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A b s t r a c t 

The standard approach t decision tree in 
duction is a top-down greedy agonthm that 
makes locall} optimal irrevocable decisions at 
each node of a tree In this paper we empir-
•call} study an alternative approach in which 
the algorithms use one-level loo k a l i e to de­
ride what test to use at a node weystem­
atically compare using a very large number 
of rfal and artificial data sets the quality of 
dmsion trees induced by the greedv approach 
to that of trees induced using lookahead The 
main observations from our experments are 
(1) the greedv approach consistently produced 
trees that were just as at curate as trees pro­
duced with the much more expensive lookahead 
step and (n) we observed manv instances of 
pathology, l e , lookalnad producrd trees that 
were both larger and less accurate than trees 
produced without it 

1 I n t r o d u c t i o n 
Th( standard algorithm for constructing decision trees 
from a set of examples is greedv induction — a tree is 
induced top-down with locally optimal (hoices made at 
each node without lookahead or backup As the greed> 
approach can produce suboptimal trees m terms of tree 
siz( and depth, it is natural!} ofintest si to explore wa\s 
to improve the greedv strategy 

Fixed depth lookahead starch is a standard technique 
for improving greed} algorithms [Sarkar ct al , 1994] 
Lookahead is largely unexplored in tin dmsion tree lit­
erature barring a few scattered attempts discussed in 
Section 5 The advantagt-S, or lack thereof of looka­
head search have not been s}steinaticallv quantified in 
the context of decision tree or rule induction 

Wi th the rapid increases in computing power in rect nt 
years, l imited lookahead is now feasibh for moderately 
large data sets The question that therefore arises is 
what are the benefits (tf any) thai we might gain from 
employing this more costly approach2 In the current pa­
per, we attempt to answer this question (impincally WE 
compare greedily induced trees with those induced with 
one-level lookahead, using two large classes of synthetic 
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data and eight real-world data sets from the UC1 ma 
chine learning repositor> [Murphy and Aha, 1994] The 
results suggest that 

• Limited lookahead search does not produce signifi­
cantly better decision trees On average, it produces 
trees with approximately the same classification ac­
curacy and size as greed} induction 

• Limited lookahead s< arch produces inferior decision 
trees in a significant number of cases i e decision 
tree induction exhibits the same, pathology that has 
been observed in game trees [Nan, 1983] 

• Tree post-processing techniques such is pruning arc 
at least as beneficial as limited lookahead for a va­
riety of real-world data sets In this context, we 
describe a new post-processing technique decision 
tree balancing 

Section 2 describes our experimental method SEC 
Lions 3 and 4 present the results of our experiments with 
synthetic and real world data respectivel} Section 5 
summarizes related work in the literature and discusses 
open questions 

2 E x p e r i m e n t a l m e t h o d 
The algorithms we used in all uur experiments, Greedy 
and Look, are described below Look performs one level 
of lookahead to decide what test to use at a decision Tree 
node while Gretdy decides based only on local consider­
ations In the pseudocode below, S is the set of training 
examples where each example is assumed to compnse i 
set of nummc features and a class label 

Algorithm GREED\ (S) 

1 If S contains examples from onl} one class halt 
2 ( onsider all distinct tests T of the form r < k on I he 

features of S The Ls are chosen to be the midpoints 
between adjacent feature values C hoose the test T* 
that is the best according lo a prc-d<-fin< d goodiu ss 
measure 

3 Split S into two subsets SI and S2 using T" 
4 Recursivel} run this procedure on SI and S2 

Algorithm LOOK(S) 

1 Execute step 1 of GREEDy 
2 For each test T of the form x < k do 
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(a) Sp l i t S i n to sets S] and S2 using T 
(b) F i n d the best spl i t o f SI in to sets S l l and S l 2 

using steps 1-3 of a l g o r i t h m G R E E D Y 
(c) Repeat (b) on S2 f o rm ing set', S21 and S22 
(d) ( ompu te the goodness of sp l i t t i ng S in to Si 1 

