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Abstract 

This paper presents research spanning the fields of 
computer vision, computer graphics, and artificial 
life, with implications for A I . Although the model­
ing of all aspects of l iving systems is a worthwhile 
endeavor in its own right, the emphasis here wil l 
be on the modeling of animals, including humans, 
for computer vision. First, I present a new breed of 
artificial animals in a physics-based virtual marine 
world, whose muscle-actuated bodies harbor brains 
with motor, perception, behavior, and learning cen­
ters. In these mobile autonomous agents, senso­
rimotor control for the purposes of perceptually-
guided navigation employs on-board. active com­
puter vision systems that continually analyze the vi­
sual world. Second, turning my attention to human 
animals, I describe new algorithms that can con­
struct artificial human heads with expressive faces. 
Through the use of range scanners, generic biome-
chanical facial models may be automatically per­
sonalized to individuals. Currently, artificial faces 
support a model-based approach to facial image 
analysis. In the future, it should be possible to 
incorporate brains and some degree of intelligence 
into them as well. 

1 Introduction 
Modeling has been a central theme of artificial intelligence. 
This is very evidently so in computer vision, where the mod-
cling of objects has preoccupied researchers since the dawn 
of the field some three decades ago [1]. A good strategy 
for progress on the vision problem is through physics-based 
modeling (see, e.g., [2]). The idea is to incorporate principles 
of physical dynamics into conventional geometric models in 
order to be able to represent not only the shapes of objects, but 
their physical behaviors as well. Indeed, many of the prod­
ucts of the physics-based modeling movement in computer 
graphics (see, e.g., [3]) are also useful in vision. This fuels 
our long-standing philosophy in the Visual Modeling Group 
at the University of Toronto that vision and graphics are mutu­
ally converse problems, and that the two fields should advance 
synergistically. 

In this paper, I w i l l demonstrate that we have now taken an 
important next step and introduced some artifical life into the 

vision-graphics marriage. This enables us to set our sights 
on the most complex objects known—objects that are alive. 
I wi l l demonstrate how recent advances in the emerging field 
of A-Life are inspiring fresh approaches to computer vision.1 

These advances center around the idea of artificial animals, 
or "animats" a term coined by Wilson [4], In particular, I 
wi l l review two of our ongoing research projects, which relate 
to the modeling of living systems for computer vision. The 
first involves the modeling of complete animals of nontrivial 
complexity on the evolutionary ladder, such as teleost fishes in 
their natural habitats (Fig. 1). The second project, involves the 
modeling of faces, a vitally important communicative medium 
of the most highly evolved living systems known—human 
beings (Fig. 2). 

The presentation is in two parts. Sections 2 and 3 present 
our work on artificial fishes and animal vision. The basic idea 
in a nutshell is to implement, entirely in software, realistic 
artificial animals and to give them the ability to locomote, 
perceive, and in some sense understand the realistic virtual 
worlds in which they are situated so that they may achieve 
both individual and social functionality within these worlds. 
To this end, each animat is an autonomous agent possessing 
a muscle-actuated body that can locomote and a mind with 
motor, perception, behavior, and learning centers. The animat 
is endowed with functional eyes that can image the dynamic 
3D virtual world onto its 2D virtual retinas. The perceptual 
center of the animat's brain exploits "active vision" algorithms 
to continually process the incoming retinal image stream in 
order to make sense of what it sees and, hence, to purposefully 
navigate its world. I hope to begin to convince the uninitiated 
reader that it is now within our means to implement realistic 
virtual worlds inhabited by artificial animals rich enough to 
support some serious computer vision (and AI) research. 

In the second part of the paper, Sections 4 and 5,1 briefly 
present our work on physical and anatomical modeling of 
human faces. Our goal has been to develop artificial faces 
that arc capable of synthesizing realistic facial expressions. 
At different levels of abstraction, these hierarchical models 
capture knowledge about facial expression from psychology, 
facial anatomy and facial tissue histology, and continuum 
biomechanics. 1 wi l l show that a generic facial model of this 
sort can be "personalized", or made to conform closely to 

'For an engaging survey of the A-Life field, see, e.g., S. Levy, 
Artificial Life (Pantheon, 1992). Journals such as Artificial Life and 
Adaptive Behavior document the state of the art. 
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Figure 1: Artif icial fishes in their physics-based virtual world 
as it appears to an underwater observer (monochrome version 
of original color images). Top: The 3 reddish fish (center) are 
engaged in a mating ritual, the greenish fish (upper right) is 
a predator hunting for small prey, the remaining 3 fishes are 
feeding on plankton (white dots). Dynamic seaweeds grow 
from the ocean bed and sway in the current. Bottom: A 
predator shark stalking a school of prey. 

