
Oblivious Decision Trees, Graphs,
and Top-Down Pruning

R o n K o h a v i and C h i a - H s i n L i
Computer Science Department

Stanford University
Stanford, C\ 94305

{ronnyk, jamie} iDCS S t a n f o r d EDU

Abst rac t

We describe a supervised learning algorithm,
EODG that uses mutual information to build
an oblivious decision tree The tree is then
converted to an Oblivious read-Onre Decision
Graph (OODG) b\ merging nodes at the same
level of the tree For domains that art appro­
priate for both decision trees and OODGs, per
formance is approximately the same aS THAT of
C45), but the number of nodes in the OODG is
much smalle r The merging phase that converts
the oblivious decision tree to an OODG pro­
vides a new way of dealing with the replication
problem and a new pruning mechanism that
works lop down starting from tin root The
pruning mechanism is well suited for finding
symmetries and aids in recovering from splits
on irrelevant features that mav happen during
the tree consLrm tion

1 In t roduc t ion
Dmsion trees provide a hypothesis space for supervised
mat hine learning algorithms that is well suited for many
data^ets encountered in the real world (Breiman, Fried­
man Olshen & Stone 1984 Quinlan 1993) The tree
structure, used to represent concepts suffers from some
well-known problems, most notably the replication prob-
lem disjunctive concepts such as
are inefficiently represented (Pagallo & Haussler 1990)
A. related problem, the fragmentation problem some­
times called over-branching or over-partitioning (Fayyad
1991), is specific to the top-down recursive partitioning
that is used to build the trees In the common top-down
decision tree construction algorithms including CART
(Breiman et al 1984), ID3, and C4 5 (Quinlan 1993),
the training set is partitioned according to a test at each
node (usually a test on a single feature) After a few
splits, the number of instances at the node diminishes
to a point where distinguishing between the actual pat-
'?rn (signal) and random events (noise) becomes diffi­
cult The fragmentation problem is especially apparent

when there are mulli-valued features that are used as
tests or specific intervals that need to be identified in
continuous features, the multi-way splits quickly par­
tition the dataset into small sets of instances While
there have been attempts by Quinlan (1993) and Fayyad
(1994) to atlack the problem directly there is no agreed-
upon method and (4 5 s default parameters do not even
default to such splits

The smallest decision trees for most symmetric func­
tions, such as majority, 'in of n " and parity, require
exponentially-sized trees While parity is unlikely, to oc­
cur in practice m of n ' is more common (Spademan
1988) Induction algorithms that search for small trees
tend to generalize poorly on these functions

Kohavi (1994a) introduced Oblivious read-Once Deci­
sion Graphs (OODGs) as an alternative representation
structure for supervised classification learning OODGs
retain most of the advantages of decision trees, while
overcoming the above problems OODGs are similar to
Ordered Binary Decision Diagrams (Bryant 1986) which
have been used in the eugineenng community to repre­
sent state-graph modeIs of systems allowing verification
of finite-state systems with up Lo 10120 states Much of
the work on OBDDs carries over to OODGa We refer
the reader to Kohavi (1994a) for a discussion of related
work

The HOODG algorithm for bottom-up induction of
OODGs was shown to be effective for nominal features
(Kohavi 19946) but the algorithm could not cope with
continuous features and lacked a global measure of im­
provement that could help cope with irrele\ant features

In this paper, we introduce EODG (Entropv-based
Oblivious Decision Graphs) a top-down induction algo-
r i thm for inducing oblivious read-once decision graphs.
The EODG algorithm uses the mutual information of a
single split across the whole level to determine the ap-
propriate tests for the interior nodes of the tree AH
instances are involved at every choice point in the tree
construction and, therefore the algorithm does not suf­
fer from fragmentation of the data as much as recursive
partitioning algorithms do After an oblivious decision
tree is built, it is pruned and converted into an oblivious

KOHAVI ANDLI 1071

decision graph by merging nodes in a top-down sweep
The paper is organized as follows In Section 2 we

briefly review the OODG structure and its properties
Section 3 describes the EODG algorithm Section 4 de-
scribes the experimental results Section 5 describes fu­
ture work, and Section 6 concludes with a summary

2 Oblivious Read-Once Decision
Graphs

In this section, we formally define decision graphs and
then specialize them to oblivious read-once decision
graphs

