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A b s t r a c t 
This paper presents a method to incorporate 
knowledge from possibly imperfect models and 
domain theories into inductive learning of de­
cision trees for classification The approach as­
sumes that a model or domain theory reflects 
useful prior knowledge of th< task Thus the 
default bias should accept the model s predic­
tions as accurate even in the face of somewhat 
contradictory data which may be unrepresen-
lative or noisy However our approach allows 
the svslem to abandon the model or domain 
theorv, or portions thereof in the fact of suffi-
cientlv contradictory data In particular we 
use C4 5 to induce decision trees from data 
that ha\t heen augmented b\ model or domain-
theory-denvcd features' We weakly bias the 
svslem to select model-derived features dur 
ing decision tree induction but this preference 
is not dogmatically applied Our experiments 
vary imperfection in a model the representa 
tiveness of data and the veracitv with which 
modf l -demed feature are preferred 

1 I n t r o d u c t i o n 
When human expertise is nonexistent or very weak rela­
tive to a particular domain/task and when data is plen­
tiful machine induction from data mav be the only rea­
sonable approach to task automation In contrast, when 
expertise is strong, then encoding the expert s model 
or domain theory via traditional knowledge acquisition 
strategies ma> be the best approach In fact, this human 
expertise may stem from induction over a much larger 
data sample than is available at the time task automa­
tion is undertaken 

In many cases, however, conditions are indeterminate 
as to whether sole reliance on machine induction or hu­
man expertise is most appropriate human expertise may 
not be 'perfect and/or data may not be as plentiful as 
desired in cases where some data is available and human 
expertise is less than perfect an advantageous strategy 
may be to exploit both in an appropriate way 

There is a growing body of work that combines model-
based or domain-theory knowledge with empirical learn­
ing from data Clark and Matwin [1993] assume that 
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an analyst-specified model mediates empirical learning -
the rules derived from a machine-induction system are 
ace3pted as long as they do not contradict the biases 
found in the model Evans and Fisher [1994] employ a 
similar strategy - a human analyst may specify weak 
rules (e g when printing-plant humidity is low, a certain 
kind of printing error known as banding is more likely, to 
occur) If inductively-derived rules indicate an opposite 
trend then the learning system s default strategy is to 
reject the rule derived through induction In the case 
of both these approaches tht model or domain theory 
is deemed correct in its characterization of the domain 
task though it may not be a very deep characterization 
Inductive learning is used to flesh out rules that are con 
sistent with the model (e g by selecting the particular 
numeric thresholds that distinguish high from moder­
ate and low ) or discovering rules relevant to a part of 
the domain space that are not addressed by the model 
or weak domain theorv at all 

In the approaches above if the data contradicts the 
model then the implicit assumption is that the data 
are noisy or unrepresentative drawn from a verv small 
subspace of the data Other approaches known is the-
ory revision methods [Ourston l991] [Towell et al 1990] 
may give more credence to the data In these systems 
contradictions result in a revision of the domain theory 
to bring it in line with the data Drastal el al [1980] 
Rendell and Seshu [1990] and Ortega [1994] suggest an 
alternative strategy that loosely couples empirical learn­
ing and model-based reasoning tht data is augmented 
by features that are actually intermediate terms of the 
domain theorv and which are deemed true of a datum 
by deductive application of the domain theorv Induc­
tion is then performed over this augmented data set 
If domain-theory-derived features are included in rules 
denvea inductively, then this suggests a rough consis­
tency between the model and data model features m iv 
be viewed as somewhat better predictors than raw fea­
tures because noise is mitigated If model features are 
not referenced m a resultant classifier ihis may speak 
to imperfections in the model and/or this behavior mav 
stem from an unrepresentative data sample In bolh 
cases model-derived features ma\ not look as informa­
tive as raw' features relative to the available data 

