Oblivious Decision Trees, Graphs,
and Top-Down Pruning

Ron Kohavi and Chia-Hsin Li
Computer Science Department
Stanford University

Stanford, C\

94305

{ronnyk,jamie}iDCS Stanford EDU

Abstract

We describe a supervised learning algorithm,
EODG that uses mutual information to build
an oblivious decision tree The tree is then
converted to an Oblivious read-Onre Decision
Graph (OODG) b\ merging nodes at the same
level of the tree For domains that art appro-
priate for both decision trees and OODGs, per
formance is approximately the same aS THAT of
C45), but the number of nodes in the OODG is
much smaller The merging phase that converts
the oblivious decision tree to an OODG pro-
vides a new way of dealing with the replication
problem and a new pruning mechanism that
works lop down starting from tin root The
pruning mechanism is well suited for finding
symmetries and aids in recovering from splits
on irrelevant features that mav happen during
the tree consLrm tion

1 Introduction

Dmsion trees provide a hypothesis space for supervised
mat hine learning algorithms that is well suited for many
data”ets encountered in the real world (Breiman, Fried-
man Olshen & Stone 1984 Quinlan 1993) The ftree
structure, used to represent concepts suffers from some
well-known problems, most notably the replication prob-
lem disjunctive concepts such as {4 A B) V ((A D)
are inefficiently represented (Pagallo & Haussler 1990)
A. related problem, the fragmentation problem some-
times called over-branching or over-partitioning (Fayyad
1991), is specific to the top-down recursive partitioning
that is used to build the trees In the common top-down
decision tree construction algorithms including CART
(Breiman et al 1984), ID3, and C4 5 (Quinlan 1993),
the training set is partitioned according to a test at each
node (usually a test on a single feature) After a few
splits, the number of instances at the node diminishes
to a point where distinguishing between the actual pat-
'"?rn (signal) and random events (noise) becomes diffi-
cult The fragmentation problem is especially apparent

when there are mulli-valued features that are used as
tests or specific intervals that need to be identified in
continuous features, the multi-way splits quickly par-
tition the dataset into small sets of instances While
there have been attempts by Quinlan (1993) and Fayyad
(1994) to atlack the problem directly there is no agreed-
upon method and (4 5s default parameters do not even
default to such splits

The smallest decision trees for most symmetric func-
tions, such as majority, 'in of n " and parity, require
exponentially-sized trees While parity is unlikely, to oc-
cur in practice m of n' is more common (Spademan
1988) Induction algorithms that search for small trees
tend to generalize poorly on these functions

Kohavi (1994a) introduced Oblivious read-Once Deci-
sion Graphs (OODGs) as an alternative representation
structure for supervised classification learning OODGs
retain most of the advantages of decision trees, while
overcoming the above problems OODGs are similar to
Ordered Binary Decision Diagrams (Bryant 1986) which
have been used in the eugineenng community to repre-
sent state-graph models of systems allowing verification
of finite-state systems with up Lo 10120 states Much of
the work on OBDDs carries over to OODGa We refer
the reader to Kohavi (1994a) for a discussion of related
work

The HOODG algorithm for bottom-up induction of
OODGs was shown to be effective for nominal features
(Kohavi 19946) but the algorithm could not cope with
continuous features and lacked a global measure of im-
provement that could help cope with irrele\ant features

In this paper, we introduce EODG (Entropv-based
Oblivious Decision Graphs) a top-down induction algo-
rithm for inducing oblivious read-once decision graphs.
The EODG algorithm uses the mutual information of a
single split across the whole level to determine the ap-
propriate tests for the interior nodes of the tree AH
instances are involved at every choice point in the tree
construction and, therefore the algorithm does not suf-
fer from fragmentation of the data as much as recursive
partitioning algorithms do After an oblivious decision
tree is built, it is pruned and converted into an oblivious

KOHAVI ANDLI 1071

decision graph by merging nodes in a top-down sweep
The paper is organized as follows In Section 2 we
briefly review the OODG structure and its properties
Section 3 describes the EODG algorithm Section 4 de-
scribes the experimental results Section 5 describes fu-
ture work, and Section 6 concludes with a summary

2 Oblivious Read-Once Decision
Graphs

In this section, we formally define decision graphs and
then specialize them to oblivious read-once decision
graphs