S12 S21, and S22 using the same goodness 
measure as G R E E D Y T h i s is 1 s goodness 

3 Execute steps 3,4 of G R E E D Y 

We exper imented w i t h two pre-defined goodness mea 
Mires namely the G in i index of diversity [Bre iman e1 
al 1984] and i n f o r m a t i o n gain [Quin lan 1986] ' Th is 
gave us four a lgo r i thms for our exper iments which we 
named Greedy-Gim Greedy-Info Look Gini and Look-
Info Note tha t Gmedy-Gini is essential l \ ident ical to tlhe 
C A R T a l g o r i t h m [Bre iman ei al 1984] i nd Greedy Info 
to the I D ' i a l go r i t hm [Qu in lan 198b] 

Our exper iments w i t h s \n th<t ic da ta (Section 3) sys­
temat ica l ly compare the trees induced w i t h one level 
lookahead to those induced greedily, our entire clasies 
of decision trees, ~ We define below two classes of deci­
sion trees t ha t are sma l l enough to be amenable to sys­
temat ic exper imen ta t ion on the entire c l s s and general 
enough to be interest ing We first generated a t ra in ing 
set TRAIN and a test set TEST 1 R A] \ has 500 exam 
pies and TEST 5000 examples w i t h two real valued 
a t t r ibu tes for each example A l l a t t r i bu te values were 
generated un i fo rm ly al r andom in the interval (0 10) 
The same unlabeled t ra in ing and test sets art used in 
all the exper iments Each exper iment tested a different 
element of the concept class and the ex imp les were al beled accordingly Trees bu i l t on TRAJ\ were tested on 
IEST for every concept in each class 

Trees are compared to each other throughout th is pa­
per using three qua l i t y measures — accuracy size and 
depth Accuracy is the percentage of correct classifica­
t ion on TEbT Size is the. number of leaf nodes Dep th 
is the length of the longest path in the tree 

3 Exper iments w i t h Synthet ic Data 
3 1 C Exhaustive vs greedy search 
We designed our first set of exper iments to measure how 
close lo o p t i m a l are the trees produced by greedy i n ­
duct ion on a fixed concept class More precisely, we con­
sider a class of concepts C in which one-level lookahead is 
equivalent to exhaust ive search, for this class lookahead 
always gives us the o p t i m a l tree whi le greedy i nduc t i on 
may not We systemat ical ly evaluate the effectiveness of 
greedv i nduc t i on over this ent i re class 

C is a class of binary decision trees defined as in F ig 1 
and has a t o t a l of 5844 dist inct trees ( Frees tha t are 
equivalent except for hav ing their class labels swapped 
are not considered d is t inct ) One level of lookahead f r o m 

We chose Gini index and information gain because They 
have been widely used for real world applications Expen 
mente with other goodness measures may be interesting, but 
we suspect the results would be similar 

2Thie style of empirical investigation is made possible by 
the existence of extremely fast inexpensive computers See 
[Murphy and Pazzani 1994] for another example of this sLyle 

0 10 
Figure 1 Class C consists of all balanced decision tries 
on a 10 X 10 grid such that each tree has three lepit 
(internal) nodes and all test nodes are non-lnvial , in the 
sense thai they split heterogeneous point sets IS There are 
two classes 1 and 2 

the root in class (. wil l always hnd the ophmal decision 
tree in terms of both size and depth Frees in this class 
realistically occur in many situations as subtrees of a 
larger tree and it is reasonable to ask if we should con 
stantl} check one level ahead while building such a tree in 
order to see if we can finish off a subtree Because e\en 
one level of lookalit ad is ver> costl}, we wish to quantily 
lis possible advantages More specifically the complex-
it} of the standard greedy algorithm is 0(dn logn) at a 
node, for d allnbutes and n examples One level looka­
lit ad has complexity 