This paper describes a strategy that augments data 
with domain-theory derived 'features but unlike previ 
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ous work we bias an adap ta t ion of C4 5[QuinIan 1993] 
to select domain- theory based features even when this 
confl icts somewhat w i t h C4 5 s or ig ina l bias to select the 
most i n fo rma t i ve feature as computed over the da ta 
The intent is to guard against the possibi l i ty of unrepre­
sentative data However the domain- theory preference 
bias mav be overr idden if C4 5 s or ig ina l bias is suff i­
c i e n t opposed to the domain- theorv preference bias 
The intent here is to acknowledge that there mav be 
some imperfect ions in the domain theorv Our evpen-
ments v a n imper fec t ion in a mode l the representative­
ness of da ta and the the veracitv w i t h which mode l -
de rned features are preferred 

2 I m p l e m e n t i n g a F l e x i b l e 
D o m a i n - T h e o r y P r e f e r e n c e B i a s 

The approach described in th is paper was mot i va ted by 
our a t tempts to induct ive ly b u i l d classifiers of faults of 
the React ion C o n t r o l System (RC S) of the Space Shutt le 
A m i xed q u a l i t a t i v e / q u a n t i t a t i v e model for fau l t pr< dic­
t ion was avai lable [Robinson 1993] as well as simulalted 
data representing svstem faul ts and norma l behavior 
For each avai lable d a t u m the model was used to pre 
diet the fau l t This pred ic t ion was added as a featur r 
to the d a t u m as were var ious in termediate computa­
t ions made b\ the mode l for the data point The data 
points augmented in th is way were then given to CA ') 
which constructed a classifier that predicted either a svs­
tem s fau l t or n o r m a l opera t ion If the model were per­
fect then we wou ld expect that C4 5 would bu i l d a tret 
that only tested the model-based f inal predict ion Such 
a tree wou ld ind ica te that if a new d a t u m w< re encoun­
tered (represented bv readings of various pressures and 
temperatures and other obsrrvables) then one should 
s imply s imula te the model on this d a t u m and use the 
model-based final p red ic t ion In the cas« of certain i m ­
perfections a decision tree that tested v i n o u s raw fea­
tures as wel l as various model-based features m igh t be 
constructed 

To our i n i t i a l surprise C4 5 consistently constructed 
trees that never or rarely referenced any model-based 
features Rather than t ak i ng this as evidence of signif i ­
cant model imper fec t ion or that the model added l i t t l e 
or no in format ion, above and beyond that imp l ie i t in the 
raw features a N A S A analvst fami l ia r w i t h this appl ica­
t ion ind icated tha t the s imulated data used for t ra in ing 
was unrepresentat ive or skewed - it represented a verv 
smal l subspace of the RCS descript ion space 

T h i s work mo t i va ted an approach that weakly biases 
our adap ta t ion of C4 5 to select model-based features 
In par t i cu la r for purposes of this paper we assume a 
propos i t iona l d o m a i n theory used for classif ication tha t 
is acyclic and di rected f rom the observable proposi t ions 
to a final classif icat ion A par t ia l descript ion of the per­
fect doma in theory for the audiology domain used in our 
exper iments is shown in F igure 1 as a tree The do­
m a i n theory is a set of rules, each one consist ing of a set 
of condi t ions together w i t h the classif ication predicted 
b\ the rule In Figure 1 the antecedents of a rule are 
l is ted at the leaves of the tree Each condi t ion is an 
a t t r i bu te -va lue pai r (e g A i r = p T o f o u n d ) There may 

Figure 1 Levels in Aud io logy Theorv 

be several rules tha i predicL a pa r t i cu la r claSMhcal ion 
as i l lus t ra ted bv thf several possibh rules h a d i n g to each 
classif ication (e g Ol I T I S MEDIA) in Figure I 

We characterize model fe i tu res ex t rac ted f r o m a the 
one of th is type according to their distance in the th<orv 
hierarchy to the f inal mode l pred ic t ion 

