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Abstract

Shapes such as triangles or rectangles can be
defined in terms of geometric properties invari-
ant under a group of transformations. Com-
plex shapes can be described by logic formulae
with simpler shapes as the atoms. A standard
technique for computing invariant properties of
simple shapes is the method of moment invari-
ants, known since the early sixties. We gener-
alize this technique to shapes described by ar-
bitrary monotone formulae (formulae in propo-
sitional logic without negation). Our technique
produces a reduced Grobner basis for approx-
imate shape descriptions. We show how to
use this representation to solve decision prob-
lems related to shapes. Examples include de-
termining if a figure has a particular shape,
if one description of a shape is more general
than another, and whether a specific geomet-
ric property is really necessary for characteriz-
ing a shape. Unlike geometry theorem prov-
ing, our approach does not require the shapes
to be explicitly defined. Instead, logic formulae
combined with measurements performed on ac-
tual shape instances are used to compute well
characterized least squares approximations to
the shapes. Our results provide a proof that
decision problems stated in terms of these ap-
proximations can be solved in a finite number
of steps.

1 Introduction

Like many natural language terms, the intuitive notion
of a shape is not easily captured by a formal definition
that can be translated into a computer program. For
example, in grammar school we learn that a triangle is a
polygon with three sides, and this definition can be easily
applied to recognize two triangles in Fig. 1. Yet, a com-
puter program that implements this definition needs to
determine first what is a polygon, and what is a polygon
side. This appears to be much harder.
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Figure 1: triangles and non-triangles

The commonly accepted formal (mathematical) defi-
nition of a shape relates the shape to properties invari-
ant under a group of transformations. See Section 2.
This formal definition is independent of a language that
may be used to describe the shape. Section 2.1 describes
the method of moment invariants [Hu, 1962; Reiss, 199I]
that gives a technique for transforming simple shape de-
scriptions into a computer code. Unfortunately, this
technique can only be applied to shapes that are com-
pletely characterized by a single instance, e.g., a triangle.
In spite of its limitations the method of moment invari-
ants was successfully used in many pattern recognition
and image processing situations. (See, e.g., [Hu, 1962;
Li, 1992; Wong and Hall, 1978]).

In this paper we generalize the method of moment in-
variants and describe a technique for computing invari-
ants of shapes given by logic formulae. We view these
invariants as shape descriptors and show how to use them
in reasoning tasks. Allowing shapes to be described in
a language (logic in our case) enables handling shapes
that cannot be characterized by a single instance. (An
example is a shape described as being either a triangle
or a rectangle.) Our technique can be applied to arbi-
trary monotone formulae (formulae in propositional logic
without negation).

When the method of moment invariants is applied in
practice, approximate characterizations of simple shapes
are computed from a small number of moment invari-
ants. A straightforward approach of combining these in-
variants according to the relations expressed by a short
monotone formula may produce a new set of invari-
ants of size exponential in the original formula length.
Many of these invariants may be redundant. As de-
scribed in Section 4, the redundancy can often be elim-
inated by representing the set of invariants as a re-
duced Grobner base [Becker and Weispfenning, 1993;
Buchberger, 1985]. This representation allows decision
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problems related to shapes to be easily solved. (The
Grobner base algorithm guarantees that these problems
are solved in a finite number of steps.) Unfortunately,
it is known that there can be cases where a reduced
Grobner base may contain a huge number of such invari-
ants [Huynh, 1986], but experimental evidence ([Buch-
berger, 1985]) seems to indicate that this does not hap-
pen too often.

2 Preliminary definitions

We refer to subsets of the 2D Euclidean space as fig-
ures. Thus, the four connected black regions in Fig. 1
describe four figures. A figure can also be described by
a characteristic function. The function f{x,y) is a char-
acteristic function if f{x,y) = 1 for points in the figure,
and -t - 7 ‘{“1‘*’£§‘+“££ i~_the figure. For exam-

le, flz,y) = =1 is the characteristic
ple, ¥ 0 otherwise

function of a circular disc of radius 1 centered at the
origin.