Figure 2: An artificial face (monochrome version of original 
color images). The functional face model was constructed 
automatically from an RGB/range laser scan of an individual, 
"George". Artificial George is shown here engaged in syn­
thesizing various facial expressions and pretending to read a 
technical paper about how he was constructed. 

individuals once the geometry and photometry of their faces 
has been captured by a range sensor. Finally, I w i l l describe 
how this sophisticated model can be used in a model-based 
analysis-by-synthesis strategy to analyze facial images and 
image sequences, an important computer vision problem that 
relates to visual communication. 

Section 6 concludes the paper with a brief discussion of 
where I hope that our approach wi l l lead us and a preview of 
future work. 

2 Artificial Fishes 
Imagine a virtual marine world inhabited by a variety of re­
alistic fishes (Fig. 1). In the presence of underwater currents, 
the fishes employ their muscles and fins to swim gracefully 
around immobile obstacles and among moving aquatic plants 
and other fishes. They autonomously explore their dynamic 
world in search of food. Large, hungry predator fishes stalk 
smaller prey fishes in the deceptively peaceful habitat. The 
sight of predators compels prey fishes to take evasive action. 
When a dangerous predator appears in the distance, similar 
species of prey form schools to improve their chances of sur­
vival. As the predator nears a school, the fishes scatter in 
terror. A chase ensues in which the predator selects victims 
and consumes them until satiated. Some species of fishes 
seem untroubled by predators. They find comfortable niches 
and feed on floating plankton when they get hungry. Driven 
by healthy libidos, they perform elaborate courtship rituals to 
attract mates. 

Each artificial fish is an autonomous agent with a de-
formable body actuated by internal muscles. The body also 
harbors eyes and a brain with motor, perception, behavior, and 
learning centers, as Fig. 3 illustrates. Through controlled mus­
cle actions, artificial fishes are able to swim through simulated 
water in accordance with hydrodynamics. Their functional 
fins enable them to locomote, maintain balance, and maneu­
ver in the water. Thus the artificial fish model captures not 
just 3D form and appearance, but also the basic physics of the 
animal and its environment. Though rudimentary compared 
to real animals, the minds of artificial fishes are nonetheless 
able to learn some basic motor functions and carry out percep­
tually guided motor tasks. In accordance with their perceptual 
awareness of the virtual world, their minds arbitrate a reper­
toire of piscatorial behaviors, including collision avoidance, 
foraging, preying, schooling, and mating. 

The details of the artificial fish model are presented in [5; 
6]. I wi l l summarize its main features in the remainder of this 
section. 

2.1 Motor System 

The motor system comprises the dynamic model of the fish 
including its muscle actuators and a set of motor controllers 
(MCs). Fig. 4(a) illustrates the biomechanical body model 
which produces realistic piscatorial locomotion using only 
23 lumped masses and 91 elastic elements. These mechanical 
components are interconnected so as to maintain the structural 
integrity of the body as it flexes due to the action of its 12 
contractile muscles. 

Artificial fishes locomote like real fishes, by autonomously 
contracting their muscles. As the body flexes it displaces vir­
tual fluid which induces local reaction forces normal to the 
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Figure 3: Control and information flow in artificial fish. 

body. These hydrodynamic forces generate thrust that pro-
pels the fish forward. The model mechanics are governed by 
Lagrange equations of motion driven by the hydrodynamic 
forces. The system of coupled second-order ordinary differ­
ential equations are continually integrated through time by a 
numerical simulator.2 

The model is sufficiently rich to enable the design of motor 
controllers by gleaning information from the fish biomechan­
ics literature. The motor controllers coordinate muscle ac­
tions to carry out specific motor functions, such as swimming 
forward (swim-MC), turning left (1 eft-turn-MC), and turning 
right (right-turn-MC). They translate natural control parame­
ters such as the forward speed or angle of the turn into detailed 
muscle actions that execute the function. The artificial fish 
is neutrally buoyant in the virtual water and has a pair of 
pectoral fins that enable it to navigate freely in its 3D world 
by pitching, roll ing, and yawing its body. Additional motor 
controllers coordinate the fin actions. 

