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A b s t r a c t 

We argue that many AI planning problems should be 
viewed as process-onented, where the aim is to pro-
duce a policy or behavior strategy with no termina­
tion condition in mind, as opposed to goal-onented 
The full power of Markov decision models, adopted 
recently for AI planning, becomes apparent with 
process-onented problems The question of appro-
priate opdmallry criteria becomes more cnncal in 
this case, we argue that average reward optimahty 
is most suitable While construction of average-
optimal policies involves a number of subtleties 
and computational difficulties, certain aspects of 
the problem can be solved using compact action 
representations such as Bayes nets In particular, 
we provide an algorithm that identifies the struc­
ture of the Markov process underlying a planning 
problem - a crucial element of constructing average 
optimal policies - without explicit enumeration of 
the problem state space 

1 I n t r o d u c t i o n 
Tbe traditional AI planning paradigm requires an agent to 
denve a sequence of actions that leads from an initial state to 
a goal state While much planning research has focussed on 
rather unrealistic models that assume complete knowledge of 
both states and actions, increasingly, research in planning has 
been directed towards problems in which the initial condinons 
and the effects of actions are not known with certainty and 
in which multiple, potentially conflicting objectives must be 
traded against one another to determine optimal courses of 
action In particular there has been much interest in decision 
theoretic planning (DTP) (Dean and Wellman 1991) 

Tbe theory of Markov decision processes (MDPs) has found 
considerable popularity recently both as a conceptual and 
computational model for DTP (Dean et al 1993 Boutiher 
and Dearden 1994) Indeed, much recent research has em-
phasized the complementary nature of work in (for example) 
operations research (OR) on the foundations and computa-
uormlaspects of MDPs, and planning models used in AI Per­
haps most important is the exploitation of structure in solving 
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MDPs Using compact representations of actions (such as 
influence diagrams or STRIPS operators) one can often group 
together large classes of calculations with great savings if the 
domain possesses many regularities (Tatman and Shachter 
1990, Boutiher, Dearden and Goldszmidt 1995) We will 
exploit representations of this form below 

An important disnnction that arises when one considers the 
use of MDPs for planning problems is that between goal-
oriented planning problems and process-oriented problems 
A goal-onented problem is one in which an agent must con­
struct a plan that wil l change the world from some initial 
state to one of a specified set of goals states For example 
constructing a plan to achieve a goal proposition G is a goal-
onented problem. Implicit in such problems is tbe assumption 
that the evolution of the system, once the goal is achieved, 
ceases to be of interest The agent must be given another 
goal to achieve in order to begin planning and acting again 
Such problems have received the bulk of the attention from 
the planning community, even when uncertainty is involved 
(though a relaxed definition of success may be used (Kushm-
enck, Hanks and Weld 1994)) In decision-theoretic settings 
goal based approaches are also common, with utilities used 
often to discriminate feasible plans (Dean et al 1993) 

A process-onented problem is one in which there does not 
(necessarily) exist a goal state of the type described above 
More specifically, there may be no state (or goal) such that 
the agent should stop acting once that state is reached (or the 
goal is true) Such problems require mat the planning agent 
construct an on-going plan that proceeds indefinitely While 
we focus on DTP, where these often occur naturally, process-
onented problems can also arise in more "classical" settings, 
for example, one might require an agent to construct a plan or 
policy that continuously alternates between states satisfying 
goals G1 and G2 If exogenous events can cause these goals 
to become false, then such a plan proceeds indefinitely 

MDPs are excellent models for such process-onented prob-
lems techniques such as policy iteration (Howard 1971) can 
be used to denve optimal plans for infinite hortzon problems 
of this type under uncertainty Unfortunately, the emphasis m 
recent work using MDPs for DTP has been on goal-onented 
problems (Dean et al 1993, Boutiher and Dearden 1994), 
albeit conditional and decision-theoretic This is not to say 
that these algorithms don't work for process-onented prob-
lems, but no consideration has been given to the issues and 
special circumstances that might anse when an ongoing pro­
cess is involved The full power of MDPs only comes to hght 



when we have problems that exhibit this continual basis One 
aim of this paper is to survey the unique challenges that arise 
when we attempt to solve process-onented problems Issues 
that take on added importance include representation of ex­
ogenous events, design of reward functions, and appropriate 
optimality cnteria. 