Given n discrete fealures (attributes) %; XY= ,
Xn, with domains [k, D, respectively, the in-
stance space \ is the cross-product of the domains
1, Dyx %D}, A k-classification function is a
function / mapping each instance in the instance space
Loone of k classes, ie, f 1+~ {0, ,k=1)

A decision graph for a k-classification function over
features X; Y5 X, with domains Dy, [D,
is a directed acyclic graph (D4G) with the following
properties

1 There are exactly k nodes called category nodes,
that are labelled 0 1, , k— 1, and have outdegree
zero

2 Non-category nodes are called branching nodes
Each branching node is labelled by some feature Y,
and has \D,\ outgoing edges, each labelled by a dis-
tinct value from f3,

3 There it. one distinguished node—the root—that is
the only node with indegret zero

The class assigned by a decision graph to a given fea-
ture assignment (an instance), is determined by trac-
ing the unique path from the root to a category node,
branching according to the labels on the edges

In a read-once decision graph, each test occurs at
most once along any path from the root to a leaf In a
levelled decision graph the nodes are partitioned into
a sequence of pairwise disjoint sets, the levels such that
outgoing edges from each level terminate at the next
level An oblivious decision graph is a levelled graph
such that all nodes at a given level are labelled by the
same feature

Previous work on OODGs (Kohavi 1994a, Kohavi
19946) defined read-once as allowing a feature to be
tested only once For continuous features, this restriction
is is inappropriate, thus we allow continuous features to
be tested at different levels as long as the thresholds are
different

An OODG is an oblivious read-once decision graph
A constant node is a node such that all edges emanat-
ing from it terminate at the same node of the subsequent
level Figure 2 shows an OODG derived by the EODG
algorithm for the mushroom problem (a post-processing

1072 LEARNING

Figure 1 The OODG (constant nodes removed) induced
by EODG for the mushroom concept

algorithm removes constant nodes to make the graphs
more readable)

OODGs have many interesting properties These in-
clude an OODG for nominal features is canonical for
any total function if an ordering on the features is given
any symmetric Boolean function (c g parity, majority
and m of n) can be represented by an OODG of size
0fn?) and the width of levels in OODGs is bounded

by mm {2’ k”l"_)} for Boolean inputs We refer the

reader to Kohavi (1994a) for a more detailed description
of these properties

3 The EODG algorithm

The EODG algorithm has three phases growing an
oblivious decision tree (ODT) pruning complete levels
from the bottom and merging nodes from the top down
We now describe the phases in detail

31 Top-down Construction Using Mutual
Information

The top-down construction of the ODT is performed
using mutual information in a manner similar to ¢4 5
(Quinlan 1991) The main difference is that instead of
doing recursive partitioning, i e finding a split and con-
structing the subtree recursively, an iterative process is
used

The general mechanism for growing ODTs is simple
decide on a test with k outcomes that will be done at
all nodes in the current level of the tree Partition the
instances at each node p according to the test and create
a new level containing k nodes for each node p in the
current level The k nodes are connected from the parent
node p to the k children by edges labelled with the k
possible outcomes Figure 2 shows this algorithm

The find_split routine determines which split to con-
duct at all the nodes at the current level and decides
when to terminate While the test can be of any type,
our implementation uses multi-waysplits on nominal fea-
tures (the test outcome is the feature value) and thresh-
old splits on continuous feature To determine which

Input a set T of libelled instances

Output an oblivious decision tree for classifying instances
Each set created by this algorithm has a corresponding node
in the graph

I §={T}//S s aset of sets of 1natances
[/ t 15 a test with k cutcomes to conduct at all nodes
/f n ths level find_split returns empty spht
{/to terminate

2 while {t = findspht(5)) {

4 5 ={}

9 foreach s € § {

5 Split ¢ imto k <ets according to the tes! t and
add the =ets to 5’

6 For each of the & sets, create a node and

connecl to the node representing s Label
edge by the Lesl outcome

7 } 7/ end foreach
§=5'
o } j/end while

x

1 Igure 2 The algorithm for growing the oblivious deci-
sion trees

feature to split on, and what threshold to pick for con
Urinous features, we use mutual information Our no-
talion follows that of Cover & Thomas (1991) The
conditional entropy {(} | ¥, X¢) of the label
V given features X, Y, , X/ represents the amount
of information about Y after we have seen the values of

X X, Y, and is defined as
BY |G, 4y)=— Y A
T1EA1 TEXr YD
A=ply 1, z)loglplylrr, 2

diven a new feature A , wt define the mutual informa-
tion as the difference in the conditional entropies