2.2 Perception System 

Artificial fishes are aware of their world through sensory per­
ception. The perception system relies on a set of on-board 
virtual sensors to gather sensory information about the dy­
namic environment. As Fig. 4(b) suggests, il is necessary to 
model not only the abilities but also the limitations of animal 
perception systems in order to achieve natural sensorimotor 
behaviors. The perception center of the brain includes a per­
ceptual attention mechanism (see [7] for a review of attention 

2The artificial fish model achieves a good compromise between 
realism and computational efficiency. For example, the implemen­
tation can simulate a scenario with 10 fishes, 15 food particles, and 
5 static obstacles at about 4 frames/sec (with wireframe rendering) 
on a Silicon Graphics R4400 Indigo2 Extreme workstation. More 
complex scenarios with large schools of fish, dynamic plants, and 
full color texture mapped GL rendering at video resolution can take 
5 seconds or more per frame. 

mechanisms) which allows the artificial fish to sense the world 
in a task-specific way, hence filtering out sensory information 
superfluous to its current behavioral needs. For example, the 
artificial fish attends to sensory information about nearby food 
sources when foraging. Our early artificial fishes—those that 
are not equipped with the active vision system described in 
Section 3—employ simulated perception, a "perceptual ora­
cle" which satisfies the fish's sensory needs by directly in­
terrogating the 3D world model—the fish can directly access 
the geometric and photometric information that is available 
to the graphics rendering engine, as well as object identity 
and dynamic state information about the physics-based world 
model. 

2.3 Behavior 

The behavior center of the artificial fish's brain mediates be­
tween its perception system and its motor system. An in­
tention generator, the fish's cognitive faculty, harnesses the 
dynamics of the perception-action cycle. The innate charac­
ter of the fish is established by a set of habits that determine if 
it is male or female, predator or prey, etc. At each simulation 
time step, the intention generator takes into account the habits 
of the fish and the incoming stream of sensory information to 
generate dynamic goals for the fish, such as to avoid an ob­
stacle, to hunt and feed on prey, or to court a potential mate. 
It ensures that goals have some persistence by exploiting a 
single-item memory. Persistence makes sustained behaviors 
such as foraging, schooling, and mating more robust. The in­
tention generator also controls the perceptual attention mech­
anism. At every simulation time step, the intention generator 
activates behavior routines that attend to sensory informa­
tion and compute the appropriate motor control parameters to 
carry the fish one step closer to fulf i l l ing its current intention. 
The behavioral repertoire of the artificial fish includes primi­
tive, reflexive behavior routines, such as obstacle avoidance, 
as well as more sophisticated motivational behavior routines 
such as schooling and mating whose activation depends on 
the dynamic mental state of the fish as represented by hunger, 
fear, and libido mental variables (see [5] for the details). 

TERZ0P0UL0S 1005 



2.4 Learning 

The learning center of its mind enables the artificial fish to 
learn how to locomote through practice and sensory reinforce­
ment. Through optimization, the motor learning algorithms 
discover muscle controllers that produce efficient locomotion. 
Muscle contractions that produce forward movements are "re­
membered". These half-success then form the basis for the 
fish's subsequent improvement in its swimming technique. 
Their brain's learning center also enable these artificial ani­
mals to train themselves to accomplish higher level sensorimo­
tor tasks, such as maneuvering to reach a visible target (see 15; 
8] for the details). 

2.5 Modeling Form and Appearance 

Of course, we want our animats to capture the form and ap­
pearance of real fishes with considerable visual fidelity. Visual 
fidelity is especially important in the application of our an­
imats to computer vision, which I wi l l describe shortly. To 
this end, photographs of real fishes, such as the one shown 
in Fig. 5(a), are converted into 3D spline (NURBS) surface 
body models (Fig. 5(b)). The digitized photographs are ana­
lyzed semi-automatically using a "snake-grid" tool which is 
demonstrated in Fig. 5(d-e) on a different fish image. The 
grid of snakes [9] floats freely over an image. The border 
snakes adhere to. intensity edges demarcating the fish from 
the background, and the remaining snakes relax elastically to 
cover the imaged fish body. This yields a smooth, nonuniform 
coordinate system (Fig. 5(e)) for mapping the texture onto the 
spline surface to produce the final texture mapped fish body 
model (Fig. 5(c)). 