Using the experimental method defined in Section I 
we built 5844 trees on the set TRAIN with each of lh< 
four algorithms I hus one tree was, induced by each algo 
n lhm for every possible element of C As ont level lookd 
head is the same as exhaustive search on C Look-Info 
and Look-Gim produce identical trees Figure 2 summa­
rizes the differences between the decision tries induced 
by Grftdy-Gim Greedy Info, and exhauslive search (u 
ther Look-Info or Look Gtni) over the entire class C The figure 
figure shows the mean and one quartile ranges of the ac­
curacy, tree size and maximum depth (One quartih 
range is the interval that includes 25% of the samples 
above and below the mean ) 

As the figure shows the differences between Giecdy-
Gtm Greedy Info, and Look are quite small, in spite 
of the fact that greedy induction uses only about () 004 
limes as much search as exhaustive search The average 
number of candidate splits evaluated per tree in C art. 
Grtedy-Gim 1798, Greedy-Info 1718, Look 419,301 
The differences in accuracy between the greedy algo-
rithms and Look are negligible The difference in tree 
size between Greedy-Info and exhaustive search is 0 36 
nodes, less than one standard deviation The difference 
of 0 63 between the average tree size of Grcedy-Gini and 
Look is slightly more pronounced but sti l l not significant 
The only measure for which greedily induced trees are 
significantly worse than the optimal trees is maximum 
depth Exhaustive search produces trees whose longest 
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Figure 2 Summary of experments Wil l i class C The 
mean and one qua r t i l t ranges for accuncv tree size and 
m a x i m u m depth are shown for dntdy Gam one-level 
lookahead and Greedy-htfo The accuricies shown are 
the amounts above a baseline value of 95% 

p i t h s an on average one level ] shorter t h i n what is p ro-
duct d w i t h the greed} a lgor i thms ' 

Figure { shows the effects of one level lookahead 
(equivalent ! } exhaust ive search) for class C in more de 
ta i l The hor izonta l axis plots the impiovement due to 
lookahead The( l ine for ACCURACY shows the ;INcrease 
in arcurac} whereas the lines for tres size and depth 
show the decrease in these measures when lookahead is 
used The ve r t i ca l axis p lo ls the number of trees in which 
lookahead causes a par t i cu la r improvement hur points 
on \ — 0 lookahead had no effect and for points to the 
r ight of \ = 0 lookahead was benef icn l Tor points to 
the left of (he l ine 1i = It greed} induct ion was better 
t h i n lookahead Only t in measu remen t for i n fo rmat ion 
gain are shown due to space constraints 

I ig i offers several interest ing insights First each of 
the three lines has a single prominent peak The peaks 
it \ — 0 for accuracy and tree size lines show that for 
a large number of trees lookahead did not make any 
difference in terms of these measures The depth peak 
at \ = 1 shows that the m a x i m u m d<pth of most of 
the greedily induced trees is exact ly OIK more than op­
t i m a l lo unders tand why the greedy approarh bui lds 
trees w i t h unnecessarily long paths we looked at sev­
eral of these trees ind iv idua l l y and found that man} 
trees were unbalanced That is, there were several trees 
in which nodes could bi moved around w i thou t alter­
ing the or ig ina l p a r t i t i o n i n g and accuracy to cut short 
the m a x i m u m depth of the tree Append ix A describes 
a s imple post-proceasing step to rebalance a greedily m-

3Note that the effect of lookahead on average or expected 
depth may not be the same as that on maximum depth The 
expected depth of a greedily induced decision tree has been 
observed to be very close to that of the optimal tree [Murthy 
and Salzberg, 1995] 

Figure \ EIfect of one level Iookahead in trees produced 
w i t h i n fo rma t i on gam for class C Improvemen ts in ac­
curacy, si^e and m a x i m u m depth are shown, along w i t h 
the number of trees in which these improvements occur 
Negative values on the X-ax is mean tha t iookahead pro-
duced infer ior trees 

duced tree, in order to reduce its worst-case classif ication 
cost Use of this decision tree balancing procedure fi l led 
some of the gap between the greedy and Iookahead trees 
in all our exper iments 

