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Abstract 

Shapes such as triangles or rectangles can be 
defined in terms of geometric properties invari­
ant under a group of transformations. Com­
plex shapes can be described by logic formulae 
w i th simpler shapes as the atoms. A standard 
technique for computing invariant properties of 
simple shapes is the method of moment invari­
ants, known since the early sixties. We gener­
alize this technique to shapes described by ar­
b i t rary monotone formulae (formulae in propo-
sit ional logic wi thout negation). Our technique 
produces a reduced Grobner basis for approx­
imate shape descriptions. We show how to 
use this representation to solve decision prob­
lems related to shapes. Examples include de­
termining if a figure has a particular shape, 
if one description of a shape is more general 
than another, and whether a specific geomet­
ric property is really necessary for characteriz­
ing a shape. Unlike geometry theorem prov­
ing, our approach does not require the shapes 
to be expl ici t ly defined. Instead, logic formulae 
combined w i th measurements performed on ac­
tual shape instances are used to compute well 
characterized least squares approximations to 
the shapes. Our results provide a proof that 
decision problems stated in terms of these ap­
proximations can be solved in a finite number 
of steps. 

1 Introduction 

Like many natural language terms, the intui t ive notion 
of a shape is not easily captured by a formal definition 
that can be translated into a computer program. For 
example, in grammar school we learn that a triangle is a 
polygon w i th three sides, and this definition can be easily 
applied to recognize two triangles in Fig. 1. Yet, a com­
puter program that implements this definition needs to 
determine first what is a polygon, and what is a polygon 
side. This appears to be much harder. 
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Figure 1: triangles and non-triangles 

The commonly accepted formal (mathematical) defi­
nit ion of a shape relates the shape to properties invari­
ant under a group of transformations. See Section 2. 
This formal definit ion is independent of a language that 
may be used to describe the shape. Section 2.1 describes 
the method of moment invariants [Hu, 1962; Reiss, 199l] 
that gives a technique for transforming simple shape de­
scriptions into a computer code. Unfortunately, this 
technique can only be applied to shapes that are com­
pletely characterized by a single instance, e.g., a triangle. 
In spite of its l imitat ions the method of moment invari­
ants was successfully used in many pattern recognition 
and image processing situations. (See, e.g., [Hu, 1962; 
L i , 1992; Wong and Hal l , 1978]). 

In this paper we generalize the method of moment in­
variants and describe a technique for computing invari­
ants of shapes given by logic formulae. We view these 
invariants as shape descriptors and show how to use them 
in reasoning tasks. Al lowing shapes to be described in 
a language (logic in our case) enables handling shapes 
that cannot be characterized by a single instance. (An 
example is a shape described as being either a triangle 
or a rectangle.) Our technique can be applied to arbi­
trary monotone formulae (formulae in proposit ional logic 
wi thout negation). 

When the method of moment invariants is applied in 
practice, approximate characterizations of simple shapes 
are computed from a small number of moment invari­
ants. A straightforward approach of combining these in­
variants according to the relations expressed by a short 
monotone formula may produce a new set of invari­
ants of size exponential in the original formula length. 
Many of these invariants may be redundant. As de­
scribed in Section 4, the redundancy can often be elim­
inated by representing the set of invariants as a re­
duced Grobner base [Becker and Weispfenning, 1993; 
Buchberger, 1985]. This representation allows decision 
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problems related to shapes to be easily solved. (The 
Grobner base algori thm guarantees that these problems 
are solved in a f inite number of steps.) Unfortunately, 
it is known that there can be cases where a reduced 
Grobner base may contain a huge number of such invari­
ants [Huynh, 1986], but experimental evidence ([Buch-
berger, 1985]) seems to indicate that this does not hap­
pen too often. 

2 Preliminary definitions 
We refer to subsets of the 2D Euclidean space as fig­
ures. Thus, the four connected black regions in Fig. 1 
describe four figures. A figure can also be described by 
a characteristic function. The function f{x,y) is a char­
acteristic function if f{x,y) = 1 for points in the figure, 
and f(x,y) = 0 for points not in the figure. For exam­
ple, is the characteristic 

function of a circular disc of radius 1 centered at the 
origin. 

