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Abstract 2 Hard problems and phase transitions 

Computationally hard instances of combinatorial 
problems arise at a certain critical ratio of con­
straints to variables. At the critical ratio, problem 
distributions undergo dramatic changes. I will dis-
cuss how an analogous phenomenon occurs in phase 
transitions studied in physics, and how experiments 
with critically constrained problems have led to sur­
prising new insights into average-case complexity 
and stochastic search methods in AI. 

1 Introduction 
Many AI formalisms, such as used in planning, reasoning, 
and learning, have been shown to be inherently intractable. 
These intractability results are generally based on a worst-
case analysis, and hence, there has been much debate about 
their practical relevance. Average-case complexity analysis, 
on the other hand, would appear to be more directly applica­
ble. However, such analysis requires a precise model of the 
distribution of input instances. Since we do not have a good 
understanding of real-world problem distributions, average-
case results generally assume relatively simple distributions 
of randomly generated problem instances. 

Average-case results based on such distributions show that 
almost all randomly generated instances of combinatorial 
problems are surprisingly easy to solve. This has led some AI 
researchers to dismiss many of the negative worst-case com­
plexity results. However, as discussed below, recent work has 
shown that the positive average-case results are largely due 
to the particular choice of input distribution. By being more 
careful in generating instances, one can in fact quite easily ob­
tain extremely hard search and reasoning problems. The key 
property of such hard random instances is that they have to be 
critically constrained. That is, they occur at a certain critical 
ratio of variables to constraints. At this ratio, the problem 
distributions undergo dramatic changes. I will discuss how an 
analogous phenomenon occurs in phase transitions studied in 
physics, and how tools from statistical mechanics can be used 
to analyze the transition phenomenon. 

In the second part of my talk, I will show how the recent 
new insights into computationally hard problems have led to 
the development of powerful new stochastic search methods. 
These methods now offer a viable alternative to the more 
traditional systematic methods. 

In [7], Cheeseman et al. study the computational cost of solv­
ing randomly generated graph coloring problems. Starting 
with a given number of nodes, a random graph is generated 
by adding edges between randomly chosen pairs of nodes [4]. 
In graph coloring, the goal is to assign a color to each node 
in such a way that no two nodes connected by an edge have 
the same color. Cheeseman et al consider the computational 
cost of coloring random graphs with a fixed number of colors, 
using a backtrack-style algorithm. 

The average cost of coloring random graphs was found to 
be directly dependent on the ratio of the number of edges to 
the number of nodes. When graphs contain relatively few 
edges, they tend to have many valid colorings, and a back­
track style algorithm can find a coloring quite easily — early 
on in its search. On the other extreme, when a graph contains 
many edges, a valid coloring often does not exist. Because of 
the many potential conflicts between the nodes, the global in­
consistency of the coloring problem can be detected relatively 
easily. Finally, at a certain critical ratio of edges to nodes, 
it becomes quite difficult for a coloring procedure to deter­
mine whether the graphs are colorable or not. Intuitively, the 
instances are "critically constrained". The average computa­
tional cost of running the coloring procedure on the critically 
constrained graphs scales exponentially with the size of the 
graphs. So, determining whether such graphs are colorable 
becomes infeasible even for moderate size graphs. 

In our own work on Boolean satisfiability (SAT) testing, 
we also observed a transition phenomenon [48]. Our initial 
interest in the satisfiability problem arose from early reports 
that many satisfiability problems are easily solvable. For 
example, Goldberg [25] describes a class of random SAT 
problems that are surprisingly easy for the Davis-Putnam sat­
isfiability procedure [11]. Goldberg's work led to an ex­
tensive theoretical exploration of his particular random in­
stance model. He considered CNF formulas. Each formula 
consists of a conjunction of disjunctions (clauses) of liter­
als. Each clause is generated by selecting literals with some 
fixed probability. This leads to clauses of varying length. A 
rigorous analysis, reported in a series of papers [15; 16; 26; 
54], has shown that in this model, the average-case complex­
ity is polynomial for almost all choices of parameter settings. 
In other words, it is difficult to generate computationally hard 
problem instances. Note that this does not mean that hard 
instances do not exist; it is simply means that such instances 
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are very rare. 
In [48], we show how by using a different model for gener­

ating random formulas, called the fixed-clause-length model, 
one can easily generate hard problem instances. Consider 
generating a random 3CNF formula. Each clause is gener­
ated by randomly selecting three variables from among N 
variables; each of these variables is negated with probability 
0.5. We generate a total of M clauses. We found that the 
key in generating computationally hard instances is the ratio 
between M and N. Fig. 1 shows the median cost of solving 
randomly generated instances at different ratios of variables 
to clauses. We see that the cost peaks at around 4.3 clauses 
per variable.1 Our experimental data shows that at this point 
the cost of determining satisfiability grows exponentially with 
the size of the formulas. 