Given n discrete fealures (attributes) ,
wi th domains respectively, the i n ­

stance space \ is the cross-product of the domains
A k-c lassi f icat ion f u n c t i o n is a

function / mapping each instance in the instance space
Lo one of k classes, i e ,

A decis ion g r a p h for a k-classification function over
features
is a directed acyclic graph (D4G) with the following
properties

1 There are exactly k nodes called category nodes,
that are labelled 0 1, , k— 1, and have outdegree
zero

2 Non-category nodes are called b ranch ing nodes
Each branching node is labelled by some feature
and has \D,\ outgoing edges, each labelled by a dis­
tinct value from

3 There it. one distinguished node—the root—that is
the only node with indegret zero

The class assigned by a decision graph to a given fea­
ture assignment (an instance), is determined by trac­
ing the unique path from the root to a category node,
branching according to the labels on the edges

In a read-once decision graph, each test occurs at
most once along any path from the root to a leaf In a
level led decision graph the nodes are partitioned into
a sequence of pairwise disjoint sets, the levels such that
outgoing edges from each level terminate at the next
level An ob l i v ious decision graph is a levelled graph
such that all nodes at a given level are labelled by the
same feature

Previous work on OODGs (Kohavi 1994a, Kohavi
19946) defined read-once as allowing a feature to be
tested only once For continuous features, this restriction
is is inappropriate, thus we allow continuous features to
be tested at different levels as long as the thresholds are
different

An O O D G is an oblivious read-once decision graph
A constant node is a node such that all edges emanat­
ing from it terminate at the same node of the subsequent
level Figure 2 shows an OODG derived by the EODG
algorithm for the mushroom problem (a post-processing

Figure 1 The OODG (constant nodes removed) induced
by EODG for the mushroom concept

algorithm removes constant nodes to make the graphs
more readable)

OODGs have many interesting properties These in­
clude an OODG for nominal features is canonical for
any total function if an ordering on the features is given
any symmetric Boolean function (c g parity, majority
and m of n) can be represented by an OODG of size

and the width of levels in OODGs is bounded

by mm for Boolean inputs We refer the
reader to Kohavi (1994a) for a more detailed description
of these properties

3 The EODG algorithm
The EODG algorithm has three phases growing an
oblivious decision tree (O D T) pruning complete levels
from the bottom and merging nodes from the top down
We now describe the phases in detail

3 1 T o p - d o w n C o n s t r u c t i o n U s i n g M u t u a l
I n f o r m a t i o n

The top-down construction of the ODT is performed
using mutual information in a manner similar to c4 5
(Quinlan 1991) The main difference is that instead of
doing recursive partit ioning, i e finding a split and con­
structing the subtree recursively, an iterative process is
used

The general mechanism for growing ODTs is simple
decide on a test with k outcomes that wil l be done at
all nodes in the current level of the tree Partition the
instances at each node p according to the test and create
a new level containing k nodes for each node p in the
current level The k nodes are connected from the parent
node p to the k children by edges labelled with the k
possible outcomes Figure 2 shows this algorithm

The find_split routine determines which split to con­
duct at all the nodes at the current level and decides
when to terminate While the test can be of any type,
our implementation uses multi-waysplits on nominal fea­
tures (the test outcome is the feature value) and thresh­
old splits on continuous feature To determine which

1072 LEARNING

Input a set T of libelled instances
Output an oblivious decision tree for classifying instances
Each set created by this algorithm has a corresponding node
in the graph

1 lgure 2 The algorithm for growing the oblivious deci­
sion trees

feature to split on, and what threshold to pick for con
Urinous features, we use mutual information Our no-
talion follows that of Cover & Thomas (1991) The
cond i t i ona l e n t r o p y of the label
V given features , X/ represents the amount
of information about Y after we have seen the values of

and is defined as

diven a new feature A , wt define the m u t u a l i n fo rma­
t i on as the difference in the conditional entropies