• L e v e l 0 Model predic t ion feature We generate d 
single model p red ic t ion feature I ts value is the f in^ l 
predict ion m a d ' bv the rule in terpreter (us ing the 
rules of the given theorv ) 

• L e v e l 1 Int< rrnediate concept feature* One of 
these features is generated for each possible ela.s 
si f icat ion in the theory Each inte rmedial< concept 
feature corresponds to a logical OR of the rules that 
predict par t i cu la r classif ications 

• L e v e l 2 Rule features Features of this. tvpe are 
generad for each rule in the theory A rule feature 
fol lows f r om the logical A N D of i ts antecedents 

• L e v e l 3 Raw Features Each rul* ant i cedent is t 
binary test as to whether an a t t r i b u t e takes a par 
t icu lar va lu f on an example Raw features whether 
rule antecedents or not are observable and are mi 
t ia l lv the exclusive means of represent ing da ta 

To bias C1 r> towards model features clost r in the h i ­
erarchy to the final model p red ic t ion , we order features 
according to their level number f r o m the model predic 
t ion feature th rough n i te rnn tliate concept f iatures to 
rule featurrs , and raw features At each step du r i ng in 
duct ion our var ia t ion of ( 4 5 chooses a feature of sma l l ­
est level number unless a s ta t is t ica l ly -s ign i f icant bet ter 
feature ( in terms of C4 5 s i n f o r m a t i o n score) of larger 
level number is found Hence, C4 5 w i l l choose the model 
predict ion feature unless suff icient evidence is present in 
the data to refute th is choice 

Thus we bias our induc t i ve a l g o r i t h m toward the 
model pred ic t ion feature and other features closer to i t 
(of smal l level number ) In a s i t ua t i on where we have 
a reasonably accurate mode l , and the avai lable da ta is 
unrepresentat ive we expect our model -b iased me thod to 
work better than a defaul t s t rategy of choosing the fea-
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ture of highest in format ion, value according to the avail-
able da ta ( e g as in the standard C4 r>) Nonetheless, 
i f the da ta sufficiently contradicts the model the model -
bias can be abandoned and should we choose the model 
can be revised acrordinglv 

3 Using Domain-Theory Bias w i t h 
Hypothesis Test ing 

The ma jo r difference between the or ig inal and our var i­
a t ion of ( A 5 is the manner in which a feature is selected 
for each nod*, of a decision tree C4 5 selects the fea­
ture w i t h the highest in fo rmat ion value according to th* 
information gam ratio measure Rather than selecting 
I lie fealure w i t h the highest in formal ion value out r ight 
our var ia t ion of C \ r) requires that this value be statis­
t i c a l ^ signif icant ly higher than the in fo rmat ion value uf 
al l features preceding it in a feature prefer'nee rank ing 
l ike that described in the previous section Put in an­
other wav we select the highest feature in a preference 
rank ing that has an in fo rmat ion score not signif icantly 
worse l h a n an \ feature lower in the preference rank ing 

The above procedure is implemented b\ the funct ion 
S e l e r t F a t u r e ( \ udt) shown m Figure 2 where Fp is 
the feature preference rank ing ' I) is the set of t r i m ­
ing data associated w i t h the current node uifo[Fj 0) 
is the vahi i of ( 4 5 s i n fo rmat ion measure for feature 
r} when evaluated on the set of da la D and Fj is the 
hsl of the features sorted in desce nding order according 
to (his measure S e l e c t F e a t u r e ( \ ode) in i t ia l lv chooses 
th^-feature v\ i t h highest i n fo rmat ion v i l u ^ (l < first fea­
ture m F \) However this feature is not accepted unless 
it> i n f o rma t i on value is significantly higher than all fea­
tures of higher preference according to the Fp ranking 
If so the candidate fealure is stl<et«d Otherwise the 
high* r preference feature found bee omes the new candi 
date 1 be procedure is repeated un l i l a signif icant d i f 
ferei in is found or the F1 list is < vhausted 