Iy, | x,, Y)= (Y |}y

H(Y | X1,

Xe)-
1, %)

If t is zero, the mutual information is defined as

Iy, x) == 3" plw)loglp(y) - HOY | ¥)
yel

Because the mutual information is biased in favor of
testa with many outcomes, we define the adjusted mu-
tualinformation as the mutual information divided by
log k, where k is the number of outcomes for X Given S,
a set of sets of instances (each set of instances is a node in
the graph), find split checks all the possible features and
determines the one that has the highest adjusted mutual
information For continuous features, we try all possi-
ble thresholds between two adjacent values of a feature

Computing the best threshold split after the values for a

given feature have been sorted can be done in linear time
in the number of instances by shifting instances from the
left child node to the right child node as the threshold
is increased The technique is exactly the same as that
used in Breiman et al (1984) and Quinlan (1993) exrept
that we determine one split for all the nodes at a level
and shift instances from the left child to the right child
for all nodes at the current level

When building a decision tree, it is clear that one
should not split on a nominal feature twice, since no
information can be gained However, a surprising phe-
nomenon that occurs in OODGs, which has no equiva
lent in decision tree indurtion, is that it may be useful
to split pure nodes it , nodes that contain instances of
only one class, because the merge process may benefit
for example, if we are left with one instance per node
then all nodes are trivially pure If we split on a relevant
feature some instances will go left and some instances
will go right these nodes will then be merged and the
correct target concept might be identified

3 2 Merging Nodes

The main advantage of building ODTs over regular deci-
sion trees is that nodes at the same level can be merged
because they contain the same test We begin by de-
scribing how to convert an ODT into an OODG We
then describe how this merging can be used to conduct
top-down pruning, a technique that we believe is more
robust to noise than bottom-up pruning and also aids in
overcoming splits on irrelevant features by merging the
children to a single node as in Figure 2

Two subtrees in a decision tree are isomorphic ifthey
art both leaves labelled with the same class, or if the
root nodes contain the same test and the corresponding
children, reached by following the edges with the same
labels on both subtrees, are the roots of isomorphic sub-
trees Two isomorphic subtrees may be merged without
changing the classification behavior of the decision struc-
ture While subtree isomorphism may be performed for
decision trees too it is unlikely that subtrees will be iso-
morphic without the leveling restriction

The merging process is a post-processing step that is
executed after the ODT has been grown For each level
we check all pairs of nodes for isomorphism and merge
those that are isomorphic The complexity ofthe merge
process is dominant in the induction of OODGs Atea(h
level with fe nodes, O{kz) isomorphic tests have to be
conducted However, because of the kite theorem (Ko-
havi 1994a), there is a limit on the number of nodes that
may be at lower levels, and many merges must succeed
at higher levels where the number of nodes is much less
than the number of leaves of the ODT

One advantage of merging nodes comes from the abil
ity to assign classes to nodes with no instances If a split
is done and no instances fall to one of the children the
child is labelled with the majority class of the parent

KOHAVIANDLI 1073

Figure 3 Two compatible subtrees The numbers in
brackets are the node numbers referred to in the text

Figure 4 The merged subtree of the compatible subtrees
above

When budding the ODJ we leave the node labelled as
unknown" until the merge phase is done because (he
merge phase may assign it a class Intuitively we would
like an unknown node to match anything when we check
whether two subtrees can be merged Two subtrees; are
defined as compatible if either at least one root is la-
belled unknown' (in which case it is a leaf) or if the
root nodes make the same test and the corresponding
children are the roots of compatible subtrees Figures 3
shows two compatible subtrees and Figure 4 shows the
merged subtree

The merging of compatible subtrees changes the bias
of the algorithm bv assuming that a child node that is
marked unknown' is likely to behave the same as an-
other child if they belong to compatible subtrees In
order to strengthen the usefulness of the merging pro-
cess we split all the nodes at a level that are not leaves
labelled "unknown " even those that are pure Node 4
in Figure 3 is pure but it has no instances that have the
color green If the node is merged with node 6, it will
correctly classfy all instances in the training set, but
will classify instances that reach the node and have the
color green the same way that node 6 classifies them

In noisy situations it may be that two subtrees are
almost compatible and should be merged, but the above
definition of compatibility will not do so Two subtrees
are K-compatible if when we merge them, the number
of newly misclassified instances (i e instances correctly
classified by the subtrees but not by the merged tree) is