If t is zero, the mutual information is defined as

Because the mutual information is biased in favor of
testa with many outcomes, we define the ad jus ted m u ­
tua l i n f o r m a t i o n as the mutual information divided by
log k, where k is the number of outcomes for X Given S,
a set of sets of instances (each set of instances is a node in
the graph), find split checks all the possible features and
determines the one that has the highest adjusted mutual
information For continuous features, we try all possi­
ble thresholds between two adjacent values of a feature
Computing the best threshold split after the values for a

given feature have been sorted can be done in l inear t ime
in the number of instances by sh i f t ing instances f rom the
left ch i ld node to the r ight ch i ld node as the threshold
is increased The technique is exact ly the same as that
used in B re iman et al (1984) and Qu in lan (1993) exrept
t ha t we determine one spl i t for all the nodes at a level
and shi f t instances f r o m the left ch i ld to the r ight chi ld
for al l nodes at the current level

W h e n bu i l d ing a decision tree, it is clear that one
should not spl i t on a nomina l feature twice, since no
in fo rmat ion can be gained However, a surpr is ing phe­
nomenon tha t occurs in O O D G s , which has no equiva
lent in decision tree i n d u r t i o n , is that i t may be useful
to spl i t pure nodes i t , nodes that conta in instances of
only one class, because the merge process may benefit
f o r example, if we are left w i t h one instance per node
then all nodes are t r i v ia l l y pure If we spl i t on a relevant
feature some instances w i l l go left and some instances
w i l l go r ight these nodes wi l l then be merged and the
correct target concept m igh t be ident i f ied

3 2 M e r g i n g Nodes

The m a i n advantage of bu i ld ing O D T s over regular deci­
sion trees is that nodes at the same level can be merged
because they contain the same test We begin by de­
scribing how to convert an O D T in to an O O D G We
then describe how this merg ing can be used to conduct
top-down p run ing , a technique that we believe is more
robust to noise than b o t t o m - u p p run ing and also aids in
overcoming spl i ts on irrelevant features by merg ing the
chi ldren to a single node as in Figure 2

T w o subtrees in a decision tree are i s o m o r p h i c i f they
ar t both leaves labelled w i t h the same class, or i f the
root nodes conta in the same test and the corresponding
chi ldren, reached by fo l low ing the edges w i t h the same
labels on both subtrees, are the roots of isomorphic sub-
trees T w o isomorphic subtrees may be merged w i thou t
changing the classif ication behavior of the decision struc­
ture Wh i l e subtree isomorphism may be performed for
decision trees too it is unl ikely that subtrees w i l l be iso­
morph ic w i t hou t the leveling restr ic t ion

The merg ing process is a post-processing step that is
executed after the O D T has been grown For each level
we check all pairs of nodes for isomorph ism and merge
those that are isomorphic The complex i ty of the merge
process is dominan t in the induct ion of O O D G s Atea(h
level w i t h fe nodes, 0{k2) isomorphic tests have to be
conducted However, because of the k i te theorem (Ko-
havi 1994a), there is a l i m i t on the number of nodes that
may be at lower levels, and many merges must succeed
at higher levels where the number of nodes is much less
than the number of leaves of the O D T

One advantage of merging nodes comes f rom the abi l
i ty to assign classes to nodes w i t h no instances If a spl i t
is done and no instances fal l to one of the chi ldren the
chi ld is labelled w i t h the ma jo r i t y class of the parent

KOHAVIANDLI 1073

Figure 3 Two compatible subtrees The numbers in
brackets are the node numbers referred to in the text

Figure 4 The merged subtree of the compatible subtrees
above

When budding the ODJ we leave the node labelled as
unknown" until the merge phase is done because (he

merge phase may assign it a class Intuitively we would
like an unknown node to match anything when we check
whether two subtrees can be merged Two subtrees; are
defined as compa t i b l e if either at least one root is la­
belled unknown' (in which case it is a leaf) or if the
root nodes make the same test and the corresponding
children are the roots of compatible subtrees Figures 3
shows two compatible subtrees and Figure 4 shows the
merged subtree

The merging of compatible subtrees changes the bias
of the algorithm bv assuming that a child node that is
marked unknown' is likely to behave the same as an­
other child if they belong to compatible subtrees In
order to strengthen the usefulness of the merging pro­
cess we split all the nodes at a level that are not leaves
labelled "unknown " even those that are pure Node 4
in Figure 3 is pure but it has no instances that have the
color green If the node is merged with node 6, it wi l l
correctly classfy all instances in the training set, but
wil l classify instances that reach the node and have the
color green the same way that node 6 classifies them