Th t rt is also a m inor difference between the cla-ssifi 
cat ion procedure of our system and the standard C4 5 
a lgo r i t hm for the s i tuat ions where thert is insufficient 
da ta to select a lest for a par t icu lar node of the tree 
As a pu re l j da ta dr iven s\stem the best C4 5 can do is 
to predict the most common class present in the current 
node Instead since we assume our mode 1 is better lhan 
no i n fo rma t i on we use the predict ion of our pr ior model 

The cr i t ica l component of (he funct ion S e l e c t F e a -
t u r e is the S i g n i f i c a n t l y B e t t e r ( / , - l l l , 1 f Jyrtj D) func­
t ion shown in Figure J Th is func t ion returns t rue i f 
the i n f o r m a t i o n value of feature fran(t is est imated to 
be signi f icant ly higher than that of fpref according to 
a given level of s tat is t ica l significance ^igLevel I Ins 
is done by test ing the nu l l hypothesis that the difference 
between the i n fo rma t i on values of frand and fPrtj is zero 
If (his nu l l hypothesis can be rejected w i t h 1 — SigLtvel 
confidence S i g m f i c a n t l y B e t t e r concludes that fcand is 
s ign i f icant ly bet ter t han fprrj 

! I n the current implementation the ranking is a total or 
denng features are sorted in ascending according to level 
number The ranking of features within a level number is 
arbitrary 

If the. form of the probability distribution associated 
with C 1 r) s information measure is known and its pa­
rameters can be calculated then traditional statistical 
thtorv can b( u&ed 1o test significance This could be 
done for Ihe information gain measure since Musick el 
al [Musick e1 ai 1993)Qi] prove that this measure is nor 
nnl lv distributed and provide exphent formulas for the 
parameters of this distribution However the form of the 
distribution for the default measure used in \ 4 5 mfoi 
mation gain ratio is not known Fortunately Bootstrap 
Wethodt, [Lfron and Giong 1983] allow for estimates of 
significance levels of arbitrary statistics when the form 
and parameters of the underlving distribution art not 
known [Moreen 1989] I Ins is the method implemented 
in the funrtion S ig iu f l can t l yBe t te r 

In Lfron s Bootstrap methods an unknown complete 
population P is estimated b\ repeated uniform subsam-
pling with replacement from an available sample D of 
P From we obtain a. set of bootstrap subsamples 

where \Q IS a prespicihed number 
of subsarnples Each _ is very 
likely to contain some duplicate-' and be missing some 
observations from D with the result that th< values of 
mfo for each feature 7 j willhkelv b< different on 
each bootstrap suhsarnple D, Under some additional as­
sumptions we then proceed as if the bootstrap samples 
were obtained from the actual population P 

Sign i f i cant ly B e t t e r uses two different bootstrap 
methods described by Noreen [1989] the Normal Ap 
proximation Method, and the Shift Method Figure 3 
shows the compulation of some quantities used in the 
above methods D i f f o the difference in information 
value between feand and fpref computed on the set of 
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training data D up B , the mean of our statistic of in­
terest (difference in the information value between fcand 
and fpref) over the the bootstrap samples and apB the 
standard deviation of our statistic of interest over the 
bootstrap samples 

The Normal Approximation Method operates under 
the assumption that the sampling distribution of the 
statistic of interest (difference in the information value 
of fcand and fpref) under the null hypothesis (no differ 
ence) is normally distributed with mean zero and same 
variance as in the bootstrap samples This assumption 
is used to calculate P V N , the probability under the .Nor­
ma/assumption that a value of our statistic higher than 
or equal to , could have been obtained by chance 
To calculate P V n , we use and the probability func­
tion/tables for a standard normal distribution 