3 Animat Vision 
The psychologist J.J. Gibson stressed in pre-computational 
terms the importance of modeling the active observer situated 
in the dynamic environment [10]. Versions of this paradigm 
suitable for mainstream computer vision were introduced in 
the seminal papers of Bajcsy [11] and Ballard [12] under the 
names of active perception and animate vision, respectively.3 

3"Animat" vision should not be confused with Ballard's "ani­
mate" vision; the latter does not involve artificial animals. 

The active vision approach has developed into a prevailing 
paradigm [13; 14; 15; 16]. 

3.1 Problems with the "Hardware Vision" Mindset 
As active vision is practiced in most labs today, however, 
it is in reality little more than technology-driven "hardware 
vision". To be sure, applications-minded researchers have le­
gitimate reasons for building robot vision systems, but the nec­
essary hardware paraphernalia—CCD cameras, pan-tilt units, 
ocular heads, frame-rate image processors, mobile platforms, 
manipulators, controllers, interfaces, etc.—can be expensive 
to fabricate or acquire commercially and a burden to maintain 
in good working order. 

The animat vision methodology that we propose in [17] 
can potentially liberate a significant segment of the computer 
vision research community from the tyranny of robot hard­
ware. It addresses the needs of scientists who are motivated to 
understand and ultimately reverse engineer the powerful v i ­
sion systems found in higher animals. These researchers are 
well aware that animals do not have CCD chip eyes, electric 
motor muscles, and wheel legs. That is to say, they realize 
that readily available hardware systems are terrible models of 
biological animals. For lack of a better alternative, however, 
they have been struggling with inappropriate hardware in their 
ambition to understand the complex sensorimotor functions 
of real animals. Moreover, their mobile robots typically lack 
the compute power necessary to achieve real-time response 
within a fully dynamic world while permitting active vision 
research of much significance. 

Artificial animals such as the fish are active "vehicles" in 
the sense of Braitenberg [18]. We believe that they are as 
appropriate for grounding active vision systems as are the 
hardware "mobots" that have come out of the situated robotics 
work of Brooks and his group [19; 20] and have been an 
inspiration to numerous other robotics groups (see, e.g., the 
compilation [21 ]). Undeniably, however, efforts to equip real­
time mobile robots with general-purpose active vision systems 
have been hampered by the hardware and the relatively modest 
abilities of on-board processors. 

3.2 GetA-Li fe! 
I wi l l now describe a zoomimetic approach to vision [17] 
which is made possible by the confluence of 

1. advanced physics-based artificial life modeling of ani­
mals, as I presented it in the previous section 

2. photorealistic computer graphics rendering, especially as 
implemented in modern 3D graphics workstations, and 

3. active computer vision algorithms. 

Our animat vision approach offers an alternative strategy for 
developing biologically inspired active vision systems that 
circumvents the aforementioned problems of hardware vision. 
The animat vision concept is realized with realistic artificial 
animals and active vision algorithms implemented entirely in 
software on 3D graphics workstations. Animat vision offers 
several additional advantages: 

• One can slow down the "cosmic clock" of the virtual 
world relative to the cycle time of the CPU on which it 
is being simulated. This increases the amount of compu­
tation that each agent can consume between clock ticks 
without unduly retarding the agent's responses relative to 
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the temporal evolution of its virtual world. This in turn 
permits the development and evaluation of new and/or 
computationally complex active vision algorithms that 
are not presently implementable in real-time hardware. 

• The quantitative photometric, geometric, and dynamic 
information that is needed to render the virtual world is 
available explicitly. Generally, the animats are privy to 
none of this environmental ground truth data, but must 
glean visual information the hard way—from their retinal 
image streams. However, the readily available ground 
truth can be extremely useful in assaying the effective 
accuracy of the vision algorithms or modules under de­
velopment. 

Our challenge has been to synthesize a prototype active vi­
sion system for the fish animat which is based solely on retinal 
image analysis [17]. The vision system should be extensible 
so that it will eventually support the broad repertoire of indi­
vidual and group behaviors of artificial fishes. It is important 
to realize that we need not restrict ourselves to modeling the 
perceptual mechanisms of real fishes. In fact, the animat 
vision paradigm applies to animats that model any animal— 
even a human being—to the level of fidelity that the artificial 
fish models a real fish. Indeed, the animat vision system that 
we have developed does not attempt to model fish perception 
[22]. Given a piscine animat that is an active observer of its 
world, we have found it interesting and challenging to endow 
the animat with human-like retinal imaging capabilities! 