In noisy situations it may be that two subtrees are
almost compatible and should be merged, but the above
definition of compatibility wil l not do so Two subtrees
are K-compat ib le if when we merge them, the number
of newly misclassified instances (i e instances correctly
classified by the subtrees but not by the merged tree) is

less than h Compatible subtree are 0-compatible When
two nodes are considered for merging we allow them to
misclassify k instances where k is defined similarly to
the pruning method used in C4 5 (Quinlan 199 3) the
number of misclassifications of each subtree is increased
to the high-value of a confidence interval and the merge
takes place only if a similar increase in the merged sub­
graph results in fewer misclassifications than the sum of
the adjusted misclassifications of the children We have
used a 909c < onfidence interval

3 3 B o t t o m - u p P r u n i n g

Intuit ively, the test for merging nodes checks whether the
reduced error-rate due to the nodes being separate is sig­
nificant statistically The merging of K-compatible nodes
works well in noisy situations only if the misclassification
rates at the leaves are non-zero If the tree overfits the
data and has a resubstitution error rate near zero, any
merging of subtrees at the top wil l seem to introduce
many misclassifications that are unlikely to happen in a
random sample with a large number of instances

In order to get a more 'honest" estimate of the mis-
classification error at the leaves, we use cross-validation
to decide how many levels of the ODT to prune We fix
the order of tests (and thresholds) at the levels, and cross
validate every level to get an accuracy estimate Building
an ODT given an ordering is an extremely fast process,
so cross-validating the tree at different levels is not an ex­
pensive process Note however that the estimate is likely
to be slightly optimistic because the split tests were de-
termined using all the data Figure 5 shows the bottom-
up pruning algorithm and the top-down merge/prune
phase

1074 LEARNING

Table 3 Comparison of the sizes of the induced structures The last column indicates the time in CPU seconds on
a Sparc-10 for EODG to train and (est once (equivalent to one fold in ten-fold CV)

4 E x p e r i m e n t s

To estimate the performance accuracy of EODG, we
chose a few artificial datasels and real-world datasets
from the UC Irvine repository (Murphy & Aha 1994)
The artificial datasets are standard benchmark datasets
such as the monk problems (Thrun etal 1991), from the
real-world domains, we chose ones that had at least 200
instances Because we have not implemented classifica­
tion of instances with unknown values we removed all
such instances from the datasets tested Table 1 shows
the characteristics of the different domains used For the
artificial domains and for shuttle, we ran a train/test-set
sequence For the other domains, we did 10-fold cross-
validation

Table 2 shows the accuracies of C4 5, C4 5-rules,
EODG and EODT (the first two stages of EODG) The
last column is the p-va]ue for a paired t-test on the cross-
validation folds of C4 5 and EODG (For the rune on a
single test-set, we did an unpaired t-test using the sum
of the estimated standard deviations from the test set)
For the single runs, we did an unpaired t-test Values
greater than 0 5 indicate that EODG is better and val­
ues less than 0 5 indicate that C4 5 is better On many
datasets, the behavior of C4 5 and EODG is similar,
there are datasets for which EODG's accuracy is worse
then C4 5 (soybean-large, vehicle, waveform), and there

are datasets for which the accuracy is better (balance-
scale cleve tic-tac-toe, monk l , monk2-!ocal) It is inter­
esting to note that on some problems EODT performs
better, indicating that the symmetry bias assumed in
the merge phase of EODG is not appropriate but the
oblivious restriction doe* not hurt much

One of the main advantages of EODG is the small
graphs it produces compared to C4 5 Table 3 shows
the average sizes Tor thf graphs created for each dataeet
EODG clearly creates smaller graphs and when it creates
significantly larger graphs (soybean, vehicle) it is also a
worse performer The graphs created by EODT are huge

5 Future Work
The bottom-up pruning phase of EODG prunes the
ODT, which may be inappropriate For example, parity
is badly represented as a tree, and thus the pruning stage
reduces the number of features too much Init ial exper­
iments that involve pruning after merging showed that
it may be better (e g , parity5+5 gives 100% accuracy),
but the algorithm becomes too expensive

The EODG algorithm can be improved along a few
directions We have not implemented handling of un­
known values, but we believe that an approach similar
to that used in decision trees (Quinlan 1993) should work
well We are currently conducting tests on a single fea-

