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Abstract 

To what extent is distr ibution beneficial to 
the search quali ty and computational resources 
used by a genetic algori thm execution? Most 
distr ibuted genetic algorithms rely on commu­
nicating genetic informat ion, in the form of in­
dividual solutions, between concurrently evolv­
ing populations. 
Another way of effectively using the additional 
information generated by the parallel execu­
tions is the profi l ing approach to communica­
t ion, where populations decide whether their 
own performance is satisfactory, relative to the 
global average improvement curve. Thus, com­
municat ion between populations takes the form 
of improvement histories. This is shown to 
improve on the tradi t ional communication ap­
proach, in terms of both solution quality and 
execution performance. 

1 Introduction 
Nature is essentially distr ibuted. Distributed processing 
permits both nature and genetic algorithms to benefit 
f rom the parallel exploration of different solutions. This 
concept of separate populations developing in parallel 
and sharing information motivates distributed genetic 
algorithms. This approach is best implemented on a dis­
tr ibuted system of computers, which provides parallel 
processing and data sharing. These two elements com­
prise the essential components of a distributed genetic 
algori thm (DGA) : the core algori thm to be distr ibuted, 
and the approach to sharing information between the 
processes. 

This paper investigates the effect of distr ibut ion on 
a genetic a lgor i thm, and, more specifically, studies the 
contr ibution of communication between concurrently ex­
ecuting processes to the distributed GA's performance. 
Most approaches to communication between concur­
rently evolving populations involves the migration of 
individual solutions f rom one process to another. The 
benefit of these approaches is highly dependent on the 
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characteristics of the problem and its solution space. A 
new communication paradigm for DG As is described: no 
genetic information is migrated between populations; in­
stead, information about the improvement rate of neigh­
bouring populations is used to measure a population's 
viabi l i ty. This new approach introduces new parame­
ters, which are described and analysed for robustness. 
The approach is tested on two different problems, and 
compared against a similar D G A without communica­
t ion, and the basic sequential GA. 

This paper is structured as follows: Section 2 discusses 
the construction of the DGA, and describes the sequen­
t ial GA and the non-communicating DGA which are 
used for performance and behaviour comparisons wi th 
the new DGA. This section includes a short analysis of 
tradit ional DGA communication, which motivates the 
new communication approach. Section 3 introduces the 
profi l ing model of communication and describes the new 
parameters. Section 4 describes the problems used, the 
platforms tested on, and presents and analyses experi­
mental results. Our conclusions are discussed in 5. 

2 The Construction of a Distributed 
GA 

To what extent is distr ibut ion beneficial to the search 
quality and computational resources of a GA execution? 
How well does the genetic algori thm paradigm lend it-
self to distribution? To what extent does the specific 
problem influence the effectiveness of the distribution? 

The obvious questions of parallel search [Muhlenbein, 
1990] are: 

• Are N parallel searches of t ime t as efficient as a 
single search of t ime N x t ? 

• Are N linked searches more efficient than N inde­
pendent searches? 

• How should the linkage be done? 

Addit ional ly, do the benefits of linkage just i fy its cost? 
This section describes the construction of a distributed 

genetic algori thm (DGA) which provides the basis for 
answering these questions. 

The well-known GA paradigm is described in Figure 1. 
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Produce an i n i t i a l population 
of many individual solutions, 

Evaluate a l l individuals, 
While termination condition is false: 
{ 

Select f i t t e r individuals 
for reproduction, 

Produce new individuals, 
Insert some of these individuals into 
the population, at the expense 
of other individuals, 

Re-evaluate a l l individuals, 
} 
Report on resu l t s . 

Figure 1: Basic description of the genetic algorithm 
paradigm 

2 .1 T h e R e s t a r t O p e r a t o r 

Any analysis of a GA's performance depends on both 
the quality of solution and execution resources used, and 
may be implemented by holding constant one of these 
variables and observing the other. The inclusion of the 
restart operator [Maresky, 1994] is beneficial to this anal­
ysis. In order to continue a GA's search when the popu­
lat ion has converged, the restart operator introduces new 
genetic material (typically, by completely reinit ial izing 
the population) and thus moves the GA into another so­
lution region. This involves the obvious tradeoff between 
the probabil i ty of discovering sufficiently better indiv id­
uals wi th in the current area of the search space, and the 
use of extra resources in creating a new populat ion and 
improving it to a similar level as the previous converged 
populat ion. It has been shown in [Takana, et a/, 1994] 
that a GA wi th opt imal population size and the appro­
priate number of restarts, exhibits better performance 
than the same GA functioning without the restarts, and 
an appropriately larger population size. 