Specifying a figure in terms of its characteristic func­
t ion must be done w i th respect to a coordinate system. 
Therefore, a figure may (and usually does) change when 
a coordinate transformation is applied. A shape is a ge­
ometric property of a figure. Its formal definition (see, 
e.g., [Veblen and Whitehead, 1967]) is given in terms of 
properties invariant under a group of coordinate trans­
formations. 

Def in i t ion: Let be a group of coordinate transfor­
mations (e.g., translations and rotations). The function 
I is invariant w i th respect to if 

for all characteristic functions f(x,y) and all transfor­
mations '0 E 111. 

Examples: The area of a figure is invariant under trans­
lation and rotat ion but not under scaling. The number 
of polygon edges is invariant under translation, rotat ion, 
and scaling. 

Def in i t ion: A shape of a figure is a pair , where 
I is invariant under the group of coordinate transforma­
tions . 

The two most common group transformations in the def­
in i t ion of shapes are translation rotation and scale (or­
thogonal transformations), and the general linear trans­
formation. For example, a triangle is defined wi th re­
spect to arbi t rary linear transformations, but a right t r i ­
angle is defined only w i th respect to orthogonal trans­
formations. 

These can be approximated in the discrete case by: 

A figure is uniquely determined by its algebraic moments 
[Hu, 1962]. Therefore, instead of looking for invariants 
of characteristic functions one can look for invariants of 
moments. In practical applications only invariants of 
low order moments are used. (The order of the moment 
mvq is defined to be p + q.) Moment invariants are usu­
ally specified in terms of centralized moments, i.e., the 
moments measured wi th respect to the "center of mass": 

The above equations can be expanded to an explicit ex­
pression giving the centralized moments in terms of the 
ordinary moments: 

The centralized moments in Equation (3) can be replaced 
by normalized moments, np q , to produce invariants for 
translation, rotat ion, and scale. The normalized mo­
ments are computed from the centralized moments as 
follows: 

The only moment invariant under general linear transfor­
mations that can be described in terms of second order 
moments is [Hu, 1962; Reiss, 199l]: 

(4) 

2 . 1 A r e v i e w o f m o m e n t i n v a r i a n t s 

The classic technique for generating invariants in terms 
of algebraic moments was originally proposed by Hu [Hu, 
1962]. The algebraic moments of the characteristic func­
t ion f(x,y) are defined to be: 

(1) 

In summary, the classic method of moment invariants 
can be applied to geometric shapes defined in such a 
way that all their instances can be generated by geo­
metric transformations (e.g., translations, rotations, and 
rescaling) of a single instance. In such a case, moment 
invariants are computed by formulae such as those given 
in Equations (3) and (4), applied to the characteristic 
function of a single figure w i th the desired shape. 
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3 Invariants of shapes described in 
propositional logic 

It is often necessary to deal w i th shapes that are more 
complex than the simple shapes of Section 2. Suppose 
we are given the following shape description: 

a rectangle OR (a triangle A N D a polygon) 

Since triangles are polygons this can be simplified to: 

a rectangle OR a triangle 

This simplif ication cannot be obtained from purely geo­
metric knowledge because of the logic connectives. How­
ever, it cannot be obtained directly from logic since 
the fact that triangles are polygons requires geometric 
knowledge. We also observe that in this case it is im­
possible to calculate moment invariants from a single 
example shape since the moment invariants of a rectan­
gle clearly differ from those of a triangle. In this section 
we show how to calculate moment invariants of shapes 
described in propositional logic. 