Second, i t is interest ing to note t ha t Iookahead ac 
lual ly hurts accurat \ in a lmost as many trees as those 
in which i t enhances accuracy This proper ty where 
Iookahead search f inds infer ior solut ions is known as 
pathology in the context of game trees [Nau 1981 
Mutchler 1993] We discuss pathology for decision trees 
further in Section 3 2 where this t rend is exh ib i ted more 
prominent ly Pathology cannot occur for tree size or 
depth for class c1, because one-level Iookahead is equiva­
lent to exhaust ive search However our next class Cs in ­
cludes deeper trees and l i m i t e d Iookahead can and does 
produce trees tha t are worse in terms of size and depth 

T h i r d , we tan see f r om Figure 3 tha t there are some 
greedily induced trees that have as manv as 4 leaves more 
than the o p t i m a l We looked at al l such large trees, and 
found tha t thev always had several " m i m m a l l v useful 
spl i ts, spl i ts that were separat ing very few points Such 
splits c i n be easily avoided w i t h a s imple s top-sp l i t t i ng 
rule, na r row ing the gap between Iookahead and greed) 
induct ion fur ther 

3 2 C$ A class of larger trees 

Thi6 section extends class C to a class Cs, wh ich contains 
sl ightly larger trees Each tree in Cs is ob ta ined f r om a 
different tree in C, as fol lows 

1 Remove T f r o m C 

2 Randomly choose a leaf node L of T 
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Figure 4 Summary of experiment with class Cs The 
mean and one quartile ranges for accuracv tree size and 
maximum depth are shown for Greedy (Gins, Look-Gim 
Greedy-Info and Look-Info The accuracies shown are 
the amounts above a baseline value of ()r->% 

J Split L with a randomly chosen non- lm ia l spill *S 
of the form x, < k where it is an integer in the 
range (0,10) If no valid split exists, go to step I 
and choose a different L 

4 Assign one side of $ to class 1 randomlv and assign 
the other side to class 2 

5 Add T to Cs 
Each decision tree in Cs is a binary trt-< with four test 
(internal) nodes and has a maximum depth of 1 For 
these trees one level lookahead is not sufficient to find 
the optimal tree Note that while Cs has 5844 trees the 
same as C, another run of the above procedure would 
create a different definition of cs because of the ran 
domized steps Using exhaustive enumeration in place 
of these random choices would produci a class that is 
vastly larger too large for systematic t expenmentation 
The experimental method used for Cs was identical to 
that used for C One important difference is, since one-
level lookahead is not equivalent to exhaustive search on 
Cs, Look-Gmi and Look Info do not produce identical 
trees for this class 

The experimental results with class Cs strengthen the 
conclusions drawn from experiments with class C Fig­
ure 4 summarizes the differences in accuracy tree size 
and maximum depth between Greedy-Gim, Look-Gtni, 
Greedy-Info and Look Info on class Cs It can be seen 
that there is no significant improvement in accuracy due 
to lookahead The differences in accuracy due to looka­
head are actually smaller here than they were for class 
C, despite the fact that the relative cost of lookahead 
search was higher for this class The average number of 
candidate splits considered per tree in Cs were Greedy-
Gmi 1952, Greedy Info 1847, Look Gini 745,689 and 
Look-Info 747,037 Despite these enormous differences 
in computational effort, the differences in tree size are 

Figure 5 Effect of one level lookahead for trees in class 
Cs lmprovermnte in accuracy size and maximum depth 
of trees builL using Look-Info versus Greedy-Info art 
shown Negative values on the x-axis mean that looka­
head produced inferior trees 

less than one standard deviation The onlv quantity 
for which one-level lookahead caused any noticeable im­
provement was maximum depth where trees were on 
average 0 C levels shallower when lookahead was used 