The Shift Method assumes that the sampling distribu­
tion of the statistic of interest on the complete popula­
tion P has the same shape, but different mean, than the 
sampling distribution over the bootstrap samples Pg To 

determine the corresponding PVs, the probability un­
der the Shift assumption that a value equal or higher 
than Diffo could have been obtained by chance we 
count the number of times that the value of the statis-
tic on bootstrap samples is higher than a shift criterion 

, and divide that count by the num­
ber of subsamples NB 

We only decide that the feature feand is significantly} 
better than fpref if it is significantly better according to 
both the Normal Approximation Method and the Shift 
Method S ign i f i can t l yBe t te r is computationally quite 
expensive However during the selection of most fea-
tures this needs to be done verv few times If the feature 
with the highest init ial information value is the feature of 
highest preference S ign i f i can t l yBe t t e r never needs to 
be computed When other features are lnitally selected 
onh the features with higher preference are checked As 
soon as one significant difference is computed, no other 
significance computation is necessary For the sake of 
efficiency the case where two or more insignificant dif 
ferences could account for a single significant difference 
is not considered Our interest is not in precise compu­
tations of significance, but rather the qualitative effect 
of significance testing on the selection of attributes m 
CA 5 whi le re ta in ing a reasonable level of efficiency 

4 Experimental Design 
To test our approach we conducted experiments with 
the audiology dataset from the UCI (University of Cal­
ifornia at Irvine) Machine Learning repository This 
database contains 226 examples from 24 classes Each 
example is described bv 67 discrete features 

For each of the 30 learning trials of our experiments 
a test set of 76 examples and a disjoint training set of 
150 examples were randomly and uniformly selected Be­
cause we want to Lest the robustness of various strategies 
in the face of unrepresentative data we sorted the train 
ing examples according to their Euclidian distance fiom 
a randomly selected datum The training set was fur 
ther divided into subsets which contain the first 10, 20 
35, 55 80, 110, and 1 50 (I e , all) examples of the sorted 
training set Decision trees are learned for each of these 
subsets of training data 

The dependent variables of interest are predictive ac­
curacy and the level (as illustrated in Figure 1) of the 
root feature of the decision trees learned under different 
conditions Due to the recursive nature of decision tree 
induction we expect that the tendencies observed at the 
root can be extrapolated to other nodes of the tree 

The independent variables are the size of the training 
set, the significance level used for hypothesis testing in 
our variation of ( A 5 and the degree of model imper­
fection Note that while varying the size of the training 
set we are also varying its degree of skewedness be­
cause training data are ordered based on Euclidean dis­
tance, small samples lend to be drawn from a small por­
tion of the data description space, the larger the train­
ing dataset, the higher the proportion of the complete 
data set it covers, and thus the more representative it 
becomes For the largest data set of 150 examples all 
skewedness disappears since all 150 examples were ran-
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domlv chosen f rom the complete data set W< present 
results f r o m skewed sampl ing as this tends to repp 
sent worst case condit ions for our learning system We 
have also exper imented w i t h t rad i t iona l sampl ing (for all 
t r a i n ing sizes) thus a l lowing us to better tease apart the 
influence of skew and t ra in ing set SIZE though this pa­
per does not elaborate on this issue Significance levels of 
50% 25% , 10% and l% are varied to indicate increasing 
confidence in the qual i ty of our models 

We fol low Mooney s approach [Moonev 1993] for gen­
erat ing theories of vary ing degrees of imperfect ion A 
perfect theory, 1 e , one that correctlv, classifies 100% of 
al l audio logy examples was first constructed b> runn ing 
C 4 5 on the complete da ta set of audiology examples 
w i t h al l p run ing disabled Th i s theory (named fOO) con­
ta ined 86 rules w i t h an average of 7 79 antecedents per 
rule Imperfect theories (named f55 flOlO f2525 and 
f5050) were generated bv randomlv adding and then ran­
domly delet ing a percent of al l condit ions f r o m the rules 
of the perfect theory (a corresponding 5% 10% 25% 
and 50%) This results in contaminated theories w i t h er­
rors bo th of omission and of commission The accuracies 
over the complete data set of the imperfect theories f55 
f1010, f2525 a n d / 5 0 5 0 are 89%, 65% 46% and 21%, 
respectively For compar ison, the accuracy obta ined i f 

