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Abst rac t 

We describe a supervised learning algorithm, 
EODG that uses mutual information to build 
an oblivious decision tree The tree is then 
converted to an Oblivious read-Onre Decision 
Graph (OODG) b\ merging nodes at the same 
level of the tree For domains that art appro­
priate for both decision trees and OODGs, per 
formance is approximately the same aS THAT of 
C45 ), but the number of nodes in the OODG is 
much smalle r The merging phase that converts 
the oblivious decision tree to an OODG pro­
vides a new way of dealing with the replication 
problem and a new pruning mechanism that 
works lop down starting from tin root The 
pruning mechanism is well suited for finding 
symmetries and aids in recovering from splits 
on irrelevant features that mav happen during 
the tree consLrm tion 

1 In t roduc t ion 
Dmsion trees provide a hypothesis space for supervised 
mat hine learning algorithms that is well suited for many 
data^ets encountered in the real world (Breiman, Fried­
man Olshen & Stone 1984 Quinlan 1993) The tree 
structure, used to represent concepts suffers from some 
well-known problems, most notably the replication prob-
lem disjunctive concepts such as 
are inefficiently represented (Pagallo & Haussler 1990) 
A. related problem, the fragmentation problem some­
times called over-branching or over-partitioning (Fayyad 
1991), is specific to the top-down recursive partitioning 
that is used to build the trees In the common top-down 
decision tree construction algorithms including CART 
(Breiman et al 1984), ID3, and C4 5 (Quinlan 1993), 
the training set is partitioned according to a test at each 
node (usually a test on a single feature) After a few 
splits, the number of instances at the node diminishes 
to a point where distinguishing between the actual pat-
'?rn (signal) and random events (noise) becomes diffi­
cult The fragmentation problem is especially apparent 

when there are mulli-valued features that are used as 
tests or specific intervals that need to be identified in 
continuous features, the multi-way splits quickly par­
tition the dataset into small sets of instances While 
there have been attempts by Quinlan (1993) and Fayyad 
(1994) to atlack the problem directly there is no agreed-
upon method and ( 4 5 s default parameters do not even 
default to such splits 

The smallest decision trees for most symmetric func­
tions, such as majority, 'in of n " and parity, require 
exponentially-sized trees While parity is unlikely, to oc­
cur in practice m of n ' is more common (Spademan 
1988) Induction algorithms that search for small trees 
tend to generalize poorly on these functions 

Kohavi (1994a) introduced Oblivious read-Once Deci­
sion Graphs (OODGs) as an alternative representation 
structure for supervised classification learning OODGs 
retain most of the advantages of decision trees, while 
overcoming the above problems OODGs are similar to 
Ordered Binary Decision Diagrams (Bryant 1986) which 
have been used in the eugineenng community to repre­
sent state-graph modeIs of systems allowing verification 
of finite-state systems with up Lo 10120 states Much of 
the work on OBDDs carries over to OODGa We refer 
the reader to Kohavi (1994a) for a discussion of related 
work 

The HOODG algorithm for bottom-up induction of 
OODGs was shown to be effective for nominal features 
(Kohavi 19946) but the algorithm could not cope with 
continuous features and lacked a global measure of im­
provement that could help cope with irrele\ant features 

In this paper, we introduce EODG (Entropv-based 
Oblivious Decision Graphs) a top-down induction algo-
r i thm for inducing oblivious read-once decision graphs. 
The EODG algorithm uses the mutual information of a 
single split across the whole level to determine the ap-
propriate tests for the interior nodes of the tree AH 
instances are involved at every choice point in the tree 
construction and, therefore the algorithm does not suf­
fer from fragmentation of the data as much as recursive 
partitioning algorithms do After an oblivious decision 
tree is built, it is pruned and converted into an oblivious 
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decision graph by merging nodes in a top-down sweep 
The paper is organized as follows In Section 2 we 

briefly review the OODG structure and its properties 
Section 3 describes the EODG algorithm Section 4 de-
scribes the experimental results Section 5 describes fu­
ture work, and Section 6 concludes with a summary 

2 Oblivious Read-Once Decision 
Graphs 

In this section, we formally define decision graphs and 
then specialize them to oblivious read-once decision 
graphs 

Given n discrete fealures (attributes) , 
wi th domains respectively, the i n ­

stance space \ is the cross-product of the domains 
A k-c lassi f icat ion f u n c t i o n is a 

function / mapping each instance in the instance space 
Lo one of k classes, i e , 

A decis ion g r a p h for a k-classification function over 
features 
is a directed acyclic graph (D4G) with the following 
properties 

1 There are exactly k nodes called category nodes, 
that are labelled 0 1, , k— 1, and have outdegree 
zero 

2 Non-category nodes are called b ranch ing nodes 
Each branching node is labelled by some feature 
and has \D,\ outgoing edges, each labelled by a dis­
tinct value from 