Specifying a figure in terms of its characteristic func-
tion must be done with respect to a coordinate system.
Therefore, a figure may (and usually does) change when
a coordinate transformation is applied. A shape is a ge-
ometric property of a figure. Its formal definition (see,
e.g., [Veblen and Whitehead, 1967]) is given in terms of
properties invariant under a group of coordinate trans-
formations.

Definition: Let ¥ be a group of coordinate transfor-
mations (e.g., translations and rotations). The function
| is invariant with respect to ¥ if

I(f(z,0)) = 1(${ f(z.3)}}

for all characteristic functions f(x,y) and all transfor-
mations'0E111.

Examples: The area of a figure is invariant under trans-
lation and rotation but not under scaling. The number
of polygon edges is invariant under translation, rotation,
and scaling.

Definition: A shape of a figure is a pair {,®}, where
| is invariant under the group of coordinate transforma-
tions .

The two most common group transformations in the def-
inition of shapes are translation rotation and scale (or-
thogonal transformations), and the general linear trans-
formation. For example, a triangle is defined with re-
spect to arbitrary linear transformations, but a right tri-
angle is defined only with respect to orthogonal trans-
formations.

2.1 A review of moment invariants

The classic technique for generating invariants in terms
of algebraic moments was originally proposed by Hu [Hu,
1962]. The algebraic moments of the characteristic func-
tion f(x,y) are defined to be:

Ty = / f 2y f(z,y) dy d ()

These can be approximated in the discrete case by:
Mpg = E pryqf{z, v)
T ¥

A figure is uniquely determined by its algebraic moments
[Hu, 1962]. Therefore, instead of looking for invariants
of characteristic functions one can look for invariants of
moments. In practical applications only invariants of
low order moments are used. (The order of the moment
my is defined to be p + q.) Moment invariants are usu-
ally specified in terms of centralized moments, i.e., the
moments measured with respect to the "center of mass":

w_ My  _ Mg

rT=—, ¥y=—

oo fitoo

o= [ f (z TP (y - 5" f{z,v) dy .

The above equations can be expanded to an explicit ex-
pression giving the centralized moments in terms of the
ordinary moments:

p—a__g-t
et P giym T,
o= ) (-1 ‘(5) (t) %mn
0<s<p o
b<t<y

The specific fortnulae for the moments up to second order
arns:;

Hoo = oo

s = pp=10

Hm = g — mig/myg (2)
Hil = myp - m10m01fm00

Moz = oy — mm}"mno

Hu derived two second order moments mvariants for
trauslation and rotation:
L = fau + Hog ( 3]
I {p20 — #0z)? + 4,

1l

The centralized moments in Equation (3) can be replaced
by normalized moments, n,,, to produce invariants for
translation, rotation, and scale. The normalized mo-
ments are computed from the centralized moments as
follows:

Hypq Ptq

= —, with y= —— +1.

oo T2

The only moment invariant under general linear transfor-
mations that can be described in terms of second order
moments is [Hu, 1962; Reiss, 1991]:

Hooftoz — .ﬂfl
Y E— )
Hog
In summary, the classic method of moment invariants
can be applied to geometric shapes defined in such a
way that all their instances can be generated by geo-
metric transformations (e.g., translations, rotations, and
rescaling) of a single instance. In such a case, moment
invariants are computed by formulae such as those given
in Equations (3) and (4), applied to the characteristic
function of a single figure with the desired shape.
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3 Invariants of shapes described in
propositional logic

It is often necessary to deal with shapes that are more
complex than the simple shapes of Section 2. Suppose
we are given the following shape description:

a rectangle OR (a triangle AND a polygon)
Since triangles are polygons this can be simplified to:
a rectangle OR a triangle

This simplification cannot be obtained from purely geo-
metric knowledge because of the logic connectives. How-
ever, it cannot be obtained directly from logic since
the fact that triangles are polygons requires geometric
knowledge. We also observe that in this case it is im-
possible to calculate moment invariants from a single
example shape since the moment invariants of a rectan-
gle clearly differ from those of a triangle. In this section
we show how to calculate moment invariants of shapes
described in propositional logic.