Fig. 2 gives the fraction of formulas that are unsatisfiable 
as a function of the ratio of clauses to variables. At low ratios, 
few clauses compared to the number of variables, almost all 
instances are satisfiable (i.e., the unsatisfiable fraction is al­
most zero). At relatively high ratios of clauses to variables, in 
a sense too many constraints, almost all randomly generated 
instances are unsatisfiable. A sudden change occurs around 
the critical ratio of 4.3. At this ratio, there is aphase transition, 

from the mostly satisfiable phase to the mostly unsatisfiable 
phase. From Fig. 1, we see that the phase transition region 
coincides with the area with the hardest problem instances. In 
this region, the instances are again critically constrained. In 
the next section, we will take a closer look at what happens 
inside the phase transition region. 

The randomly generated critically constrained problem in­
stances have been used extensively in the study and devel­
opment of algorithms for graph coloring and satisfiability 
testing. A key question is whether the results obtained for 
such instances are at all indicative of the behavior of the algo­
rithms on more structured, real-world instances. The results 
of the recent DIMACS Challenge on Satisfiability Testing [68] 
suggest that the behavior of algorithms on hard random prob­
lems can indeed be representative of the behavior on more 
structured problems. The DIMACS Benchmark Problem Set 
contained several hard random instances and numerous more 
structured problems. The satisfiability algorithms fell in two 
categories: complete systematic procedures, and incomplete 
stochastic methods. These methods complement each other, 
in that there are problem classes where the stochastic meth­
ods are best, whereas on other problem classes the systematic 
methods are superior. However, within each category, algo­
rithms that were fastest on the hard random instances usually 
also performed best on the more structured problems. Appar­
ently, the hard random instances do exercise the various time 
critical parts of the algorithms. Therefore, the performance 
of algorithms on such hard random instances is a reasonably 
good indicator of the overall performance on a more diverse 
set of problem instances. 

Aside from being useful as benchmark problems, there is 
also some indication that critically constrained problems may 
occur naturally in real-world applications. Nemhauser [50] 
studied a large airline scheduling problem, involving approx­
imately 500 planes. After a substantial computational effort, 
his group found a provably optimal solution. Given that the 
original schedule was only approximately optimal, it was ex­
pected that an optimal solution would lead to a savings of 
one or more planes. However, quite surprisingly, the optimal 
schedule did not save a single plane. The explanation ap­
pears to be that the problem had become critically constrained: 
Because of economic factors, the airline had assigned addi­
tional routes to planes that were idle during parts of the day 
in the original schedule. So, external factors can give rise 
to critically constrained real-world planning and scheduling 
problems.2 

3 A closer look at the phase transition 
Fig. 3 shows the phase transition for 3S AT for several different 
values of N (the number of variables). Note how the threshold 
function sharpens up for larger values of N. In [40], we 
show that the threshold has characteristics typical of phase 
transitions in the statistical mechanics of disordered materials. 

Physicists have studied phase transition phenomena in great 
detail because of the many interesting changes in a system's 

'For large N, this ratio converges to around 4.25. [9; 40]. 

2The ratio of constraints to variables will probably differ from the 
critical ratios found in hard random instances, because of the inherent 
internal structure of real-world problems. In this abstract, I cannot do 
justice to the large amount of recent work in this area. The reader is 
encouraged to consult any of the following additional references [2; 
5; 8; 9; 21; 22; 31; 43; 44; 70; 71]. 
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macroscopic behavior that occur at phase boundaries. One 
useful tool for the analysis of phase transition phenomena is 
called finite-size scaling. This approach is based on rescaling 
the horizontal axis by a factor that is a function of TV. The 
function is such that the horizontal axis is stretched out for 
larger N. So, in effect, rescaling "slows down" the phase 
transition for higher values of Nt and thus gives us a better 
look inside the transition. Fig. 4a shows the result of rescaling 
the curves from Fig. 3. The original curves are rescaled into 
a single universal curve.3 The fit becomes better for higher 
values of k (the clause length). See, for example, Fig. 4b for 
rescaled 4SAT data. 

From the universal curve, applying the scaling function 
backwards, the actual transition curve for each value of N can 
be derived. This approach also localizes the 50%-satisfiable-
point for any value of N, which allows us to generate the 
hardest possible SAT instances. 