3 There it. one distinguished node—the root—that is 
the only node with indegret zero 

The class assigned by a decision graph to a given fea­
ture assignment (an instance), is determined by trac­
ing the unique path from the root to a category node, 
branching according to the labels on the edges 

In a read-once decision graph, each test occurs at 
most once along any path from the root to a leaf In a 
level led decision graph the nodes are partitioned into 
a sequence of pairwise disjoint sets, the levels such that 
outgoing edges from each level terminate at the next 
level An ob l i v ious decision graph is a levelled graph 
such that all nodes at a given level are labelled by the 
same feature 

Previous work on OODGs (Kohavi 1994a, Kohavi 
19946) defined read-once as allowing a feature to be 
tested only once For continuous features, this restriction 
is is inappropriate, thus we allow continuous features to 
be tested at different levels as long as the thresholds are 
different 

An O O D G is an oblivious read-once decision graph 
A constant node is a node such that all edges emanat­
ing from it terminate at the same node of the subsequent 
level Figure 2 shows an OODG derived by the EODG 
algorithm for the mushroom problem (a post-processing 

Figure 1 The OODG (constant nodes removed) induced 
by EODG for the mushroom concept 

algorithm removes constant nodes to make the graphs 
more readable) 

OODGs have many interesting properties These in­
clude an OODG for nominal features is canonical for 
any total function if an ordering on the features is given 
any symmetric Boolean function (c g parity, majority 
and m of n) can be represented by an OODG of size 

and the width of levels in OODGs is bounded 

by mm for Boolean inputs We refer the 
reader to Kohavi (1994a) for a more detailed description 
of these properties 

3 The EODG algorithm 
The EODG algorithm has three phases growing an 
oblivious decision tree ( O D T ) pruning complete levels 
from the bottom and merging nodes from the top down 
We now describe the phases in detail 

3 1 T o p - d o w n C o n s t r u c t i o n U s i n g M u t u a l 
I n f o r m a t i o n 

The top-down construction of the ODT is performed 
using mutual information in a manner similar to c4 5 
(Quinlan 1991) The main difference is that instead of 
doing recursive partit ioning, i e finding a split and con­
structing the subtree recursively, an iterative process is 
used 

The general mechanism for growing ODTs is simple 
decide on a test with k outcomes that wil l be done at 
all nodes in the current level of the tree Partition the 
instances at each node p according to the test and create 
a new level containing k nodes for each node p in the 
current level The k nodes are connected from the parent 
node p to the k children by edges labelled with the k 
possible outcomes Figure 2 shows this algorithm 

The find_split routine determines which split to con­
duct at all the nodes at the current level and decides 
when to terminate While the test can be of any type, 
our implementation uses multi-waysplits on nominal fea­
tures (the test outcome is the feature value) and thresh­
old splits on continuous feature To determine which 
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Input a set T of libelled instances 
Output an oblivious decision tree for classifying instances 
Each set created by this algorithm has a corresponding node 
in the graph 

1 lgure 2 The algorithm for growing the oblivious deci­
sion trees 

feature to split on, and what threshold to pick for con 
Urinous features, we use mutual information Our no-
talion follows that of Cover & Thomas (1991) The 
cond i t i ona l e n t r o p y of the label 
V given features , X/ represents the amount 
of information about Y after we have seen the values of 

and is defined as 

diven a new feature A , wt define the m u t u a l i n fo rma­
t i on as the difference in the conditional entropies 

If t is zero, the mutual information is defined as 

Because the mutual information is biased in favor of 
testa with many outcomes, we define the ad jus ted m u ­
tua l i n f o r m a t i o n as the mutual information divided by 
log k, where k is the number of outcomes for X Given S, 
a set of sets of instances (each set of instances is a node in 
the graph), find split checks all the possible features and 
determines the one that has the highest adjusted mutual 
information For continuous features, we try all possi­
ble thresholds between two adjacent values of a feature 
Computing the best threshold split after the values for a 

given feature have been sorted can be done in l inear t ime 
in the number of instances by sh i f t ing instances f rom the 
left ch i ld node to the r ight ch i ld node as the threshold 
is increased The technique is exact ly the same as that 
used in B re iman et al (1984) and Qu in lan (1993) exrept 
t ha t we determine one spl i t for all the nodes at a level 
and shi f t instances f r o m the left ch i ld to the r ight chi ld 
for al l nodes at the current level 

W h e n bu i l d ing a decision tree, it is clear that one 
should not spl i t on a nomina l feature twice, since no 
in fo rmat ion can be gained However, a surpr is ing phe­
nomenon tha t occurs in O O D G s , which has no equiva 
lent in decision tree i n d u r t i o n , is that i t may be useful 
to spl i t pure nodes i t , nodes that conta in instances of 
only one class, because the merge process may benefit 
f o r example, if we are left w i t h one instance per node 
then all nodes are t r i v ia l l y pure If we spl i t on a relevant 
feature some instances w i l l go left and some instances 
w i l l go r ight these nodes wi l l then be merged and the 
correct target concept m igh t be ident i f ied 