3.1 Moment invariants as a system of
polynomial identities

The central idea that enables the generalization of mo-
ment invariants to complex shapes is that moment in-
variants can also be viewed as a system of polynomial
identities among the moments. Thus, for example, the
moment invariants in (3) can also be written as:

20 + poz — Iy =0, (MO"MZ)2+4P%1_I‘J =0.

The above observation, the results of Hu [Hu, 1962]
about the relation between moment invariants and alge-
braic invariants, and Hilbert Basis Theorem imply the
following:

Theorem: Let / be a figure. There exists a finite set of
polynomial identities (among moments) that hold only
for figures obtained from / by: (a) translation and ro-
tation, (b) translation rotation and scale, (c) arbitrary
linear transformations.

This suggests the following generalization of moment in-
variants:

Definition: Let P = {p1,... ,pm} be a set of polyno-
mial identities among moments. We say that P charac-
terizes the shape S if only the figures with the shape S
satisfy all the identities in P.

3.2 Shapes as formulae with logic
connectives

Using logic connectives, shapes can be defined in an anal-

ogous way to formulae in propositional logic:

(i) If S1 and S, are shapes then a figure / has the shape
() 'V (Sy) if it has the shape S; or the shape S,

(ii) If Sy and S, are shapes then a figure / has the shape
(S1) A (Sy) if it has the shape Sy and the shape S..
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(iii) If S is a shape then a figure / has the shape ->(S)
if it does not have the shape 5.

Formulae in propositional logic created without rule
(iii) are called monotone formulae.  Many interesting
concepts can be described by short monotone formulae
[Valiant, 1984], but it is known that some short formu-
lae may become exponentially long when described as
monotone formulae [Valiant, 1983].

The moment invariants (as a set of polynomial identi-
ties) of shapes described by monotone formulae can be
computed as follows. Let P = {p; ... ,pm} be the mo-
ment invariants of S; and let Q = {q1,... ,qn} be the
moment invariants of S, then:

(i) the moment invariants of () V (52) are {pig; : ¢ =
l,...,m, j= 1,...,n}

(ii) the moment invariants of (51} A (5;) are PUQ.

This defines recursively shapes described by arbitrary
monotone formulae.

4 The Grobner Basis of shape
invariants

If the system of polynomial identities describing the
shape S; contains m identities and the system of polyno-
mial identities describing the shape S, contains n iden-
tities, the technique of Section 3.2 produces only m, + n
polynomial identities for (S;) A (S;), but there are mn
polynomial identities for (S1)V(S2). Therefore, the num-
ber of polynomial identities may grow exponentially in
the size of the formula. Many of these invariants may be
redundant; the redundancy can often be eliminated by
representing the set of polynomial identities as a reduced
Grobner base [Buchberger, 1985]. Although it is known
that there are cases where the number of polynomials
in the reduced Grobner base is super-exponential in the
number of the original polynomials [Huynh, 1986], this
does not happen too often in practice. Specifically, the
Grobner basis technique was applied successfully in work
on automatic theorem proving [Kapur, 1989] and robot
motion planning [Cox et al, 1992]. Both applications
involve similar expressions to the ones described here.

4.1 The Grobner basis algorithm

The Grobner basis algorithm is based on associating a
fixed ordering on the moments (the variables of the poly-
nomial identities) and then applying reductions between
polynomials. The most common orderings are lexico-
graphic and total degree. Buchberger's algorithm for the
computation of a Grobner basis is based on two principal
operations:

Reduction: the polynomial / can be reduced to h with
respect to g if there is a constant ¢ such that:

h=f-c-g
where c is specified as follows: Let a; be the leading
monomial (with respect to the fixed ordering of vari-

ables) of g then there is a monomial aj of / such that
G5 =c-ay.



S Polynomial: The § Polynomial of f;, f; is defined
to be:

S(fifa) =w fi - z—;um

where u;, uz,¢1,¢3 are determined from f,, £, as follows:
Let a1, a; be the leading monomials of f;, f2 respectively,
then c;, ¢y are the coefficients of ), 45. Let a be the least
common multiplier of a; and az. The monomials u,, u;
are given by: u; = afe), 4z = a/a,.