1074 LEARNING

__]
Input A tramung set and a test for ench level of Lhe oblivious
decision tree
Output An obhvious read-once decision graph

1 // The bottom-up pruming of levels

2 Foreach : from 1 to no levels 1n full-grown tree do

3 acc, = croas-vahdation acc of tree grown Lo level 1
4 Let £ be the level for which acrc was Lhe hughest

5 Let ODT be Lthe oblivious Lree grown to level 2

6 // Top-dewn merging of ODT

7 Foreach 1 from 1 to € {

R Repeat

9 For level v, find a par of nodes that are approx

rompatible and merge Lhem

10 } // End foreach

Figure 5 ‘The boltom-up pruning and top-down merg
mg/pruning

less than h Compatible subtree are 0-compatible When
two nodes are considered for merging we allow them to
misclassify k instances where k is defined similarly to
the pruning method used in C4 5 (Quinlan 199 3) the
number of misclassifications of each subtree is increased
to the high-value of a confidence interval and the merge
takes place only if a similar increase in the merged sub-
graph results in fewer misclassifications than the sum of
the adjusted misclassifications of the children We have
used a 909 < onfidence interval

3 3 Bottom-up Pruning

Intuitively, the test for merging nodes checks whether the
reduced error-rate due to the nodes being separate is sig-
nificant statistically The merging of K-compatible nodes
works well in noisy situations only if the misclassification
rates at the leaves are non-zero If the tree overfits the
data and has a resubstitution error rate near zero, any
merging of subtrees at the top will seem to introduce
many misclassifications that are unlikely to happen in a
random sample with a large number of instances

In order to get a more 'honest" estimate of the mis-
classification error at the leaves, we use cross-validation
to decide how many levels of the ODT to prune We fix
the order of tests (and thresholds) at the levels, and cross
validate every level to get an accuracy estimate Building
an ODT given an ordering is an extremely fast process,
so cross-validating the tree at different levels is not an ex-
pensive process Note however that the estimate is likely
to be slightly optimistic because the split tests were de-
termined using all the data Figure 5 shows the bottom-
up pruning algorithm and the top-down merge/prune
phase

Dataset Lrain test features no
size siz¢ continuous nomnal classes

australian all 690 10-CY 6 8 2

balance-scale all 625 10-CV 4 0 3

breast all 6RY 10-CV 10 0 2

chess all 9196 10-CVv 0 16 2

cleve all 296 10-CV b 7 2

crx all 653 10-CV 6 9 2

diabetes all 768 10-C'V] 0 pi

flare all 1066 10-CV 2 ¥ 2

german all 1000 10-CV 24 0 2

mushroom all 5644 10-CV 1] 22 2

seginent all 2310 10-CN 19 0 7

sovhean-large all 562 10-CV 0 15 19

tic-tac toe all 958 10-CV 0 4 P

vehcle all 846 10-CV 14 0 4

voie Nl 10-LV)] 1b 2

mornhl 124 432 0 b 2

monhkZ 169 132 0 & 2

monh2-loral 1G9 412 0 17 2

monh 4 122 432 0] 2

parityh+5 100 1024 a 10 2

shutile-small 1866 1934 9 0 7

waveform (21) 300 4700 21 0 1

Tablc 1| The domains

Datasel {13 4 5Rules EODG EODT p-valuc
australian all B5 36119 85224103 8201+£185 #319+15% Q06018
balaure-scale all 76 9441 81 77 10£2 31 86 70£1 22 B2 20%195% 099997
breast all 05 324+087 9576067 957322072 04594069 049119
thess all 99001013 99474012 9BRS50x£025 98751022 000251
cleve all T498+25%1 76 33+£354 TETOL25H4 THTIX2BR (88370
orx all B4 084108 83934127 84244129 H5EU+] 16 (054261
diabetes all 71754102 72404095 74744123 7461+155 095714
flare all B2 36+1 315 81 80+122 8264+141 B82R3+13% 071643
german all 72R0x141 731404131 7070£178 T7l40+1 87 0 16188
mushroom all 100 0000 100 0+£000 100 0000 1000000 050000
segment all 06 364033 96 102045 9476053 9645+042 000321
soybean-large all 92542147 01 28100 A1 131 87 8y 294174 000002
tic-tac-toe all Kh 59+] 08 ON 8H1+0 57 X4 1542096 H3 204143 (499718
vehicle all hOR44+177 7186156 H461£272 66 TH+102 000027
vote 95 644052 95871045 9491031 9448+061 0 08R10
monkl 75 7042 06 100 020 00 100 0x0 00 97 22+0 78 1 00000
monh2 6500229 65284220 6802+223 O6B7542.23 0R253M
monh2-local 70 40+2 20 6574229 98 84+050 9560098 1 00000
monkd 97 20+079 06 30091 97224079 97 224079 050712
parityi+5 50 00156 5000+£1 56 5000156 5000%£156 050000
shuttle-small 99 50+016 99644014 Q9 74+011 99744011 089174
waveform {21) 7040+066 7260+£065 6577069 67 13068 000000

