers not currently in use
by a chord. This can be generated for any given chord by
inspecting its fingering vector. Thus, the fingers not in use
by the first chord in the example is represented as {4}.

The first step to inferring a fingering for the second chord
is to update the available finger set with newly available fin­
gers. These can be found by inspecting RemovedFingers. Any
finger that was used to realize a dot that was removed from
the first chord is now available. To accomplish this inspec­
tion, six InspectionDiagrams , id,, are defined, each associated
with one string in the diagram:

When each of these are individually ANDed with a given dia­
gram, a background grid devoid of dots (NullChord) will re­
sult whenever there is no dot on the string associated with
the inspection diagram in the diagram under inspection.
Further, whenever there does exist a dot on the currently in­
spected string, such ANDing will infer a diagram comprised
of the background grid with that dot in place. Formally
stated: FILTER (NONNULL, MAP(l(x) {RemovedFingers A X),
InspectionDiagrams)) In the example,

Since the only inference that produces anything other than
the background grid is the one involving the fifth string's

8 8 2 KNOWLEDGE REPRESENTATION

4.3 Cartograms
Another application of the postulated diagrammatic opera­
tors is in the domain of cartograms, in particular, chlorop-
leths — maps that present data as areas of different colors or
gray-level intensities. When such maps depict different data
for the same geographic location, they are related in pre­
cisely the manner needed to perform diagrammatic
inference.

The TemperatureMap and PrecipitationMap chloropleths de­
picted in Figure 5 comprise a diagram suite in that they are
two different aspects of a geographic location that occur si­
multaneously. TemperatureMap is a map in which tempera­
tures are denoted by different gray scale intensities— darker
signifying higher temperatures and lighter signifying lower
temperatures. PrecipitationMap is a map that denotes by some
gray value where it is currently precipitating.

Inferring a New Chloropleth
Figure 5 details how the proposed diagrammatic operators
can be used to infer a new chloropleth that represents where
it is likely to be snowing within the given geographic loca­
tion by finding the intersection of the area where it is thirty
degrees or below and the area where it is precipitating. A
cartogram covered with the gray value that represents the
thirty degree range (denoted 30DegreelntensityMap) is PEELed
from TemperatureMap, forcing all gray values representing
the thirty degree range and below to WHITE while only light­
ening other grays. The result of this operation is then ne­
gated forcing all non-WHlTE areas to WHITE and the thirty
degree and below area to BLACK. Finally, this is ANDed with
PrecipitationMap producing a new chloropleth that represents
the area within the given geographic location in which it is
in the thirties or below and is precipitating— by definition
the most likely area for snow. Formally, this process can be
represented as:
-i(TemperatureMap - 30DegreelntensityMap) A PrecipitationMap.

There are many similar inferences that can be made with
such maps. Further, other questions could be asked of a sys­
tem that dealt with this type of data. For instance, given a
set of inspection diagrams representing the states, questions
such as "In which states is it precipitating?" , "How many
states currently have temperatures below thirty degrees?",
or "Is it likely to be snowing in Connecticut?" can be easily
answered diagrammatically. We envision a geographic data­
base of diagrammatic data with queries presented

diagrammatically and resolved by diagrammatic inferencing
as a reasonable goal of our research.

5 Related Work
As previously stated, little work has been done with dia­
gram sequences and suites per se. One notable exception is
the work done by Bieger and Glock [1985; 1986]. Beside
attempting a taxonomy of categories of information pre­
sented in what they term "picture-text instructions", they
performed rigorous experimentation with actual subjects
and monitored their use of such instructions to the end of
identifying the most critical categories. The direction of
their work is not towards automating diagrammatic reason­
ing but towards understanding human use of such informa­
tion as is work by Willows and Houghton [1987].