3.3 Active Vision System 
The basic functionality of the animat vision system starts with 
binocular perspective projection of the color 3D world onto 
the animat's 2D retinas. Retinal imaging is accomplished 
by photorealistic graphics rendering of the world from the 
animat's point of view. This projection respects occlusion 
relationships among objects. It forms spatially variant visual 
fields with high resolution foveas and low resolution periph­
eries. Based on an analysis of the incoming color retinal 
image stream, the visual center of the animat's brain supplies 
saccade control signals to its eyes and stabilize the visual 
fields during locomotion, to attend to interesting targets based 
on color, and to keep a moving/deforming target fixated. The 
artificial fish is thus able to approach and track other artificial 
fishes using visual feedback. Eventually its arsenal of active 
vision algorithms will enable it to forage, evade predators, 
find mates, etc. 

Fig. 6 is a block diagram of the active vision system showing 
two main modules that control foveation of the eyes and retinal 
image stabilization. 

Eyes and Retinal Imaging 
The artificial fish has binocular vision. The movements of 
each eye are controlled through two gaze angles (0, (0) which 
specify the horizontal and vertical rotation of the eyeball, 
respectively. The angles are given with respect to the head 
coordinate frame, such that the eye is looking straight ahead 
when0 = 0 = 0°. 

Each eye is implemented as four coaxial virtual cameras 
to approximate the spatially nonuniform, foveal/peripheral 
imaging capabilities typical of biological eyes. Fig. 7(a) 
shows an example of the 64 x 64 images that are rendered 
by the four coaxial cameras (using the GL library and SGI 

Figure 6: The animat vision system. The flow of the algorithm 
is from right to left. A: Update gaze angles (0, 0) and saccade 
using these angles, B: Search current level for model target and 
if found localize it, else search lower level, C: Select level to 
be processed (see text), F: Reduce field of view for next level 
and render, M: Compute a general translational displacement 
vector (u, v) between images I(t - 1) and I(t)} S: Scale the 
color histogram of the model for use by the current level. 

graphics pipeline) of the left and right eye. The level / = 0 
camera has the widest field of view (about 120°) and the low­
est resolution. The resolution increases and the field of view 
decreases with increasing /. The highest resolution image at 
level / = 3 is the fovea and the other images form the visual 
periphery. Fig. 7(b) shows the 512 x 512 binocular retinal 
images composited from the coaxial images at the top of the 
figure. To reveal the retinal image structure in the figure, we 
have placed a white border around each magnified component 
image. 

The advantages of the multiresolution retina are significant. 
Vision algorithms which process the four 64 x 64 component 
images are 16 times more efficient than those that process a 
uniform 512 x 512 retinal image. 

Foveation by Color Object Detection 
The mind of the fish stores a set of color models of objects 
that are of interest to it. For instance, if the fish is by habit a 
predator, it would possess models of prey fish. The models 
are stored as a list of 64 x 64 RGB color images in the fish's 
memory. 

To detect and localize any target that may be imaged in 
the low resolution periphery of its retinas, the animat vi­
sion system of the fish employs an improved version of a 
color indexing algorithm proposed by Swain [23]. Since each 
model object has a unique color histogram signature, it can 
be detected in the retinal image by histogram intersection and 

TERZOPOULOS 1007 



1008 INVITED SPEAKERS 



rithms. 
We have carried out numerous experiments in which the 

moving target is a reddish prey fish whose color histogram 
model is stored in the memory of a predator fish equipped 
with the active vision system. Fig. 9 shows plots of the gaze 
angles and the turn angles obtained over the course of 100 
frames in a typical experiment as the predator is fixated on 
and actively pursuing a prey target. Fig. 10 shows a sequence 
of image frames acquired by the fish during its navigation 
(monochrome versions of only the left retinal images are 
shown). Frame 0 shows the target visible in the low res­
olution periphery of the fish's eyes (middle right). Frame 
1 shows the view after the target has been detected and the 
eyes have performed a saccade to foveate the target (the scale 
difference of the target after foveation is due to perspective 
distortion). The subsequent frames show the target remaining 
fixated in the fovea despite the side-to-side motion of the fish's 
body as it swims towards the target. 