3.1 Moment invariants as a system of 
polynomial identities 

The central idea that enables the generalization of mo­
ment invariants to complex shapes is that moment in­
variants can also be viewed as a system of polynomial 
identities among the moments. Thus, for example, the 
moment invariants in (3) can also be wr i t ten as: 

The above observation, the results of Hu [Hu, 1962] 
about the relation between moment invariants and alge­
braic invariants, and Hi lbert Basis Theorem imply the 
following: 

T h e o r e m : Let / be a figure. There exists a finite set of 
polynomial identities (among moments) that hold only 
for figures obtained from / by: (a) translation and ro­
tat ion, (b) translat ion rotat ion and scale, (c) arbi trary 
linear transformations. 

This suggests the following generalization of moment in­
variants: 

Def in i t ion: Let P = { p 1 , . . . , p m } be a set of polyno­
mial identities among moments. We say that P charac­
terizes the shape S if only the figures w i th the shape S 
satisfy all the identities in P. 

3.2 Shapes as formulae with logic 
connectives 

Using logic connectives, shapes can be defined in an anal­
ogous way to formulae in proposit ional logic: 

( i ) If S1 and S2 are shapes then a figure / has the shape 
(1i) V (S2) if it has the shape S1 or the shape S2. 

( i i ) If S1 and S2 are shapes then a figure / has the shape 
(S1) A (S2) if it has the shape S1 and the shape S2. 

( i i i ) If S is a shape then a figure / has the shape ->(S) 
if it does not have the shape 5. 

Formulae in propositional logic created wi thout rule 
(i i i) are called monotone formulae. Many interesting 
concepts can be described by short monotone formulae 
[Valiant, 1984], but it is known that some short formu­
lae may become exponentially long when described as 
monotone formulae [Valiant, 1983]. 

The moment invariants (as a set of polynomial identi­
ties) of shapes described by monotone formulae can be 
computed as follows. Let P = {p1 . . . , p m } be the mo­
ment invariants of S1 and let Q = { q 1 , . . . , q n } be the 
moment invariants of S2 then: 

( i ) the moment invariants of 
l , . . . , m , j = l , . . . , n } 

( i i ) the moment invariants of 

This defines recursively shapes described by arbi t rary 
monotone formulae. 

4 The Grobner Basis of shape 
invariants 

If the system of polynomial identities describing the 
shape S1 contains m identities and the system of polyno­
mial identities describing the shape S2 contains n iden­
tit ies, the technique of Section 3.2 produces only m, + n 
polynomial identities for (S1) A (S2 ) , but there are mn 
polynomial identities for (S 1 )V(S 2 ) . Therefore, the num­
ber of polynomial identities may grow exponentially in 
the size of the formula. Many of these invariants may be 
redundant; the redundancy can often be eliminated by 
representing the set of polynomial identities as a reduced 
Grobner base [Buchberger, 1985]. Al though it is known 
that there are cases where the number of polynomials 
in the reduced Grobner base is super-exponential in the 
number of the original polynomials [Huynh, 1986], this 
does not happen too often in practice. Specifically, the 
Grobner basis technique was applied successfully in work 
on automatic theorem proving [Kapur, 1989] and robot 
motion planning [Cox et al., 1992]. Bo th applications 
involve similar expressions to the ones described here. 

4.1 The Grobner basis algorithm 

The Grobner basis algori thm is based on associating a 
fixed ordering on the moments (the variables of the poly­
nomial identities) and then applying reductions between 
polynomials. The most common orderings are lexico­
graphic and total degree. Buchberger's algor i thm for the 
computation of a Grobner basis is based on two principal 
operations: 

R e d u c t i o n : the polynomial / can be reduced to h w i th 
respect to g if there is a constant c such that : 

where c is specified as follows: Let ag be the leading 
monomial (wi th respect to the fixed ordering of vari­
ables) of g then there is a monomial aj of / such that 
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Under a general linear transformation, the following in­
variant is the complete set of polynomial identities (up 
to second order) [Hu, 1962; Reiss, 1991 : 

(8) 
A figure has n-fold rotat ional symmetry if rotat ing it 

by radians around its center leaves it unchanged. 
The property of 4-fold rotat ional symmetry can be char­
acterized by second order moment invariants as follows: 

A has 4-fold rotational symmetry. (9) 

Equation (9) follows from the fact that normalized fig­
ures w i th 4-fold rotat ional symmetry must have m20 = 
m02- Since they also have m11 = 0 it follows from Equa­
tion (6) that I. 