Table 2 The accuracies for C4 5, C4 5-rules, EODG, EODT The last column mdicates the p-value for a t-test,

mdicating whether EODG 18 betler than C4 5 (values > 5) or vice versa

KOHAVI AND LI 1078

[Dalaget C15 EODG EODT EODG time
1n seconds
australian 58 6 257 8048 148 8
balance-scale 800 355 15338 675
breast 204 147 279 2 299
chess 56 2 694 143350 20197
cleve 450 129 1529 321
erx BT 7 253 764 7 133 7
diabetes 122 8 180 319 142 6
flare 28 46 266 151 2
german 158 4 172 202 6 192 5
mushroom 405 116 329 226 4
segment Bl1B 1791 6694 4 482 9
saybean-large 66 5§ %09 7641 2787
tic-Lac-toe 1291 646 20182 99 0
vehicle 178 6 2523 102096 574 1
vote 151 70 2238 36 4
monki 180 70 530 36
monk2 alo 210 2140 143
monk2-local 470 160 1450 14 2
monk 3 120 40 160 40
parity5+5 230 110 63 0 17 8
shuttle-small 170 140 450 103 0
waveform (21) 510 300 3170 538

Table 3 Comparison of the sizes of the induced structures The last column indicates the time in CPU seconds on
a Sparc-10 for EODG to train and (est once (equivalent to one fold in ten-fold CV)

4 Experiments

To estimate the performance accuracy of EODG, we
chose a few artificial datasels and real-world datasets
from the UC Irvine repository (Murphy & Aha 1994)
The artificial datasets are standard benchmark datasets
such as the monk problems (Thrun etal 1991), from the
real-world domains, we chose ones that had at least 200
instances Because we have not implemented classifica-
tion of instances with unknown values we removed all
such instances from the datasets tested Table 1 shows
the characteristics of the different domains used For the
artificial domains and for shuttle, we ran a train/test-set
sequence For the other domains, we did 10-fold cross-
validation

Table 2 shows the accuracies of C4 5, C4 5-rules,
EODG and EODT (the first two stages of EODG) The
last column is the p-vaJue for a paired t-test on the cross-
validation folds of C4 5 and EODG (For the rune on a
single test-set, we did an unpaired t-test using the sum
of the estimated standard deviations from the test set)
For the single runs, we did an unpaired t-test Values
greater than 0 5 indicate that EODG is better and val-
ues less than 0 5 indicate that C4 5 is better On many
datasets, the behavior of C4 5 and EODG is similar,
there are datasets for which EODG's accuracy is worse
then C4 5 (soybean-large, vehicle, waveform), and there

1076 LEARNING

are datasets for which the accuracy is better (balance-
scale cleve tic-tac-toe, monkl, monk2-local) It is inter-
esting to note that on some problems EODT performs
better, indicating that the symmetry bias assumed in
the merge phase of EODG is not appropriate but the
oblivious restriction doe* not hurt much

One of the main advantages of EODG is the small
graphs it produces compared to C4 5 Table 3 shows
the average sizes Tor thf graphs created for each dataeet
EODG clearly creates smaller graphs and when it creates
significantly larger graphs (soybean, vehicle) it is also a
worse performer The graphs created by EODT are huge

5 Future Work

The bottom-up pruning phase of EODG prunes the
ODT, which may be inappropriate For example, parity
is badly represented as a tree, and thus the pruning stage
reduces the number of features too much |Initial exper-
iments that involve pruning after merging showed that
it may be better (e g, parity5+5 gives 100% accuracy),
but the algorithm becomes too expensive