The saccade signals that keep the predator's eyes fixated on 
its prey as both are swimming are reflected by the undulatory 
responses of the gaze angles in Fig. 9. The figure also shows 
that the vergence angle increases as the predator approaches its 
target (near frame 100). In comparison to the 9 angles, the 0 
angles show little variation, because the fish does not undulate 
vertically very much as it swims forward. It is apparent from 
the graphs that the gaze directions of the two eyes are nicely 
correlated. 

Note that in frames 87-117 of Fig. 10, a yellow fish whose 
size is similar to the target fish passes behind the target. In 
this experiment the predator was instructed to be totally un­
interested in and not bother to foveate non-reddish objects. 
Because of the color difference, the yellow object does not 
distract the fish's gaze from its reddish target. This demon­
strates the robustness of the color-based fixation algorithm. 

TERZ0P0UL0S 1009 



4 Artificial Faces 
I will now shift gears and discuss the modeling of human 
animals, focusing on the important and challenging problem 
of modeling human faces. 

The human face has attracted much attention in several 
disciplines, including psychology, computer vision, and com­
puter graphics. Psychophysical investigations clearly indicate 
that faces are very special visual stimulii. Psychologists have 
studied various aspects of human face perception and recogni­
tion [25; 26]. They have also examined facial expression—the 
result of a confluence of voluntary muscle articulations which 
deform the neutral face into an expressive face. The facial 
pose space is immense. The face is capable of generating 
on the order of 55,000 distinguishable facial expressions with 
about 30 semantic distinctions. Studies have identified six 
primary expressions that communicate anger, disgust, fear, 
happiness, sadness, and surprise in all cultures. 

Ekman and Friesen's "Facial Action Coding System" 
(FACS) provides a quantification of facial expressions [27]. 
The FACS quantifies facial expressions in terms of 44 "action 
units" (AU) involving one or more muscles and associated 
activation levels. 

4.1 A Functional Facial Model 
We have developed a hierarchical model of the face which 
provides natural control parameters and is efficient enough to 
run at interactive rates [28]. Conceptually, the model decom­
poses into six levels of abstraction. These representational 
levels encode specialized knowledge about the psychology of 
human facial expressions, the anatomy of facial muscle struc­
tures, the histology and biomechanics of facial tissues, and 
facial skeleton geometry and kinematics: 

1. Expression. At the highest level of abstraction, the face 
model executes expression (or phoneme) commands. For 
instance, it can synthesize any of the six primary expres­
sions within a specific time interval and with a specified 
degree of emphasis. 

2. Control A muscle control process, a subset of Ekman 
and Friesen's FACS, translates expression (or phoneme) 
instructions into a coordinated activation of actuator 
groups in the facial model. 

3. Muscles. As in real faces, muscles comprise the basic 
actuation mechanism of the model. Each muscle model 
consists of a bundle of muscle fibers. When fibers con­
tract, they displace their points of attachment in the facial 
tissue or the jaw. 

4. Physics. The face model incorporates a physical approx­
imation to human facial tissue. The tissue model is a 
lattice of point masses connected by nonlinear elastic 
springs. Large-scale synthetic tissue deformations, sub­
ject to volume constraints, are simulated numerically by 
continuously propagating through the tissue lattice the 
stresses induced by activated muscle fibers. 

5. Geometry. The geometric representation of the facial 
model is a non-uniform mesh of polyhedral elements 
whose sizes depend on the curvature of the neutral face. 
Muscle-induced synthetic tissue deformations distort the 
neutral geometry into an expressive geometry. 

6. Images. After each simulation time step, standard visu­
alization algorithms implemented in dedicated graphics 
hardware render the deformed facial geometry in accor­
dance with viewpoint, light source, and skin reflectance 
information to produce the lowest level representation 
in the modeling hierarchy, a continuous stream of facial 
images. 

The hierarchical structure of the model encapsulates most 
of the complexities of the underlying representations, relegat­
ing the details of their computation to automatic procedures. 
At the higher levels of abstraction, our face model offers a 
semantically rich set of control parameters which reflect the 
natural constraints of real faces. 