3 2 M e r g i n g Nodes 

The m a i n advantage of bu i ld ing O D T s over regular deci­
sion trees is that nodes at the same level can be merged 
because they contain the same test We begin by de­
scribing how to convert an O D T in to an O O D G We 
then describe how this merg ing can be used to conduct 
top-down p run ing , a technique that we believe is more 
robust to noise than b o t t o m - u p p run ing and also aids in 
overcoming spl i ts on irrelevant features by merg ing the 
chi ldren to a single node as in Figure 2 

T w o subtrees in a decision tree are i s o m o r p h i c i f they 
ar t both leaves labelled w i t h the same class, or i f the 
root nodes conta in the same test and the corresponding 
chi ldren, reached by fo l low ing the edges w i t h the same 
labels on both subtrees, are the roots of isomorphic sub-
trees T w o isomorphic subtrees may be merged w i thou t 
changing the classif ication behavior of the decision struc­
ture Wh i l e subtree isomorphism may be performed for 
decision trees too it is unl ikely that subtrees w i l l be iso­
morph ic w i t hou t the leveling restr ic t ion 

The merg ing process is a post-processing step that is 
executed after the O D T has been grown For each level 
we check all pairs of nodes for isomorph ism and merge 
those that are isomorphic The complex i ty of the merge 
process is dominan t in the induct ion of O O D G s Atea( h 
level w i t h fe nodes, 0{k2) isomorphic tests have to be 
conducted However, because of the k i te theorem (Ko-
havi 1994a), there is a l i m i t on the number of nodes that 
may be at lower levels, and many merges must succeed 
at higher levels where the number of nodes is much less 
than the number of leaves of the O D T 

One advantage of merging nodes comes f rom the abi l 
i ty to assign classes to nodes w i t h no instances If a spl i t 
is done and no instances fal l to one of the chi ldren the 
chi ld is labelled w i t h the ma jo r i t y class of the parent 
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Figure 3 Two compatible subtrees The numbers in 
brackets are the node numbers referred to in the text 

Figure 4 The merged subtree of the compatible subtrees 
above 

When budding the ODJ we leave the node labelled as 
unknown" until the merge phase is done because (he 

merge phase may assign it a class Intuitively we would 
like an unknown node to match anything when we check 
whether two subtrees can be merged Two subtrees; are 
defined as compa t i b l e if either at least one root is la­
belled unknown' (in which case it is a leaf) or if the 
root nodes make the same test and the corresponding 
children are the roots of compatible subtrees Figures 3 
shows two compatible subtrees and Figure 4 shows the 
merged subtree 

The merging of compatible subtrees changes the bias 
of the algorithm bv assuming that a child node that is 
marked unknown' is likely to behave the same as an­
other child if they belong to compatible subtrees In 
order to strengthen the usefulness of the merging pro­
cess we split all the nodes at a level that are not leaves 
labelled "unknown " even those that are pure Node 4 
in Figure 3 is pure but it has no instances that have the 
color green If the node is merged with node 6, it wi l l 
correctly classfy all instances in the training set, but 
wil l classify instances that reach the node and have the 
color green the same way that node 6 classifies them 

In noisy situations it may be that two subtrees are 
almost compatible and should be merged, but the above 
definition of compatibility wil l not do so Two subtrees 
are K-compat ib le if when we merge them, the number 
of newly misclassified instances (i e instances correctly 
classified by the subtrees but not by the merged tree) is 

less than h Compatible subtree are 0-compatible When 
two nodes are considered for merging we allow them to 
misclassify k instances where k is defined similarly to 
the pruning method used in C4 5 (Quinlan 199 3) the 
number of misclassifications of each subtree is increased 
to the high-value of a confidence interval and the merge 
takes place only if a similar increase in the merged sub­
graph results in fewer misclassifications than the sum of 
the adjusted misclassifications of the children We have 
used a 909c < onfidence interval 

3 3 B o t t o m - u p P r u n i n g 

Intuit ively, the test for merging nodes checks whether the 
reduced error-rate due to the nodes being separate is sig­
nificant statistically The merging of K-compatible nodes 
works well in noisy situations only if the misclassification 
rates at the leaves are non-zero If the tree overfits the 
data and has a resubstitution error rate near zero, any 
merging of subtrees at the top wil l seem to introduce 
many misclassifications that are unlikely to happen in a 
random sample with a large number of instances 