Let P be a sei of polynomial identities. {In our case
these identities define a shape.) The following algorithm
caleulates GF, the Grébaer basis of P.

e Start with G° = P
» Repeat while G* £ G'*!

Take G*** to be the set containing the polynomi-
als in G* and the S_Polynomials of all pairs of
polynomials in G'.

» GP =G

For complete details of the algorithm and termina-
tion/correctness proofs see [Becker and Weispfenning,
1993; Buchberger, 1985]. The efficiency of this algorithm
can be greatly improved; it can also be modified to com-
pute a reduced Grobner basis . A reduced Grébner ba-
sis i8 a Grobner basis where each polynomtial is reduced
with respect to all other polynomials in the basis, and
all leading coefficients arc 1. In [Buchberger, 1985} it
is shown that the reduced Grobner basis is unique. Ef-
ficient algorithms for computing the reduced Gribner
basis can be found in [Becker and Weispfenning, 1993;
Buchberger, 1985; Mishra and Yap, 1989].

It is known that the Grobner basis algorithm always
terminates after a finite number of steps. Unfortunately,
it has also been shown that the number of resulting ele-
ments (and therefore, the worst case complexity) can be
super-exponential in the size of P {Huynh, 1986]. Effi-
cient implementations of the Grébner basis algorithm are
available with many computer algebra software packages
such as MATHEMATICA, REDUCE, and MAPLE.

4.2 Grobner basis representation and
reasoning about shapes

Invariants can be used to determine if a figure has a par-
ticular shape. This section shows how to use the Grébuer
basis representation of shapes to solve in a finite num-
ber of steps many higher level decision problems related
to shapes. The ideas presented here are closely related
to work on automatic theorem proving [Chou, 1988;
Kapur, 1989].

Let § and T be two shapes, and let ¢ be a geomeiric
property. Consider the following questions:

a. Do 5 and T describe the exact same shape?

b. Is the shape § more general than the shape I'? (Does
the knowledge that a figure is of shape T’ imply that
it is of shape 57}

c. Are there any figures with the shape 57

d. Is a geometric properiy g implied by §7 {Does the
knowledge that a figure is of shape § imply that it
has the geometric property g7)

e. Are there any figures with both shapes 5 and T?

When the shapes are described in terms of polynomial
identities these decision problems (and many others) can
be directly translated to computational techniques uti-
lizing the Gribner basis representation. See [Becker and
Weispfenning, 1993; Buchberger, 1985; Mishra and Yap,
1989]. We sketch the solution for the first four problems.
Let G¥,G7,GHY7) ) and G15Y9) be the reduced Gribner
bases of the polynomial identities describing 5, T, SUT,
and S U {g} respectively.

a, §and T describe the exact same shape if and only if
G=GT.

b. § is more general than T if and only if G¥ = G57),

c. There are no figures with the shape S if and only if
1EGY.

d. Being of shape § implies the geometric property g if
and only if G = G599,

5 The vocabulary of low order moment
invariants

In practical applications few invariants of low order
are used (see, e.g.,[Hu, 1962; Li, 1992; Wong and Hall,
1978]). In this section we characterize the representa-
tion power of low order moment invariants and compute
second order moment identities for several shapes and
geometric properties.

5.1 Representation power of low order
moment invariants

Let ¥ be a group of transformations. Let J* be the set
of moment invariants (w.r.t. ¥) that can be computed
from moments of order bounded by k. From the remarks
in Section 3.1 it follows that 7, the entire set of mo-
ment invariants, completely characterizes a shape with
respect to translation and rotation. Specifically, for any
two figures A, B there exists a transformation involving
translation and rotation that transforms 4 to B if and
only if i{A) = {(B) for all moment invariants : € I™.

Even though I is finite (as implied by the Hilbert Ba-
sis Theorem), invariants involving high order moments
may be very complex and unstable. Most practical ap-
plications use f2 or I? to approximate shapes, Clearly,
for a small constant & the invariants in J* cannot com-
pletely characterize shapes. Our goal is to show that
they completely characterize well defined least squares
approximations of shapes.