Our synthetic facial tissue model is motivated by histology 
and tissue biomechanics. Human skin has a nonhomogeneous 
and nonisotropic layered structure consisting of the epidermis, 
dermis, subcutaneous fatty tissue, fascia, and muscle layers. 
The synthetic tissue is a deformable lattice, an assembly of 
discrete finite elements (see [28] for the details). 

4.2 Personalizing the Functional Model 
We have developed a highly automated approach to construct­
ing realistic, functional models of human heads [29]. These 
physics-based models are anatomically accurate and may be 
made to conform closely to specific individuals. Currently, 
we begin by scanning a subject with a laser sensor which 
circles the head to acquire detailed range and reflectance in­
formation. Next, an automatic conformation algorithm adapts 
a triangulated face mesh of predetermined topological struc­
ture to these data. The generic mesh, which is reusable with 
different individuals, reduces the range data to an efficient, 
polygonal approximation of the facial geometry and supports 
a high-resolution texture mapping of the skin reflectivity. 

The conformed polygonal mesh forms the epidermal layer 
of a physics-based model of facial tissue. An automatic algo­
rithm constructs the multilayer synthetic skin and estimates an 
underlying skull substructure with a jointed jaw. Finally, the 
algorithm inserts synthetic muscles into the deepest layer of 
the facial tissue. These contractile actuators, which emulate 
the primary muscles of facial expression, generate forces that 
deform the synthetic tissue into meaningful expressions. To 
increase realism, we include constraints to emulate tissue in-
compressibility and to enable the tissue to slide over the skull 
as real skin does. 

Fig. 11 illustrates the aforementioned steps. The figure 
shows a 360° head-to-shoulder scan of a woman, "Heidi," 
acquired by a Cyberware Color 3D Digitizer. The data set 
consists of a radial range map (Fig. 11(a)) and a registered 
RGB photometric map (Fig. 11(b)). The range and RGB maps 
are high-resolution 512 x 256 arrays in cylindrical coordinates, 
where the x axis is the latitudinal angle around the head and 
the y axis is vertical distance. Fig. 11(c) shows the generic 
mesh projected into the 2D cylindrical domain and overlayed 
on the RGB map. The triangle edges in the mesh are elastic 
springs, and the mesh has been conformed automatically to 
the woman's face using both the range and RGB maps [29]. 
The nodes of the conformed mesh serve as sample points in 
the range map. Their cylindrical coordinates and the sampled 
range values are employed to compute 3D Euclidean space 
coordinates for the polygon vertices. In addition, the nodal 
coordinates serve as polygon vertex texture map coordinates 
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into the RGB map. Fig. 11 (d) shows the 3D facial mesh with 
the texture mapped photometric data. 

Once we have reduced the scanned data to the 3D epider­
mal mesh of Fig. 11(d), we can assemble a physics-based face 
model of Heidi, including the synthetic skin (Fig. 11(e) shows 
a skin patch undergoing deformation) and muscles (Fig. 11(e) 
shows the contractile muscles (vectors) underneath the epi­
dermal mesh). Fig. 1 l(g-j) demonstrates the resulting facial 
model producing animated expressions by contracting facial 
muscles. The same technique was applied to animate the 
facial model of George shown in Fig. 2. 

5 Model-Based Facial Image Analysis 
Facial image analysis and synthesis is necessary for numerous 
applications. Among them is low bandwidth teleconferencing 
which may involve the real-time extraction of facial control 
parameters from live video at the transmission site and the 
reconstruction of a dynamic facsimile of the subject's face at 
a remote receiver. Teleconferencing and other applications 
require facial models that are computationally efficient and 
also realistic enough to accurately synthesize the various nu­
ances of facial structure and motion. We have argued that 
the anatomy and physics of the human face, especially the ar­
rangement and actions of the primary facial muscles, provide 
a good basis for facial image analysis and synthesis 130]. 

The physics-based anatomically motivated facial model has 
allowed us to develop a new approach to the analysis of 
dynamic facial images for the purposes of estimating and 
resynthesizing dynamic facial expressions [30]. Part of the 
difficulty of facial image analysis is that the face is highly de-
formable, particularly around the forehead, eyes, and mouth, 
and these deformations convey a great deal of meaningful in­
formation. Techniques for tracking the deformation of facial 
features include "snakes'1 [9]. Motivated by the anatomically 
consistent musculature in our model, we have considered the 
estimation of dynamic facial muscle contractions from video 
sequences of expressive faces. We have developed an anal­
ysis technique that uses snakes to track the nonrigid motions 
of facial features in video. Features of interest include the 
eyebrows, nasal furrows, mouth, and jaw in the image plane. 
We are able to estimate dynamic facial muscle contractions 
directly from the snake state variables. These estimates make 
appropriate control parameters for resynthesizing facial ex­
pressions through a generic face model at real-time rates. 