The operator operates outside the main loop of the GA 
(see Figure 2, which extends the inner loop of Figure 1) 
and is reliant on some definit ion of convergence. 

The resultant GA is used as the sequential basis for a 
distributed genetic a lgor i thm. 

2.2 A Distributed Genetic Algorithm 
Without Communication 

There are many different approaches to parallelizing a 
genetic algori thm [Fogarty and Huang, 1990]. Most al­
gorithms differ on the topology of the distr ibut ion and 
the separate processes themselves: how they are con­
trol led, how they communicate and what their tasks are. 
In particular, the island approach [Tanese, 1990] is least 
reliant on processor synchrony and coordination. Com­
munication between processes is minimized by the con­
trol l ing algor i thm assigning separate populations to the 
processes, which develop in parallel and may exchange 
information. This exchange generally takes the form of 
copying individuals between the populations. 

Whi le t e r m i n a t i o n c o n d i t i o n f a l s e : 
{ 

Produce population, 
and evaluate individuals, 

While population has not converged, 
and termination condition is false: 

{ 
Do an inner reproduction loop 
of Figure 1, 

} 
Update global result , if necessary, 

} 
Report on results. 

Figure 2: Outer loop structure of the genetic algorithm 
with restart operator 

This allows the construction of a D G A without com­
municat ion. Each process is assigned a populat ion, of 
the same size as that of the sequential GA. Communica­
t ion only occurs after the terminat ion criterion has been 
met, in order to summarize the global results of the ex­
ecution. This model forms a basis for the determination 
of the specific effects of adding different forms of commu­
nication. The resulting algori thm is shown in Figure 3. 

Figure 3: Distributed GA (good-enough approach) with 
simple deme communication 

Here, each processor's results are independent of its 
neighbours. As the probabil i ty distr ibut ion of solution 
quality and function executions used during an execu­
t ion is not uni form, the speedup ( improvement due to 
distr ibut ion) is expected to be sub-linear in the number 
of processes used. 

2.3 Traditional Communication in 
Distr ibuted GAs 

Any improvement in the performance of the algor i thm 
as a result of communication is beneficial, unless the 
cost of communication outweighs the benefits. Previ-
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ous island DGAs communicate genetic information be­
tween the populations, mostly in the form of individual 
solutions, copied (migrated) either at intervals or con­
tinuously [Pettey, et a/, 1987; Starkweather, et a/, 1990; 
Tanese, 1990]. This approach is beneficial for higly sep­
arable problems, where the good solutions from different 
areas of the solution space may be successfully combined. 
However, the algorithm's performance is highly depen­
dent on its parameters (migrant selection policy, rate of 
migrat ion, migrant insertion policy) and is less beneficial 
for less separable problems. 

Addit ional ly, this form of communication suffers f rom 
conqu est [Maresky, 1994]. Populat ions evolving asyn­
chronously in parallel are often at different levels of evo­
lut ion. The arrival of highly evolved migrants f rom a 
strong populat ion wi l l result in their higher rate of se­
lection than local, Jess evolved individuals. Thus, the 
sending population's solution is often imposed on that 
of the receiver. Conversely, migrants arriving f rom a 
less evolved population are not selected for reproduction 
and are wasted. 

3 The Profiling Model 
Another way to take advantage of the parallel processing 
and resultant increase of available information is through 
the dynamic cross-checking of a process's progress. This 
approach does not communicate genetic information, 
rather information about a process's progress. As such, 
the profi l ing approach departs from the popular analogy 
wi th biological systems. 

It has been shown that under certain circumstances, 
the quality of a GA execution is correlated to the steep­
ness, or speed, of its improvement [Davidor and Ben-
K i k i , 1992; Manderick, et a/, 1991]. That is, the more 
rapid the improvement, the more chance of the GA ex­
ecution reaching a good result, and vice versa. The GA 
and, more specifically, the process, has no a-priori knowl­
edge of the solution space of the problem, or what consti­
tutes "good" progress. A process receiving information 
regarding the progress of other processes checks its own 
relative progress. If this is inferior, the process restarts 
in similar fashion to the normal restart operator. 