we always predict the most f requent class in the dataset 
is 21% 

5 Experimental Results 
Figure 4 2 shows results f r o m a baseline study The 
curve labeled sk-c45 shows the results of s tandard C4 5 
on skewed t r ia ls w i t h ' raw ' features only The rest of 
the curves in this f igure show the accuracv and root fea­
ture level for C4 5 when model features are added to 
the descr ipt ion of the data , bu t no preference order ing 
or hypothesis test ing is done We can see that accuracv 
improves signif icantly (over sk-r45) when a domain the­
ory is explo i ted even for a low qua l i ty theory such as 
f5050 These results compare favorably, to other systems 
tested on th is domain [Mooney 1993}] [Ourston 1991] 

An interest ing fact i l lus t ra ted in Figure 4 is that the 
number of t r a i n i ng examples required Tor C4 5 w i t h a 
domain theory {sk-fxx curves) to produce an accuracy 
equivalent to the corresponding theory alone seems to be 
inversely p ropor t iona l to the qual i tv of the theory the 
two extremes being f5050 (0 t r a i n i ng examples required 
to reach 2 1 % accuracy) and fOO (a l l t ra in ing examples 
required to reach 100% accuracy) Ideally however (he 
accuracy of our system should be equal or better than 
the accuracv of the model alone, or the C4 5) learning 
a lgor i thm alone Th is only occurs for large enough or 
representative enough t ra in ing data sets Th is behavior 
is not unique to our system it can be observed in the 
publ ished learning curves shown for some systems that 
combine analy t ica l and empi r ica l learning[Pazzani and 
Kib ler 1992] [Ourston 199l ] As we w i l l see signif i ­
cance test ing of ranked features appears to m i t i ga te this 
undesirable behavior 

F igure 4 gives a good ind ica t ion of the tvpe of features, 
selected w i t h theories of vary ing quality. Standard C4 5 
can only access raw features (level 3) C4 5 w i t h features 
f rom a perfect modf 1 (1 e fOO) chooses almost exclusively 
(hut not always) the model predic t ion feature (level 0) 
W i t h lower qual i ty theories C 45 gradual ly chooses fea­
tures of greater level numbers However for the perfect 
mode l , there should be no reason to choose anv feature 
other t han the model predict ion feature Th is does not 
happen due in part to a known bias of the i n fo rmat ion 
gain ra t io against features w i t h many values ( In the au­
diology domain the model p red ic t ion feature has 24 pos­
sible values, other model features are binary and raw 
features have few values) However as We w i l l see next 
this problemat ic bias can be m i t i ga ted w i t h the use of 
significance test ing 

Figure 5 shows the effects of significance test ing of 
ranked features when C45 is augmented w i t h features 
f r om a perfect model Rather than the 150 examples 

2Tables corresponding to (he graphs in this paper ron 
laming means and standard deviations ean 1M found at 
h t tp / / w w w vuse vanderbilt edu/^dfisher/iech 
reports/ijcai95-tables pa 

3 Here we use standard 045 for learning For testing wt 
use the classlfiration procedure described in section 2 l e 
predicting with the model rather than the most frequenl class 
at leaves of the decision tree where there is insuffieirnt data 
for further decomposition 
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Figure 5 Average acruracv and root feature level of 
decision trees learned with features from a perfect model 
under varying levels of significance 