Finite-size scaling can also be used to study properties other 
than satisfiability in the critical region. See f 64] for a rescaling 
of computational cost curves, and [57] for a rescaling of the 
prime implicate function. 

4 Stochastic search 
In Section 2, we discussed how we can generate satisfi­
ability problems that are hard for the Davis-Putnam pro­
cedure. A natural question to consider is whether there 
are other methods that are better at solving such instances. 
Recent experimental work has shown that from among 
the systematic search procedures, the basic Davis-Putnam 
procedure is in fact the most effective [6; 9; 14; 17; 
68]. In [65], we show however that a stochastic method can 
outperform the Davis-Putnam procedure. Our method, called 
GSAT, is based on a randomized local search strategy [46; 
51]. 

The original impetus for trying a local search method on 
satisfiability problems was the successful application of such 
methods for finding solutions to large N-queens problems, first 
using a connectionist system [1], and then using greedy local 
search [47]. We originally assumed that simply indicated that 
N-queens was an easy problem, and felt that such techniques 
would fail in practice for SAT. In particular, it would seem 
that local search methods would easily get stuck in local min­
ima, with a few clauses remaining unsatisfied. Our GSAT 
experiments have shown, however, that certain local search 
strategies often do reach global minima. 

The basic GSAT procedure (Fig. 5) starts with a randomly 
generated truth assignment. It then changes ('flips') the as­
signment of the variable that leads to the greatest decrease in 
the total number of unsatisfied clauses. Such flips are repeated 
until either a satisfying assignment is found or a pre-set maxi­
mum number of flips (MAX-FLIPS) is reached. This process 
is repeated as needed, up to a maximum of MAX-TRIES 
times. 

In [65], we show that GSAT substantially outperforms back­
tracking search procedures, such as the Davis-Putnam proce­
dure, on various classes of formulas, including randomly gen-

3We do not yet have a closed form expression for the universal 
curve, but the function e-2 , where a is the rescaled M/N ratio, 
is a good approximation [40]. 
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The parameter p controls the amount of noise. In Table 1, from 
[62], we compare the random walk strategy on hard random 
3CNF formulas with basic GSAT, simulated annealing [39], 
and a random noise strategy. We see that the biased walk strat­
egy significantly outperforms the other methods. It enables 
us to solve hard random instances with over 2000 variables. 
In contrast, the current best systematic search methods can 
only handle instances with up to around 400 variables. In [62; 
33], we show how stochastic search can also be effective 
on highly structured instances, such as encodings of circuit 
design problems, Steiner tree problems, and problems in fi­
nite algebra. Some of our problem encodings contain over 
20,000 variables and around 500,000 clauses. This is a good 
indication of the significant progress that has been made in 
recent years: up to around 1990, experimental work on sat­
isfiability testing was limited to instances with less than a 
hundred variables and at most one or two hundred clauses. 
For further experiments with, and comparisons to GSAT and 
GSAT-style procedures, see also [3; 10; 13; 24; 41; 49; 56; 
67; 68]. 

5 Applications of stochastic methods in 
reasoning and search 

Since GSAT does not systematically explore the space of 
all truth assignments, if no satisfying assignment is found, 
it does not mean that no such assignment exists. In other 
words, GSAT, like other stochastic methods, is inherently 
incomplete [18]. As a consequence, such methods are suit­
able for model finding but not for theorem proving, which 
requires showing inconsistency.4 The success of stochastic 
search methods suggests, therefore, that it may be useful to 
encode AI tasks in terms of model-finding, rather than the 
more usual formulations based on theorem proving. In [37], 
we show how planning can be encoded as a model-finding 
task. Certain forms of abduction and default reasoning can 
also be formulated in terms of model-finding [55; 66]. When 
no direct model-based encoding exists, one can consider ap­
proximate encodings by adapting methods developed for the­
ory compilation [63]. Finally, model-finding procedures can 
also be used to find representative (or characteristic) models 
of a knowledge base. Such models can be used to answer 
certain classes of queries in a highly efficient manner [38; 
45]. 

6 Conclusions 
We have discussed the significant progress that has been made 
recently in our understanding of the nature of computationally 
hard problems. The hardest problem instances occur at cer­
tain critical ratios of constraints to variables. At such ratios, 
we observe dramatic changes in the problem distributions. 
This phenomenon can be analyzed with tools from statistical 
physics. We also discussed new stochastic methods for solv­
ing hard problem instances. These methods can substantially 
outperform systematic methods. Finally, we described how 
such stochastic methods suggest new ways of dealing with 
computational challenges in reasoning and search in A I . 
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