A restart in this manner does not mean that a bet­
ter solution would not have been found in the old search 
space. Rather, as in the case of the restart operator (see 
Section 2.1), it is less likely that the old search space 
would yield a better solution. The use of resources in 
restarting the population and bringing it to a compara­
ble level, is probably more beneficial in producing better 
solutions. 

This approach implies regular communication, unlike 
the tradi t ional communication model where genetic in­
formation is migrated at any t ime. This communication 
is of profiles: strings of costs (unnormallized fitness val­
ues) forming the history of a process's progress (see Fig­
ure 4). In this example, the first cost value is stored after 
200 evaluations; addit ional values are stored at intervals 
of 200 evaluations. 

Profiles are sent to other random processes at regular 

Figure 4: A profile of the execution improvement against 
time 

intervals; at the same intervals, profiles from other pro­
cesses are received and the local population's progress is 
checked against the global average. The curve formed by 
the average process profiles exhibits properties of "opt i ­
mization graphs" and "learning curves", used in other 
frameworks. 

In i t ia l ly, an off-line model was constructed: each 
process's progress is checked against a static, pre­
determined, global progress profile, wi thout any com­
munication or dynamic recalculations of the curve. This 
off-line curve is obviously different f rom that of the on-
line model, where a process's execution may be termi­
nated because of sub-average performance, changing the 
curve considerably. 

It was decided to have a process's profile values carry 
the average improvement since the beginning of the exe­
cution, instead of since the last restart. In other words, a 
process's profile is not reinitialized on restart; this allows 
for more information to be uti l ized. 

Whi le t e r m i n a t i o n c o n d i t i o n i s f a l s e : 
{ 

Every interval e v a l u a t i o n s : 

{ 
Get, store p r o f i l e s from other processes 
Update, send my p r o f i l e to a process 
Check my progress against the g lobal 
average: i f unsa t is fac tory , r e s t a r t 

} 
Do an i nne r r e p r o d u c t i o n loop 
o f F i g u r e 1 , 

Figure 5: DGA with profile communication 

The ini t ia l approach observed the local process's best-
of-generation cost against the "sleeve" defined by the 
offline cost curve and its flanking standard deviation 
curves. However, this means each process communicat­
ing the standard deviations at each point as well as the 
profiles. It was thus decided to restart the process if its 
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cost at any point was more than some constant percent­
age worse than that of the offline curve; the resulting 
algori thm is shown in Figure 5, and replaces the inner 
loop of Figure 3. 

This requires four new parameters: 

• When to begin profi l ing: the first few evaluations 
may not provide a sufficiently good indication of 
the future potential of the execution. 

• How often to profile: while higher granularity of 
profi l ing provides better information, this involves 
a tradeoff wi th lower communication rates. This 
parameter also determines the amount of profiles to 
store. 

• How often can the process stray outside the sleeve: 
once may be too easily misled by the stochastic be­
haviour of the execution; more may l im i t the effec­
tiveness of the approach. 

• How wide is the sleeve determined by the cost curve 
and the upper bound percentage: a small percent­
age (and narrow sleeve) disadvantages some func­
tions; similarly high percentages and wider sleeves. 

4 Results 

4.1 The MOSIX-486 Platform 
While most experimental executions were run on Sun 
SPARCstations, all t im ing results were obtained on a 
4-node Intel 486-PC configuration running under the 
MOSIX operating system [Barak, et al, 1993]. MOSIX 
is a UNIX based mult icomputer operating system that 
incorporates the CPU resources of a network of worksta­
tions by supporting dynamic process migrat ion and load-
balancing, which are transparent to the application level, 
for efficient ut i l izat ion of the network-wide resources and 
balanced workload distr ibut ion. 

4 .2 P r o b l e m s 

Two problems are selected for testing. One, bal-lj, is 
a quadratic assignment problem, and J Ml is a dynamic 
control problem. 

The highly inseparable quadratic assignment prob­
lem [Davidor, 1993] involves 14 dimensional quadratic 
minimizat ion, which has many applications in dynamics 
(though the dimensionality may vary). 

At low dimensions, the problem may be solved using 
the Simplex method which guarantees opt imal i ty. How­
ever, numerical problems are encountered at high dimen­
sions which cause convergence to a local op t imum and a 
GA approach becomes attractive. 