Pa tho logy resu l ts Figure 5 shows the effect of one-
level lookahead for class Cs m more detail for Greedy-
Info The svnlax of this figure is the same as that of 
Figure 3 i e points to the left of 0 on the horizontal 
axis represent instances of pathology, where lookahead 
was worse than no lookahead Lookahead hurt accuracv 
for a large number of trees in Cs just as it did for C 
In addition it produced worse trees in Lerms of tree size 
and depth Figure 6 shows a data set in Cs for which 
information gain exhibits pathology in terms of accuracy, 
size and depth 

4 Experiments wi th Real World Data 
In addition to the synthetic data, we also experimented 
with eight real world data sets, for which the under­
lying concepts are unknown We augmented our algo-
rithms (Greedy-Gini, Look-Gtni, Greedy-Info and Look-
Info) with pruning for these experiments, using cost 
complexity pruning with the one standard error rule 
[Breiman el al , 1984], reserving 10% of the training data 
as the pruning set Al l results for real world data are av­
erages of ten 5-fold cross validation experiments 

The choice of the domains is important If a greedy 
method can induce a highly accurate, concise classifier 
for a domain (e g , the well-known Ins data), lookahead 
is not likely to produce significant benefits We used a 
survey of results [Holte, 1993] to choose six "difficult" do­
mains for our experiments - domains for which the best 
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Figurre 6 A pathological tree For Lhe tree on The left , 
induced w i thou t lookahead accuracy = 99l 74%, size — 
4 m a x i m u m depth = i and lhe number of tests con­
sidered was 1545 For the free on the r ight , which was 
hu i l t using lookahead accuracy = 99 10% size = 10, 
m a x i m u m depth = 4 and the number of eandidate t<sts 
was 1 155 901 

known accuracy is aL mosl 90% 1 houej i (he low accu­
racies may be due to factors other than the inadequacy 
of greedy induc t ion such as an overly smal l or noisy 
t ra in ing set there is no sir ugh t fo rward w *y of knowing 
I his a piwn The six diff icult domains an the breast 
canc(r ncur rence datahase (Bi( ) the ( leveland heart 
disase da ta (C L) [UCI cleyeland d a t i ] glass ident i f i -
c at ion da ta ( C T L ) , hepat i t is diagnosis (J IT) C i nad ian la 
hor negot iat ions da ta ( L A ) and lymphography diagnosis 
(L^ ) [ 0 ( I - l y m p h - d a t i ] In add i t ion In these domains 
we exper imented w i t h l u n \ an in Is (\ 0 and \ 1) of tthe congressional vot ing records- clatd vois is used In Nor­
ton [Nor ton 1989] for his lookahead < \penments The 
\ ] da ta [Hol le 1903] i s ident ical t o ( t h e \ 0 data e \ -
(<|)t that the best at t r ibute physici in ft < freeze is 
removed A l l the da ta se|s were taken f rom the t ( l 
Machme Learn ing repository [ M u r p h \ and A h a l994] 
Our abbrevat ions for the d a t t s t t s an consistent w i t h 
those of Hol le [Holle 1993] 

A l l exper imenta l resuits repo r t td in this section were 
obta ined w i t h i n fo rma t i on gam Resuits w i t h Gmmdex 
look very s imi lar and art o m i t t e d for space considera­
t ions Figures 7 and 8 summarize Lhe results for accuracy 
and tree size respective]} I he plot for tree depth looks 
a lmost ident ical to tha t for tree size and is om i t t ed In 
each f igure we plot the values of lhe measure obta ined 
using four induc t ion methods (1) Greedy-Info, (n) Look-
hifo ( in ) Greedy-Info w i t h prun ing and ( iv ) look-Info 
w i t h p run ing There are eight linos in each figure cor­
responding to the eight da ta sets 

Consider the accuracy p lo t m Fig 7 The first obser 
va t ion is tha t the accuracies do not vary much between 
various induc t ion methods On closer observat ion, ac­
curacy drops for six ou t of the f i g h t databases (a l l ex­
cept VI and Gt ) when lookahead is used In add i t ion 
Greedy-Info w i t h p run ing produces more accurate trees 
than Look Info for five da ta sets Prun ing almost always 
(7 out of 8 t imes) works better when it is used w i t h ­
out lookahead, as can be seen f r om the t h i r d and fou r th 
co lumns Our overall conclusion f r om t in accuracy p lot 