Let A be a figure and let f4(z,¥) be its characteristic
function. Let pji(z,y) be a polynomial (in z,¥) of total
degree k that approximates f, by minimizing the least
SQUATes error:

E=Y (falz,y) - Pi(z,9))? ()
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The polynomial p is known to be uniquely determined
from k and fa.

Theorem: Let A, B be two figures. Let I* be the set
of moment invariants with respect 1o a group of trans-
formations ¥ that can be computed from moments of
order bounded by k. Let pf, p% be the least squares
polynomial approximations to A, B respectively. Then:

(i) If there is a transformation ¢ € ¥ such that ¥(p%) =
7% then i(A) = i(B) for all ¢ € I*.

(ii) If 4(A4) = i(B) for all i € I*, and ¥ is the group of
translations and rotations, or the group of transla-
tions rotations and scale, then there exists a trans-
formation ¥ € ¥ such that ¥{p) = p

Proof:

To keep notation tidy we write M *(g) for the moments
of degree bounded by k of a function g, and I*(g) for the
moment invariants of g that can be expressed in terms
of M*{g). We need the following known facts from the
theory of least squares approximations:

Fact 1: If pis a least squares polynomial approximating
a function f and a;;T'y’ is a monomial of p, then the
m,; moments of p and f are identical. (Proof: since the
derivative of the error E in Equation (5) with respect
to ai; vanishes, we have 3°_ _{f — p)r'y’ = 0, so that

Tt =1, 2y
Fact 2: Let p,g be two polynomials of total degree k.
p=g < Mp)=M(g)

{Proof sketch: the polynomials of total degree k form a
vector space, and the moments of order bounded by &
are known to be a basis.)

Lemma: If ¥ is a linear transformation then for any
figure A,
Ptm) = ’J-"(Pft)
Proof:
Mk(P:[r(,a_]) = Mk("ff’(A)) (Fact 1)

= Y(M*A) (linearity of ¥)

= w(M"(PE)) (Fact 1)

= M*((py)) (Unemty of ¢)

Since v is linear, ¥(p%) is a polynomial of tota) degree
k and the proof is completed by applying Fact 2 to the
above equality.

Proof of Part (i): We need to show that If{4) =

I*{B). From Fact 1 we have: M*(B) = M*({pk) and
since py = ¥(ph) we have M*(B)} = M*(¥(p%)). There-
fore, I*(B) = I*((p%)). From similar arguments we
have f¥(A) = I*(p%) and to prove Part (i} it remains
to show that T*(pk) = I*(s(p4)). This is true because
by definition the expressions in I* are invariant under
pe b

Proof of Part (ii): Hu [Hu, 1962] shows how to “nor-
malize” a figure with respect to translation and rotation,
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or translations rotations and scale. The normalization of
a figure A is achieved by translating and rotating A to
obtain A such that

mm(A) = Mn [)‘i) = m“(.r'i] =0

Normalization with respect to scale is achieved by apply-
ing scaling to A so that moes(4) = 1. Hu also shows that
the moments of degree bounded by & of the normalized
figure A uniquely determine its moment invariants and
vice versa. In our notation this fact can be expresseqd as:

FA) = HB) <= M*A)= M*(B)
when 4, B are “normalized” figures

To prove Part (ii) let A, B be the normalizations of 4, B
with

A=19{4), B=:(B), ¥,¥e¥.
We prove that p¥ = (7 v2)pk.
Ik (4) = I*(B) (assumption}

= I*{4)=I*B) {invariance of I*)
= MYA) =MD (A, B are normalized)
= pk= p'fa {farts 1,2)
= Puya) = Plue

= ¢ {ph) = ¥u(p) {lemma)
= ph o= (W ek {since ¥ is a group)

[m]

5.2 'What can be characterized by second
order moment invariants

The theorem in the previous section describes exactly
how different shapes need to be so that they would have
different finite order moment invariants. In this section
we consider shapes that can be classified using invariants
from I%.