5.3 M o m e n t I d e n t i t i e s o f specif ic shapes 
a n d p r o p e r t i e s 

In this section moment identities are computed for sev­
eral shapes. They are based on moment values of the 
specific black figures shown on the left, which were com­
puted via Equation (1) (using definite integration). 

A triangle is invariant under general linear 
transformations. Therefore, it can be characterized in 
terms of the polynomial in (8). Computing the value 
of /3 for the triangle figure on the left gives I3 = 1/108. 
Thus, The least squares approximation of a triangle by 
a polynomial of tota l degree two is characterized by the 
following moment identi ty: 

(10) 

Since the shape of a right triangle is invariant 
under translat ion, rotat ion, and scale, it can be char­
acterized in terms of the polynomial identities in (7). 
Comput ing the value of I1, I2 for the right triangle on 
the left gives . Thus, the least squares 
approximation of a right triangle by a polynomial of to­
tal degree two is characterized by the following moment 
identities: 

(11) 

A rectangle (actually a quadrilateral) is in­
variant under general linear transformations. It can be 
characterized in terms of the polynomial in (8). Com­
put ing the value of I3 for the rectangle on the left gives 

Hence, a least squares approximation of a 
rectangle (quadrilateral) by a polynomial of total degree 
two is given by the following moment identity: 

A square is invariant under translation rotation 
and scale. Therefore, it can be characterized in terms of 

the polynomials in (7). Computing the value I1I2 for 
the square on the left gives Thus, the 
least squares approximation of a square by a polynomial 
of total degree two is given by the following moment 
identities: 

(13) 

a rectangle OR a square, and can be characterized by 
using Equation (12) for a rectangle, Equations (13) for a 
square, and applying the rules of section 3.2. This gives 
the following set of moment identities: 

We show in the next section that these identities can 
be reduced to the identity of a rectangle by using the 
Grobner basis technique. 

A R E A . The area of a shape is invariant under trans­
lation and rotat ion, and is characterized by I0. For ex­
ample, a shape having an area of 10 is characterized by 
the following moment identi ty: 

R O T A T I O N A L S Y M M E T R Y . The characteriza­
tion of 4-fold rotational symmetry by Equation 9 gives 
the following identity: 

6 Examples utilizing the Grobner basis 
representation 

The identities from the previous section are now used to 
describe examples of the Grobner basis algorithmic ap­
proach to reasoning about shapes, as described in Sec­
tion 4.2. Unless otherwise stated, a reference to a shape 
in this section is to be understood as a reference to a 
least squares approximation of the shape wi th a polyno­
mial of total degree 2. The examples here correspond to 
the problems outlined in Section 4.2. 

To show that a rectangle wi th 4-fold rotat ional symmetry 
is a square we verify that the reduced Grobner basis of 
identities (14),(12) is the same as the reduced Grobner 
basis of (13). 

To show that a rectangle is more general than a square 
we show that the reduced Grobner basis of (12) is the 
same as the reduced Grobner basis created from the iden­
tities (12),(13). 
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technique over geometric theorem proving (e.g., [Chou, 
1988; Kapur, 1989]) is that in our technique there is no 
need to explicit ly describe the basic shapes. Instead, 
their description is extracted automatical ly in terms of 
moments. For example, a theorem prover can easily de­
duce that a square is a special case of a rectangle if it is 
given the definition of a square as a rectangle w i th even 
sides. Our technique does not require this information. 

The fact that our technique uses finite measurements 
(moments) means that positive conclusions (e.g., the 
given figure is a rectangle) can only be verified for least 
squares approximations of the figure. On the other hand, 
negative conclusions (e.g., the given figure is not a rect­
angle) is verified wi th certainty. 
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