F igure 7 Lffect of one level lookahead on classif ication 
accuracy for eight rea l -wor ld databases T h t accuracies 
w i t h and w i t h o u t lookahead and w i t h and w i t h o u t p run ­
ing are shown for i n f o rma t i on gam 

in F ig 7 is that lookahead doesn t affect accuracy signif i 
cant ly for these domains and t ha t p run ing is bo th much 
cheaper and more effective at creat ing accurate trees 

Now consider the tree size p lo t , shown in F ig 8 
Lookahead does reduce the tree size, bv a smal l amoun t 
in most domains These benefits however, are over­
shadowed by. the benefits of p run ing For a l l domains 
except the I A da ta (which has a verv smal l tree to be­
gin w i t h } , p run ing helps produce substant ia l ly smal ler 
Irees than lookahead 

The results of our exper iments w i t h real da ta suppor t 
our results w i t h the ar t i f ic ia l da ta A L i m i t e d lookahead 
d id not help s igni f icant ly in terms of classif ication accu 
rac>, size or dep th , despite the fact that it is enormously 
m o n expensive I t helped produce shallower trees, but 
tree post-processing techniques much less expensive than 
lookahead (p run ing in th is case) were, adequate to reap 
comparable i f not larger, benefits F i n a l h bo th of the 
goodness measures we used ( G i n i index and in fo rma­
t ion gain) exh ib i ted pathology on the real wor ld domains 
also 

5 Discussion 
Several versions of the o p t i m a l decision tree induct ion 
prob lem are known to be NP-Comp le te [Hvaf i l and 
Pivest , 1976 M u r p h ) and McCraw 1991] As a re 
sui t , v i r tua l l y all imp lemented decision tree systems 
use a heurist ic greedy approach There have been 
however some exceptions to this rule M o n t [More l 
1982] surveys early induc t ion systems tha t used dynamic 

4 Note that i l l of our "diff icult" data sets happen to he 
quite small, probably inherently inadequate for learning The 
experiments with real data are given only to substantiate the 
earlier observations on the artificial data We would not make 
strong conclusions from the UCI data alone 
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Figure 8 Effect of one leveI lookahead on tree size for 
eight real world databases The tree sizes with and with 
out lookahead and wi th and without pruning are shown 
for information gam 

programming and brancli-and-bound methods to pro-
dme optimal trees Hart mann at al [Hartmann of al 
1982] describe Generalized Optimum Testing Algorithm 
(GOTA) an algorithm based on an information the 
retic criterion between branching levels in a tree With 
the appropriate parameter settings GO I A can do fixed-
depth lookahead, different depths of lookahead al differ 
ent branching levels or even exhaustive search Though 
Hartmann et al did offer a concist framework for doing 
arbitrary level lookahead the\ did not evaluate the of-fects 
fects of lookahead on tree quality The ideas in GOTA 
motivated Norton & IDX system [Norton 1989] which is 
a variant of Qumlan & ID3 that performs lookahead Nor­
ton conducted experiments on the congressional voting 
records database (see Section 4), and found that looka­
head reduced decision tree depth on average With a few 
exceptions though the advantages of lookahead were 
very small in Norton s experiments Ragavan and Ren-
dell considered using lookahead for feature construction 
in symbolic domains [Ragavan and Ren dell 1993], and 
pointed out that lookahead is beneficial when there is 
concealed attribute interaction 

The emphasis of the current paper differs significantly 
from the existing work on lookahead hirst our experi­
ments are aimed to offer insights on whether or not to use 
lookahead when l i t t le is known about domain character­
istics or attribute interactions Second, though existing 
papers do contain some remarks about whether looka­
head did or did not help, no work has vet attempted 
to systematically quantify how often lookahead helped 
how often it did not make a difference and how often it 
hurl tree quality 