Once a particular figure is given, we can compute its
second order moments by using Equation (1), compute
the centralized moments from Equation (2), and com-
pute the following four numbers;

Iv = pon

I} = pag + poy

Ly = {pizn — po2)® + 4%,
Iy= Poaofor — M1

From the work of Hu [Hu, 1962] (see also {Reiss, 1991]}
it follows that the following is a complete set of alge-
braically independent invariant polynomials under trans-
lation and rotation for moments up to the second order:

poo ~ fo =0
oo +uez — 6 =0 {6)
{pa0 — oz )* + 4#;; -I;=0
By normalizing (6) with respect to size (see Section 2.1},
the following forms a complete set of second order mo-

ment invariants under translation, rotation, and scale
[Hu, 1962; Reiss, 1991];

m0+p02_-r1#00=0 (7)
{20 — po2)? + dud; — Ldy =0



Under a general linear transformation, the following in-
variant is the complete set of polynomial identities (up
to second order) [Hu, 1962; Reiss, 1991 :

Haokoz — Pfl - Ly, =0 ®)

A figure has n-fold rotational symmetry if rotating it
by 2x/n radians around its center leaves it unchanged.
The property of 4-fold rotational symmetry can be char-
acterized by second order moment invariants as follows:

I:{(A) =0 4= A has 4-fold rotational symmetry. (9)

Equation (9) follows from the fact that normalized fig-
ures with 4-fold rotational symmetry must have my =
moz- Since they also have my; = 0 it follows from Equa-
tion (6) that Iz = 0.

5.3 Moment Identities of specific shapes
and properties

In this section moment identities are computed for sev-
eral shapes. They are based on moment values of the
specific black figures shown on the left, which were com-
puted via Equation (1) (using definite integration).

A A triangle is invariant under general linear

transformations. Therefore, it can be characterized in
terms of the polynomial in (8). Computing the value
of /5 for the triangle figure on the left gives I3 = 1/108.
Thus, The least squares approximation of a triangle by
a polynomial of total degree two is characterized by the
following moment identity:

1
2 4
Y — [ = 10
Hzottoz — M1t — Jggtioo 0 (10)

k Since the shape of a right triangle is invariant

under translation, rotation, and scale, it can be char-
acterized in terms of the polynomial identities in (7).
Computing the value of /4, I, for the right triangle on
the left gives I} = %,fg = % Thus, the least squares
approximation of a right triangle by a polynomial of to-
tal degree two is characterized by the following moment
identities:

#20 + pog — 545 =0

(#20 = 02)® + 413, — aypde =0 (1)

- A rectangle (actually a quadrilateral) is in-
variant under general linear transformations. It can be
characterized in terms of the polynomial in (8). Com-
puting the value of I3 for the rectangle on the left gives
Iy = . Hence, a least squares approximation of a
rectanglie (quadrilateral) by a polynomial of total degree
two is given by the following moment identity:

1
I . | =0
Haotoz — #1) 144.“05

. A square is invariant under translation rotation

and scale. Therefore, it can be characterized in terms of

the polynomials in (7). Computing the value I/, for
the square on the left gives I; = :—“Iz = 0, Thus, the
least squares approximation of a square by a polynomial
of total degree two is given by the following moment
identities:
Moo + toa — FHg, =0
(2o — po2)}* + 4ud, = 0

- OR . This shape is described as being

a rectangle OR a square, and can be characterized by
using Equation (12) for a rectangle, Equations (13) for a
square, and applying the rules of section 3.2. This gives
the following set of moment identities:

(13)

{s20t02 — P‘-zl - ﬁ#ﬁo)(.ﬂzn + oz — %#gn)l =0
{12002 — 131 — yguto) (a0 — poa)? +442)) =0

We show in the next section that these identities can
be reduced to the identity of a rectangle by using the
Grobner basis technique.

AREA. The area of a shape is invariant under trans-
lation and rotation, and is characterized by /y,. For ex-
ample, a shape having an area of 10 is characterized by
the following moment identity:

poo — 10 =10

ROTATIONAL SYMMETRY. The characteriza-
tion of 4-fold rotational symmetry by Equation 9 gives
the following identity:

(2o — po2)® + 4}, =0 (14)

6 Examples utilizing the Grobner basis
representation

The identities from the previous section are now used to
describe examples of the Grobner basis algorithmic ap-
proach to reasoning about shapes, as described in Sec-
tion 4.2. Unless otherwise stated, a reference to a shape
in this section is to be understood as a reference to a
least squares approximation of the shape with a polyno-
mial of total degree 2. The examples here correspond to
the problems outlined in Section 4.2.