Each individual is coded as containing a chromosome 
of 14 real numbers, a total mass, moment, cost and a 
fitness value. The solution space size is of the order of 
10287. 

The dynamic control problem is f rom [Janikow and 
Michalewicz, 1991]: 

where 

where xo is the in i t ia l state, is a state, and u 
is the solution vector. 

We call the fol lowing problem JMV. a fixed domain 
of ( -200,200) is assumed for each , w i th = 100 
and N = 45. In similar fashion to the bal~14 problem, 
each individual is represented by a 45-ary vector of real 
numbers, a cost and a fitness value. This problem is 
highly separable and responds very well to t radi t ional 
methods of distributed communication. 

4 . 3 R e s u l t s a n d D iscuss ion 

In order to compare the performance of the DGA to 
both the sequential GA and the DGA without commu­
nication described in 2.2, the performance of the algo­
r i t hm is measured in reaching some acceptably good so­
lut ion. The approximate comparison is on the basis of 
measuring function evaluations, while the actual com­
parison refers to the actual t ime taken for execution on 
the MOSIX-486 described in 4 .1 . A l l results are taken 
over 250 executions. 

It is clear that the more difficult the problem or the 
goal cost of the good-enough approach, the longer the 
execution and the more advantage to the DGA commu­
nicating profiles. A short execution does not enable the 
processes to bui ld up sufficient knowledge about the av­
erage cost improvement curve. A short execution also 
implies fewer process restarts as a result of this greater 
knowledge due to the communication of profiles. 

Addit ional ly, the execution unt i l the first restart is 
hardly affected by the communication of profiles, for two 
reasons. Firstly, the information (or knowledge) gained 
is not statistically useful as not enough data has been 
collected: each process can have at most n cost values 
for each profile posit ion, for n processes. Secondly, the 
faster processors do not receive any useful information 
at all unt i l after they restart for the first t ime. 

1. Acceptably good solution cost 

2. Optimal communication interval - no. of evaluations 

3. DGA with profiling: # evaluations (std. deviation) 

4. Approximate % improvement over the non-communicating DGA 

5. Approximate speedup over the sequential GA (actual speedup) 

Figure 6: Profiling results for 4 processes (250 execu­
tions) 

Some results are shown in Figure 6. For each prob­
lem, the performance of the profi l ing DGA is measured 
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against the core sequential GA, and against the DGA 
without communication. The comparison is on the ba­
sis of number of function evaluations needed to reach 
a specific solution quality (specified in the second col­
umn) . The fourth column shows the contribution of the 
new communication to the core DGA (without commu­
nication), and the last column presents approximate (in 
terms of function evaluations) and actual (in terms of 
t ime elapsed) speedup results over the core sequential 
GA. Note the close correlation between the function eval­
uation speedup and the actual t ime speedup. 

The quadratic assignment problems are most strongly 
responsive to the new approach (see Figure 6). While 
reasonably good results are obtained for a cost value of 
0.03, a closer observation reveals that the problem is not 
difficult enough to provide advantage to the communi­
cation: on average, less than two restarts are needed to 
find a good solution. Setting a harder cost, namely 0.01, 
results in significant speedups of over 4.4 at opt imal pa­
rameter settings. 

The new parameters introduced are particularly ro­
bust. A brief analysis of the effects of changes in the 
parameters on the results of the DGA reveals that an 
early start to profi l ing does not overly hinder the pro­
cess, while start ing late (for example, after 2,000 eval­
uations) is less effective. For bal-14, acceptable results 
are obtained wi th a profi l ing frequency of up to 200 eval­
uations - equivalent to a communication probabil i ty of 
0.005. A lower rate of communication does not provide 
sufficient informat ion, while much higher rates are too 
expensive in terms of communication overhead. The pa­
rameter of two or three consecutive intermediate results 
outside of the sleeve is opt imal here - one "h i t " is too ran­
dom, and four or more hits implies too slow a response. 
In terms of the width of the sleeve, a value of 40% is 
most effective - wider sleeves result in fewer restarts. 