The EODG algorithm can be improved along a few
directions We have not implemented handling of un-
known values, but we believe that an approach similar
to that used in decision trees (Quinlan 1993) should work
well We are currently conducting tests on a single fea-

ture at a node, other tests, such as oblique splits are
possible Because EODG suffers less from lack of in-
stances at lower levels, using such tests might not suffer
from the same problems that have occurred in decision
trees The disadvantage of such an extension is the loss
of comprehensibility that is one of the most important
characteristics of decision trees and graphs over other
hvpothesis spaces

We noticed that for continuous features, many splits
art made on different thresholds Since we only merge
nodes at the same level, we might consider multi-way
splits on real features, as suggested in Fayyad & lIrani
(1993)

A different approach to feature selection and ordering,
which is more feasible in OODGs then in decision trees
is to try different ordenngs on the features An ODT on
a dataset is defined by a set of tests one per level and
hence the space of possibilities is much smaller than that
of derision trees (although still ver> large)

6 Summary

We reviewed the characteristics of oblivions read-once
decision graphs as the underlvmg hypothesis spa* t for in
dution algorithms We introduced EODG, a top-down
algorthm that constructs oblivious decision trees using
information gain as a splitting criteria and then merges
nodes to form oblivious read-once decision graphs 'The
merging of nodes from the top provides a new wa\ of
pruning nodes in some observed <ases, this corrects a
split on an irrelevant feature by merging the children
OODGs have a differenl bias from that of decision
Tress, and thus some concepts that are hard to represent
is trees are easy to represent as OODGs and vice-versa
(independent of the specific induction algorithm used)
Wf have shown that for some real-world dalasets at UC
Irvine the bias of EODG is appropriate and for the
problems where performance is approximately the same
as that of C4 5, EODG produces much smaller graphs

Acknowledgments

Acknowledgments The work in this paper was done
using the A £ C++ library parti} funded by ONR grant
N00014-94 1-0448 and NSF grants IRI-9116399 and IR1-
9411106 We thank Scott Benson and the anonymous
reviewers for comments on the paper We thank Yael
Kleefeld and Ya-Huei Wang for their support

References

Breiman, L , Friedman, J H, Olshen, R A& Stonp,
C J (1984), Classification and Regression Trees,
Wadsworth International Group

Bryant, R E (1986), 'Graph-based algorithms for
boolean function manipulation , IEEE Transac
tions on Computers C-35(8), G77-691

Cover, T M & Thomas, J A (1991) Elements of In-
formation Theory, John Wiley & Sons Inc

Fayyad, U M (1991), On the induction of decision trees
for multiple concept learning PhD thesis EECS
Dept, Michigan University

Fayyad U M (1994), Branching on attribute val-
ues in decision tree generation, in Proceedings of
the twelfth national conference on artificial intelli-
gence AAA! Press and MIT Press pp 601-606

Fayyad U M & Irani, K B (1993), Multi-interval dis--
cretization of continuous attributes for classifica-
tion learning, in R Bajcsy, ed "Proceedings of the
Thirteenth International Joint Conference on Arti-
ficial Intelligence' , Morgan Kaufmann

Kohavi, R (1994a), Bottom-up induction of oblivious,
read-once decision graphs in "Proceedings of
the European Conference on Machine Learning"
Available by anonymous ftp from
starry Stanford EDU pub/ronnyk/suroHL94 ps

Kohavi, R (19946), Bottom up induction of oblivious
read-once decision graphs strengths and limita-
tions, in "Twelfth National Conference on Artificial
Intelligence pp 613-618 Available by anonymous
ftp from
Starry Stanford EDU pub/ronnyk/aaai94 pa

Murph\ P M & Aha D W (1994), UCI repository of
machine learning databases For information con-
tact ml-repositorv'QJics uci cdu

Boolean feature
Machine Learning

Pagallo, G & llaussler D (1990),
discovery in empirical learning '
5,71-99

Quinlan, J R (1993), C4 5 Programs for Machine
Learning Morgan Kaufmann, Los Alios, California

Spackman, A K (1988) Learning c ategoncal criteria in
biomedical domains, in Proceedings of the Fifth
Internati)nal Machine Learning (onference , Mor-
gan Kaufmann, pp 36-46

Thrun etal (1991) The monk s problems A perfor-
mance comparison of different learning algorithms
Technical Report (. MU-CS-01-197 Carnegie Mel-
lon University

KOHAVI AND LI 1077