Furnas [1992] postulates a logic that deals with diagrams
via BITPICT rule mappings that can be used to transform
one diagram into another and, therefore, allows reasoning
from diagrams to diagrams. Interesting as this reasoning is,
these explicit rule mappings can be subsumed by the opera­
tors and functions currently proposed. Further, Furnas'
work does not attempt to reason about diagrams in se­
quences but, rather, its crux is the generation of sequences
of diagrams to accomplish some reasoning goal pertaining
to a single diagram.

Lastly, Chapman [1991] posits a number of primitive vis­
ual operators that are used as building blocks of various
task-specific visual routines. These operators process infor­
mation about single frames of a video game; no reasoning
about sequences of frames takes place. Interestingly,
though, two main operations of his work have analogs in the
inter-diagrammatic operators we have postulated. Visual at­
tention, focusing on a subset of a scene, can be seen as
analogous to the PEELing and negating of a cloropleth to
concentrate on one particular gray-level intensity. Visual
search, finding particular elements in a scene, is analogous
to our use of inspection diagrams.

6 Conclusion
We have postulated a number of diagrammatic operators
and functions and have shown how they can be useful in
reasoning with sequences and suites of related diagrams. In
particular, we have used them in the domains of game play­
ing, musical notation, and cartograms. These operators and
functions provide a clear and concise means of describing
diagrammatic manipulations in an important subset of dia­
gram groupings, namely, those in which objects are identifi­
able by their positions within diagrams. This is a first step in
an attempt to endow a system with full diagrammatic rea­
soning capabilities that we believe will prove extensible to
other, less constrained groupings of diagrams.

In general, we believe that a diagrammatic reasoning ap­
proach that deals with diagrammatic representations directly
will often prove beneficial because it will avoid the difficult
problems of 1) generating exhaustive textual or other

representations that specify all objects and their relation­
ships and 2) focussing attention on only pertinent objects
and relationships. Further, when viewed at the pixel level,
the postulated diagrammatic reasoning operators are closely
related to raster graphics operators and, therefore, it is
possible that hardware optimized for such graphics opera­
tors could efficiently perform diagrammatic operations.

References
[Anderson, 1994] Anderson, M., "Reasoning with Diagram

Sequences", Proceedings of the Conference on
Information-Oriented Approaches to Logic, Language
and Computation (Fourth Conference on Situation The­
ory and its Applications), 1994

[Anderson and McCartney, 1995] Anderson, M. *and
McCartney, R., "Developing a Heuristic via Diagram­
matic Reasoning", Proceedings of the 1995 ACM Sympo­
sium on Applied Computing, 227-231, 1995

[Bieger and Glock, 1985] Bieger, G. and Glock, M., "The
Information Content of Picture-Text Instructions", The
Journal of Experimental Education, 53(2), 68-76, 1985

[Bieger and Glock, 1986] Bieger, G. and Glock, M., "Com­
prehending Spatial and Contextual Information in
Picture-Text Instructions", The Journal of Experimental
Education, 54(4), 181 -188, 1986

[Chandrasekaran et al, 1993] Chandrasekaran, B., Naray­
anan, N. and Iwasaki, Y., "Reasoning with Diagrammatic
Representations", A] Magazine, 14(2), 1993

[Chapman, 1991] Chapman, D„ Vision, Instruction and Ac­
tion, M I T Press, 1991

[Furnas, 1992] Furnas, G., "Reasoning with Diagrams
Only", in [Narayanan, 1992]

[Larkin and Simon, 1987] Larkin, J. and Simon, H., "Why a
Diagram is (Sometimes) Worth Ten Thousand Words",
Cognitive Science, 11, 65-99, 1987

[Narayanan, 1992] Narayanan, N., editor, Working Notes of
AAAI Spring Symposium on Reasoning with Diagram­
matic Representations, 1992

[Narayanan, 1993] Narayanan, N., editor, "Taking
Issue/Forum: The Imagery Debate Revisited", Computa­
tional Intelligence, 9(4), 1993

[Willows and Houghton, 1987] Willows, D. and Houghton,
H., The Psychology of Illustration, Springer-Verlag, 1987

8 8 4 KNOWLEDGE REPRESENTATION