These parameter settings are not universal. Different 
settings produced opt imal results for the other problem, 
J M l . This showed very l i t t le improvement over the non-
corrimunicating DGA. The problem is monotonic and 
does not readily benefit from having executions prema­
turely terminated. It conforms less to the discussed rela­
tion between speed of improvement and quality of final 
result. Addi t ional ly, one of the main reasons behind the 
profi l ing DGA's effectiveness (for the hal-14 problem) is 
due to the shape of the probabil i ty distr ibution defined 
by the DGA wi thout communication. Here, a strong, 
right-sloping ta i l is evidence of the noncommunicating 
DGA's tendency towards long executions which search 
unprofitable regios before eventually terminating. The 
probabi l i ty distr ibut ion of the noncommunicating DGA 
for the JM1 problem has no such ta i l , that is, almost all 
executions terminate wi th in some bound. Numerous at­
tempts at parameter setting were tr ied, wi thout success. 

In response to the questions of Section 2, the results 
f rom the DGA communicating profiles (in Figure 7) for 
the bal-14 problem, are similar to those results already 
presented. The sequential GA is executed, using 400, 000 
evaluations; the DGA wi th profi l ing is executed for 4 pro­
cesses, each using 100,000 evaluations. Thus, after us­

ing the same total number of function evaluations, there 
is an improvement (in the best value found) over the 
sequential GA. This is analogous to the achieving of a 
superlinear speedup in the previous analyses. The im­
provement is slightly less than expected - this can be 
explained by the design of the profi l ing approach to com­
munication: the addit ional information about the aver­
age improvement curve is present fairly early in the exe­
cution. The execution continues for 100, 000 evaluations, 
which lessens the advantage of distr ibution and imposes 
the part ial information (gathered early in the execution) 
on the later stages of the execution. This also results in 
very varied expected costs. 

Figure 8: Scaling effects for the DGA communicating 
profiles (250 executions) 

The influence of a harder good-enough cost is clearly 
seen: the easier problem does not benefit greatly from 
the profi l ing. A DGA communicating profiles on this 
problem returns different results depending on the good-
enough cost. Note also the consistent superlinear 
speedup on the harder problem, which improves unt i l a 
specific level, where increasing the number of processes 
does not improve the quality of global convergence in­
format ion. 
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An at tempt was made to combine the profi l ing com­
munication w i th the t radi t ional communication dis­
cussed in Section 2.3. The results, for the bal-14 problem, 
improved on those of the DGA wi th tradi t ional commu­
nication, but were worse than those presented above. 
This suggests that the DGA communicating genetic in­
format ion benefits f rom restarting populations which are 
not providing fast improvement, while the communica­
t ion of emissaries is detrimental to the DGA commu­
nicating profiles. No f ine-tuning of profile or emissary 
communication was attempted, because of the relatively 
poor results.Note that this hybr id approach would im­
ply greater communication overhead than the previous 
approaches. 

The profi l ing approach is novel and inspires interest­
ing modifications and extensions to distributed GAs. For 
example, profi l ing plays a similar role to restart: both 
operators renew the GA search in a new area of the prob­
lem space. In both operators, the probabilistic decision 
is based on perceived less-than-optimal performance and 
is easily fooled by erratic or volatile improvement curves. 
It is necessary to investigate the distr ibuted profi l ing ap­
proach as an alternative to the restart funct ion, using 
the average profile generated by parallel executions to 
determine the worth of continuing an execution instead 
of restarting. It is also necessary to reduce the depen­
dence on the addit ional parameters introduced. 

5 Conclusions 
The profi l ing approach to communication between the 
concurrently evolving populations of a DGA is an al­
ternative at tempt to uti l ize the addit ional information 
generated by these parallel processes. This approach is 
motivated by the relationship between the speed of ex­
ecution improvement and the execution's resulting solu­
t ion quality. New parameters are introduced, many of 
which are robust, in the sense that varying their values 
does not affect the DGA's performance. 

The populations communicate their improvement his­
tory, and a process decides on its own viabi l i ty according 
to the global average improvement curve. This learning 
curve is also useful in determining the opt imal number 
of processes to use, and in setting parameters. 

Problems for which a DGA wi th tradit ional commu­
nication is less effective (and consistently returns sub-
linear speedups) are shown to produce superlinear results 
using this approach. This benefit is highly dependent on 
the correlation between the speed of improvement and 
the quality of an execution. This dependence, which is 
influenced by the problem, the GA and its parameter 
settings, can be measured and may constitute an im­
portant factor in determining a priori the success of the 
profi l ing effect on a specific problem. 

The profi l ing approach also provides a positive answer 
to the question of parallel versus sequential search qual­
ity, given a fixed execution t ime. 
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