Fig. 13 shows a plot of the estimated muscle contractions 
versus the frame number. They are input to the physics-based 
model as a time sequence. The model resynthesizes the facial 
expression. Three rendered images are shown in Fig. 12(c). 

6 Where do we go from here? 
I have presented two of our ongoing research projects that 
span the fields of computer vision, artificial life, and computer 
graphics. The projects are related in that they involve the de­
velopment of nontrivial models of living systems. The models 
are founded upon computational physics. 1 have demonstrated 
applications of each of the models to computer vision. 

To summarize, on one front, we have made significant 
progress over the past two years in developing a model 
which captures the essential features of most living systems— 
biomechanics, locomotion, perception, behavior, and learn­
ing. We are now using this piscatorial model as a situated 

TERZ0P0UL0S 1011 



Figure 12: Dynamic facial image analysis and expression 
resynthesis. Sample video frames with superimposed de-
formable contours tracking facial features; (a) intensity im­
ages with black snakes, (b) image potentials with white 
snakes, (c) Facial model resynthesizes surprise expression 
from estimated muscle contractions. 

virtual robot for active vision research. It is my hope that the 
active vision systems that we are synthesizing in this way wi l l 
be relevant in whole or in part to physical robotics. It seems to 
me that virtual animats in their dynamic world can serve as an 
useful proving ground for theories that profess sensorimotor 
competence in animal or robotic situated agents.4 

On another front, we have been able to generate functional 
models of people's heads and use them for model-based facial 
image analysis. At the biomechanical and anatomical levels, 
the face models are as faithful to human faces as the fish 
models are to real fishes. Unlike artificial fishes, however, 
the disembodied artificial heads do not yet have a much of a 
brain—just a simple motor center that blinks eyelids, moves 
the eyes, flexes the neck, and coordinates the facial muscles 
to produce meaningful expressions. 

We would like to construct a brain model for the artificial 
heads that is as at least as comprehensive as the brain of the 
artificial fish, in the sense that it should be capable of dynamic 
perception and cognitively motivated behavior depending on 
environmental influences. We can get to this goal in an inter­
esting way. 

An Artificial Mermaid: A logical next step, given what we 
have implemented already, would be to couple the artificial 
head model to the posterior of the artificial fish model with an 
anthropomorphic torso to create an artificial mermaid. The 
mermaid wi l l be able to locomote through its virtual under­
water world as the fishes now do. Using an animat vision 
system, it wi l l be able to perceive and interact with fish and 
other mermaids. Unlike fish, however, the mermaid wi l l have 
some of the expressive and behavioral capabilities of a human. 
Far from being frivolous, this virtual creature could serve to 
smoothly bridge the gap between the humble cognitive abili­
ties of an artificial fish and—maybe some day—human level 
intelligence. 

Figure 13: Estimated facial muscle contractions plotted as 
time series. 

The Artificial Life of a Virtual Human: Naturally, an 
exciting long-term goal that should elicit little controversy 
within the Al community is to develop an intelligent artificial 
human that is at least as convincing on virtual terra firma as 
our artificial fishes are in their virtual seas. It seems to me that 
we are well on the way to this end. To achieve this goal, how­
ever, more progress wi l l obviously be necessary on several 
challenging problems, not excluding the AI problem. 

To be continued... 

4Doom vision: As a further test of the animat vision paradigm, 
we are developing an active vision system, similar to the one in 
artificial fishes, within an autonomous agent situated in a "doom" 
world ("Doom" is an amazingly popular video game). The challenge 
is for this agent to assume the role of the human doom player, 
given the same dynamic graphical image(s) that a human player 
would see displayed on the screen. The agent's "brain" will interpret 
the incoming retinal image stream and generate motor commands, 
analogous to the keyboard commands a human player would issue, to 
locomote through the amusingly hostile doom world. A successful 
doom agent would be able to do what a skilled human player does— 
explore, accumulate points, and avoid being killed. 
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