1076 LEARNING

ture at a node, other tests, such as oblique splits are
possible Because EODG suffers less from lack of in­
stances at lower levels, using such tests might not suffer
from the same problems that have occurred in decision
trees The disadvantage of such an extension is the loss
of comprehensibility that is one of the most important
characteristics of decision trees and graphs over other
hvpothesis spaces

We noticed that for continuous features, many splits
art made on different thresholds Since we only merge
nodes at the same level, we might consider multi-way
splits on real features, as suggested in Fayyad & Irani
(1993)

A different approach to feature selection and ordering,
which is more feasible in OODGs then in decision trees
is to try different ordenngs on the features An ODT on
a dataset is defined by a set of tests one per level and
hence the space of possibilities is much smaller than that
of derision trees (although still ver> large)

6 S u m m a r y

We reviewed the characteristics of oblivions read-once
decision graphs as the underlvmg hypothesis spa* t for in
du t i on algorithms We introduced EODG, a top-down
a lgor thm that constructs oblivious decision trees using
information gain as a splitting criteria and then merges
nodes to form oblivious read-once decision graphs 'The
merging of nodes from the top provides a new wa\ of
pruning nodes in some observed <ases, this corrects a
split on an irrelevant feature by merging the children

OODGs have a differenl bias from that of decision
Tress, and thus some concepts that are hard to represent
is trees are easy to represent as OODGs and vice-versa
(independent of the specific induction algorithm used)
Wf have shown that for some real-world dalasets at UC
Irvine the bias of EODG is appropriate and for the
problems where performance is approximately the same
as that of C4 5, EODG produces much smaller graphs

Acknowledgments

Acknowledgments The work in this paper was done
using the library parti} funded by ONR grant
N00014-94 1-0448 and NSF grants IRI-9116399 and IR1-
9411106 We thank Scott Benson and the anonymous
reviewers for comments on the paper We thank Yael
Kleefeld and Ya-Huei Wang for their support

R e f e r e n c e s

Breiman, L , Friedman, J H , Olshen, R A& Stonp,
C J (1984), Classification and Regression Trees,
Wadsworth International Group

Bryant, R E (1986), 'Graph-based algorithms for
boolean function manipulation , IEEE Transac
tions on Computers C-35(8), G77-691

Cover, T M & Thomas, J A (1991) Elements of In­
formation Theory, John Wiley & Sons lnc

Fayyad, U M (1991), On the induction of decision trees
for multiple concept learning PhD thesis EECS
Dept, Michigan University

Fayyad U M (1994), Branching on attribute val­
ues in decision tree generation, in Proceedings of
the twelfth national conference on artificial intelli­
gence AAA ! Press and M I T Press pp 601-606

Fayyad U M & Irani, K B (1993), Multi-interval dis--
cretization of continuous attributes for classifica­
tion learning, in R Bajcsy, ed "Proceedings of the
Thirteenth International Joint Conference on Art i ­
ficial Intelligence' , Morgan Kaufmann

Kohavi, R (1994a), Bottom-up induction of oblivious,
read-once decision graphs in "Proceedings of
the European Conference on Machine Learning"
Available by anonymous ftp from
s t a r r y Stanford EDU pub/ronnyk/suroHL94 ps

Kohavi, R (19946), Bottom up induction of oblivious
read-once decision graphs strengths and l imi ta-
tions, in "Twelfth National Conference on Artificial
Intelligence pp 613-618 Available by anonymous
ftp from
S ta r ry Stanford EDU pub/ronnyk/aaai94 pa

Murph\ P M & Aha D W (1994), UCI repository of
machine learning databases For information con­
tact ml-repositorv'QJics uci cdu

Pagallo, G & Ilaussler D (1990), Boolean feature
discovery in empirical learning ' Machine Learning
5,71-99

Quinlan, J R (1993), C4 5 Proqrams for Machine
Learning Morgan Kaufmann, Los Alios, California

Spackman, A K (1988) Learning c ategoncal criteria in
biomedical domains, in Proceedings of the Fifth
lnternati)nal Machine Learning (onference , Mor­
gan Kaufmann, pp 36-46

Thrun etal (1991) The monk s problems A perfor­
mance comparison of different learning algorithms
Technical Report (. MU-CS-01-197 Carnegie Mel­
lon University

KOHAVI AND LI 1077