To show that a rectangle with 4-fold rotational symmetry
is a square we verify that the reduced Grobner basis of
identities (14),(12) is the same as the reduced Grobner
basis of (13).

Reduced basis
H20 + poz — %an
{pezn — puz)? + 4:“'%1

"Moment Identities
Hzojpz — #?1 - ﬁ#ﬁo
(Ba0 — jog)® + 4t

To show that a rectangle is more general than a square
we show that the reduced Grobner basis of (12) is the
same as the reduced Grobner basis created from the iden-
tities (12),(13).

Moment Identities
Haofigz — #f; - 1%1"30
Hoo + Moo — %#ﬁu
(20 — po2)® + 483,

Reduced basis

2 1 4
Haotoz — K1) — Tgrhoo

SCHWEITZER AND STRAACH 913



To show that there exists a rectangle of size 30 with 4-
fold rotational symmetry we compute the Grobner basis
of the identities in equations (14),(12) with the addi-
tional equation pge = 30. Since the Grobuer basis does
not contain 1, such a shape exists,

Moment Tdentities ~ Reduced basis
faodoz — Y1 ~ Teg Mo foo — 30
Moo — 30 pzg + paz — 150
(p20 — poz)? + 43 {120 — po2)® + 42,

To show that a square has 4-fold rotational we need to
show that the reduced Grobner basis of the identities
n {14),(13) is the same as the Gribner basis of the iden-
tities in (13).

oment Identitiea Reduced basis

Jap + Moz — ﬂoo
(}‘20 - I‘O?) + 4#11
{120 ~ #02) + 4#11

20 + ioz — %,uﬁ[,
{20 — po2)? + 44,

To show that there are no right triangles of size 10 with
4-fold rotational symmetry we show the Grobner basis of
the identities in equations (14),{10), with the additional
equation jgp = 10 reduces to 1.

Moment Identities Reduced basis
pze oz —2§#§u . L.
(4120 — an)2 +4ug, = 5#0 1
(zo — pnz)* + 443,
oo — 10

To show that the shape described as:

(rectangle AND 4-fold rotational symmetry)
OR square

reduces to a square, we build the moment identities fol-
lowing the procedure of Section 3.2 and show the reduced
Grobner hasis to be the identities of a square.

Moment Identities

114#30)(.#‘20 + poy _2%#50)2
(20802 — }1-11 5 {(pa0 ~ Poz) 2‘?‘ 41,
({20 — poz)” + 44 )(qu + fioz — 215 }2
(P #02) + 4.“11)((#20 — poz)? + 4;..'.“)

Teduced ba.sis

pigo + foz — eﬂuo
{120 — J‘M) + 4#11

{#a0m0z ~ ﬂ1 1

7 Concluding remarks

A simple generalization of the idea of moment invari-
ants enables computing moment invariants of shapes de-
seribed by formulae in propositional logic. Our tech-
nique is limited to monotone formulas. The representa-
tion power of Jow order moment invariants was shown
to be directly related to least squares approximations of
figures by polynomials of low degree.

The representation of invariants in a Grébner basis en-
ables reasoning about shapes in a way similar to geomet-
ric theorem proving techniques. The advantage of our
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technique over geometric theorem proving (e.g., [Chou,
1988; Kapur, 1989]) is that in our technique there is no
need to explicitly describe the basic shapes. Instead,
their description is extracted automatically in terms of
moments. For example, a theorem prover can easily de-
duce that a square is a special case of a rectangle if it is
given the definition of a square as a rectangle with even
sides. Our technique does not require this information.

The fact that our technique uses finite measurements
(moments) means that positive conclusions (e.g., the
given figure is a rectangle) can only be verified for least
squares approximations of the figure. On the other hand,
negative conclusions (e.g., the given figure is not a rect-
angle) is verified with certainty.
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