Figure b Average accuracv and roof feature level of deci 
sion trees learned with features from the fl0lO imperfect model under varving levels of significance 

needed before hypothesis testing of ranked features re­
sults in 1009c accurarv with only 80 examples when using 
a 509c significance level or wi th just 85 examples when 
using more strict significance levels (259% 10% or 1%) 
This figure also shows how the average root featur< level 
is gradually} reduced with stricter significance levels 

Perfect domain theories are an interesting boundary, 
case, but most interesting theories are imperfect The 
graphs of Figure b illustrate how stricter levels of sig 
nificance achieve our objective of biasing C45 toward 
features of smaller level number using the flOlO domain 
theory This figure also shows that the accuracy ob-
tained with the flOlO imperfect theorv improves consis­
tently with stricter levels of significance testing (509c 
40% 10%) for any size of the training set, including 
the complete training set of 150 examples In addition, 
while with no significance testing (or the almost equiv­
alent significance testing at the 50% level) at least 55 
examples are needed to obtain better accuracies than 
the flOlO theorv alone with stricter levels of significance 
testing only JO examples are required For the 1% sig­
nificance level, accuracy, is better than other significance 
levels when the training sets contains less than 110 ex­
amples, and worse when the training set contains more 

than 110 examples Thus at least in this domain there 
is a breakeven point for significance levels that depends 
both on the quality of th< model and the size of the 
training set after which stricter significance levels are 
detelmental In our experiments the size of the train­
ing sets corresponds to increasing quality in t he available 
data in the sense that thev are better representatives of 
the complete population both due to the sheer amount 
of data and due to the fact that the skewedness effect we 
introduced in the training set tends to dimmish as tht 
size of the trainings sets are increased 

For lower quahtv theories similar behavior is ob­
served with increasingly strict significance levels, accu­
racy improves when the training stt contains few exam­
ples, and decreases with training sets that contain manv 
examples Thus, for every combination of model quality 
(l e amount of contamination in the model) and data 
quahtv (level of skewedness and number of training ex­
amples) there is an optimal level of significance between 
the extremes of 50% and 0% in this domain However 
the choice of a beneficial but perhaps non-optimal sig 
nificance level is not difficult Significance levels only 
seem to become detrimental for large data sets when we 
use significance levels stricter than 10% Values between 
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50% and 10% always seem to improve accuracy (perhaps 
non-optimally) for any size of the training set Thus, ex­
pert intuit ion about the trustworthiness of an existing 
model with respect to the available can be incorporated 
into our learning algorithm to obtain additional perfor 
mance improvements 

6 C o n c l u d i n g R e m a r k s 
In this paper we address a situation that we believe to 
lie of practical interest learning whenever we have a 
model believed to be of good quality but imperfect nev­
ertheless together with a set of data of unknown rep 
rescntativeness and quality We present a method that 
attempts to take advantage of both the model and the 
data plus our prior knowledge about the quaht\ of the 
model Our mc thod biases empirical learning in a flex­
ible manner such that model-based features, or more 
generally preferred features bised on some a prion deter­
mined preference ordering are selected unless sufficient 
refuting evidence appears in the data The amount of ev­
idence required is determined bv statistical significance 
and is set by the user according to his/her confidence in 
the quality of the available model 

Our expenniental results show that when features gtn 
erated from a model are smply added d to the description 
of the data aecuracy is increased to a degree propor­
tional to the quality of the model However sum*" prob­
lems with this simple approach are illustrated by the 
fact that perfect models only result in perfect accuracy 
with large or very representivetve srts of t raning exam 
ples if significance testing with a preference, ordering 
is used with a pe rfect model our system heroines more 
robust in the presence of skewed data few examples are 
then needed 1o obtain perfed accuracy Further with 
imperfect models of good quality we obtain additional 
increases in accuracy for any number of training exam 
pies 

Although significance testing lias been used previously 
m machine learning methods such as for the pruning of 
decision trees [Qumlan ]9t<b] our use. of Ibis concept 
for flexibly introducing prior knowledge bias in empirical 
learning seems to be novel 
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