In order to get a more 'honest" estimate of the mis-
classification error at the leaves, we use cross-validation 
to decide how many levels of the ODT to prune We fix 
the order of tests (and thresholds) at the levels, and cross 
validate every level to get an accuracy estimate Building 
an ODT given an ordering is an extremely fast process, 
so cross-validating the tree at different levels is not an ex­
pensive process Note however that the estimate is likely 
to be slightly optimistic because the split tests were de-
termined using all the data Figure 5 shows the bottom-
up pruning algorithm and the top-down merge/prune 
phase 
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Table 3 Comparison of the sizes of the induced structures The last column indicates the time in CPU seconds on 
a Sparc-10 for EODG to train and (est once (equivalent to one fold in ten-fold CV) 

4 E x p e r i m e n t s 

To estimate the performance accuracy of EODG, we 
chose a few artificial datasels and real-world datasets 
from the UC Irvine repository (Murphy & Aha 1994) 
The artificial datasets are standard benchmark datasets 
such as the monk problems (Thrun etal 1991), from the 
real-world domains, we chose ones that had at least 200 
instances Because we have not implemented classifica­
tion of instances with unknown values we removed all 
such instances from the datasets tested Table 1 shows 
the characteristics of the different domains used For the 
artificial domains and for shuttle, we ran a train/test-set 
sequence For the other domains, we did 10-fold cross-
validation 

Table 2 shows the accuracies of C4 5, C4 5-rules, 
EODG and EODT (the first two stages of EODG) The 
last column is the p-va]ue for a paired t-test on the cross-
validation folds of C4 5 and EODG (For the rune on a 
single test-set, we did an unpaired t-test using the sum 
of the estimated standard deviations from the test set ) 
For the single runs, we did an unpaired t-test Values 
greater than 0 5 indicate that EODG is better and val­
ues less than 0 5 indicate that C4 5 is better On many 
datasets, the behavior of C4 5 and EODG is similar, 
there are datasets for which EODG's accuracy is worse 
then C4 5 (soybean-large, vehicle, waveform), and there 

are datasets for which the accuracy is better (balance-
scale cleve tic-tac-toe, monk l , monk2-!ocal) It is inter­
esting to note that on some problems EODT performs 
better, indicating that the symmetry bias assumed in 
the merge phase of EODG is not appropriate but the 
oblivious restriction doe* not hurt much 

One of the main advantages of EODG is the small 
graphs it produces compared to C4 5 Table 3 shows 
the average sizes Tor thf graphs created for each dataeet 
EODG clearly creates smaller graphs and when it creates 
significantly larger graphs (soybean, vehicle) it is also a 
worse performer The graphs created by EODT are huge 

5 Future Work 
The bottom-up pruning phase of EODG prunes the 
ODT, which may be inappropriate For example, parity 
is badly represented as a tree, and thus the pruning stage 
reduces the number of features too much Init ial exper­
iments that involve pruning after merging showed that 
it may be better (e g , parity5+5 gives 100% accuracy), 
but the algorithm becomes too expensive 

The EODG algorithm can be improved along a few 
directions We have not implemented handling of un­
known values, but we believe that an approach similar 
to that used in decision trees (Quinlan 1993) should work 
well We are currently conducting tests on a single fea-
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ture at a node, other tests, such as oblique splits are 
possible Because EODG suffers less from lack of in­
stances at lower levels, using such tests might not suffer 
from the same problems that have occurred in decision 
trees The disadvantage of such an extension is the loss 
of comprehensibility that is one of the most important 
characteristics of decision trees and graphs over other 
hvpothesis spaces 

We noticed that for continuous features, many splits 
art made on different thresholds Since we only merge 
nodes at the same level, we might consider multi-way 
splits on real features, as suggested in Fayyad & Irani 
(1993) 

A different approach to feature selection and ordering, 
which is more feasible in OODGs then in decision trees 
is to try different ordenngs on the features An ODT on 
a dataset is defined by a set of tests one per level and 
hence the space of possibilities is much smaller than that 
of derision trees (although still ver> large) 

6 S u m m a r y 

We reviewed the characteristics of oblivions read-once 
decision graphs as the underlvmg hypothesis spa* t for in 
du t i on algorithms We introduced EODG, a top-down 
a lgor thm that constructs oblivious decision trees using 
information gain as a splitting criteria and then merges 
nodes to form oblivious read-once decision graphs 'The 
merging of nodes from the top provides a new wa\ of 
pruning nodes in some observed <ases, this corrects a 
split on an irrelevant feature by merging the children 

OODGs have a differenl bias from that of decision 
Tress, and thus some concepts that are hard to represent 
is trees are easy to represent as OODGs and vice-versa 
(independent of the specific induction algorithm used) 
Wf have shown that for some real-world dalasets at UC 
Irvine the bias of EODG is appropriate and for the 
problems where performance is approximately the same 
as that of C4 5, EODG produces much smaller graphs 
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