The pathology results are particularly interesting, 
since they have not been previously reported for decision 
trees Intuitively, doing more search (lookahead) should 
produce better decision trees, just as deeper search in 

game trees (e g for chess) produces better game-playing 
programs However it has been observed that for some 
games, deeper search can actually produce an inferior 
program both with two players [Nau, 1983] and with 
multiple players [Mutchler, 1993] Decision trees, one 
can argue, are analogous to a one-player game tree Our 
discovery that deeper search can lead to inferior decision 
tree5; thus extends the earlier pathology results to a new 
domain 

It is possible that pathology is a side-effect of the way 
heuristic goodness measures are defined Greedy meth­
ods grow a decision tree by optimizing entropy or class-
divergence based measures at each node of the tret Our 
pathology results indicate that each such optimization 
it> not necessanl) improving the tree globally in terms 
of generalisation accuracy, tree size or depth Goodman 
and Smyth [1988] showed that greedily maximizing the 
average mutual information should result in trees thai 
are near optimal in terms of average depth Although 
our experimental results are consistent with this work 
pathologically deep trees indicate that locallv optimizing 
information gain can in fact make a tree deeper 

We considered only one-level lookahead in this paper 
One can attempt to evaluate the benefits of lookahead as 
a function of se arch depth We feel that such a syslem-
atic evaluation is not only going to be computationally 
prohibitive, butl also probably not very useful Norlon 
[Norton 1989] presents e- xpenments comparing one and 
two level lookahead on one data set 

Observing incidences of pathology (as we did in this 
paper) is only The first st< p in several interesting research 
directions Concept i lasses for which a particular good 
ness measure exhibits pathology can be sludied, ana­
lytically or quantitatively to determine when pathologv 
might occur On the other hand, one can attempt to iso­
late characteristics of data which have bearing on when 
lookahead is likely to help As we have only studie-d two 
concept classes, several othe r interesting concepts remain 
to be explored Another interesting question for further 
study is whethtr there exist effective goodness measures 
that guarantee no pathology 

A Decision Tree Balancing 
I he main benefit of lookahead search for classes C and Cs 
was that lookahead produced trees with shorter longest 
paths On closer observation, we found that several 
greedily induced trees had identical partitions as the ones 
induced with lookahead, but the latter were shallower 
because the trees were better balanced This trend sug­
gests the following problem Given a decision tree D for 
a training set TRAIN we want to produce a tree DR 
that induces the same partit ioning as D on TRAIN, but 
has less worst-case cost (or maximum depth) 

Although l i t t le work has been done on balancing de­
cision trees, a great deal of research has considered 
balanced search trees (e g [Nakamura ct al , 1993]) 
Roughly speaking, this literature deals with techniques 
to restructure search trees when elements are inserted or 
deleted, in order to restrict the depth of these trees to a 
logarithmic function of the number of search keys An 
axis-parallel decision tree in a continuous space can be 
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Figu e 9 Left and right rotations of a binary decision 
tree dotation operators can help reduce the expected 
rosi of classification of a derision tree without changing 
lis acuracy The leaf nodes I 1 L2 tt< in this figure 
can IK replaced with arbi(rar\ subtrees 

interpreted as a inult i dimensional binay] search tree 
Such in interpretation makes il possible to use search 
tree balancing techniques on decision trees 

The mam primitives used for rebalancing a trte in bal-
anerd seach tree methods are rotations Rotations are 
operations in which the parent child links of some nodes 
in the tree art rearranged locally while guaranteeing 
that the functionality of th< whole from romans invarant 
anl \\t have adopted two simple tree rotation opera-
tors left rotate and right rolate to decision trees Thest 
operators are illustrated in Tigure 9 \ \ r found that a 
heuristic top-down tree balancing procedure using rola 
lion operators recursively at the tree nodes significantly 
reduces the maximum depth of greedily induced trees for 
classes £ and C& 
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