This last issue, the design of appropriate optimality criteria, 
has been paid little attention in DTP MDPs have been used 
for planning and reinforcement learning quite extensively, 
and most models measure the goodness of policies using dis 
counted total reward (one exception is (Singh 1994)) How­
ever, hole thought seems to have been given to this choice of 
opbmality measure or to good discounting rates In fact, for 
many ongoing processes it seems that the correct (or most use­
ful) measure of a policy is the average reward it accrues per 
unit time Discounting admits conceptually simpler policy 
construction algorithms, but small discounting rates intro-
duce unacceptable bias toward quick rewards at the expense 
of long-term gam, while large (close to one) discounting rates 
cause algorithms to converge quite slowly 

Unfortunately finding average-optimal policies comph 
cates most policy construction algorithms Some algorithms 
such as value iteration (Bellman 1957, Puterman 1994) wi l l 
work in almost the same form as for discounted problems, 
but only if one can establish the underlying "reachability" 
or communicating structure of the process The second aim 
and key technical contribution of this paper is the develop­
ment of an algorithm mat determines this structure using a 
compact representation of the MDP's dynamics Unlike ex­
isting algorithms for structure classification (Fox and Land] 
1968), our algorithm exploits the problem representation lo 
avoid enumeration and traversal of the underlying state space 
This is an important feature because the planning state space 
grows exponentially with the number of variables or features 
present. 

In Section 2 we wil l sketch a rather simplified but in many 
respects realistic example lo illustrate these considerations 
We argue that many realistic problems ought to viewed as 
process-onented rather than goal-onented We emphasize 
the importance of exogenous events (especially user com 
mands) and considerations of appropnate reward structure 
In Section 3, we describe the basic MDP model and policy 
construction techniques In addition, we discuss compact rep-
resentations of MDPs, the separation of events from actions, 
and point to ways in which these can be used to speed up pol 
icy construction In Section 4, we argue that average reward 
opomality is often appropnate for such problems and point 
out the difficulties involved in computing average-optimal 
policies We also present the mam technical contribution of 
the paper, namely, an algorithm that determines the underly­
ing communicating structure of an MDP, a crucial step in the 
computation of average-optimal policies By exploiting our 
action representation, (potentially exponential) reductions in 
time and memory requirements are possible for many prob-
lems, as compared to traditional stale-space algonthms 

2 A Process-Oriented Planning Problem 
Oft-used "gopher** domains are commonly viewed as goal-
onented planning problems We have an agent (say a robot) 
that is designed to perform certain tasks for its owner (the 
user) Most planning algonthms suggest that the user will 

ask the robot to perform some task or achieve some goal ' 
The robot wil l construct a plan to achieve that goal, and then 
execute the plan When that goal is achieved the robot waits, 
doing nothing, until another request is issued This cycle 
of "Get goal, Achieve goal" is pervasive in classical and 
decision-theoretic models However, this cycle of achieving 
goals in order is rather unrealistic for a number of reasons 

1 Many goals are not specifiable in this manner Consider 
simple maintenance goals such as "keep the lab tidy " 
This is not a goal that can be achieved then abandoned 
Though maintenance goals are used in classical plan­
ning, they typically specify constraints, such as subgoals 
and safety constraints, that the agent is not permitted to 
violate while achieving a primary goal These serve a 
somewhat different purpose than true maintenance goals 

2 A user should not have to wait until a previous goal is 
satisfied before issuing another request, or if the robot 
stores requests in the order issued, it may not be desir­
able to have the robot delay achievement of later goals 
while completing earlier ones A new goal may preempt 
previous goals — and there is no reason to expect some 
goals not to be preempted indefinitely 

3 We should not expect an agent's actions at any given time 
to be directed toward the achievement of a single goal 
proposmon Should multiple objectives be obtainable 
more readily, or at lower cost, by interleaving or sharing 
certain actions to achieve those objectives, an architec­
ture that forces consideration of a single goal at any one 
time will produce suboptimal behavior 

4 An agent should plan not only for its current objectives, 
but also in anticipation of new goals or contingencies 
An agent whose raison d itre is mail delivery may be 
well-served by positioning itself near the mailroom at 
certain times (if U has no other pressing tasks) 

It should be clear that many of the problems to which clas­
sical goal-onented planning techniques are currently applied 
may more naturally be thought of as process-onented prob0-
lems While Point 1 indicates that some objectives are truly 
ongoing, Points 2-4 suggest that even multiple or recurring 
goals extended in time interact in ways that make the process-
onented perspective most suitable 

To make our discussion more concrete, we wil l focus on a 
particular example of a' gopher" robot with three pnmary re­
sponsibilities to pickup and deliver mail to a user, to deliver 
coffee to the user, and to keep the user's lab tidy This is not 
a goal-onented problem in the classical sense Keeping the 
lab tidy is certainly an on-going process Mail amves con­
tinually as does the user's need for coffee 2 To formalize this 
problem we assume the six domain variables hoc, the loca 
tion of the robot, takes one of five values LO, LL, LM, LH, LC 
(office, lab, mailroom, halJway, and coffeeroom, connected 
in a cyclic fashion) T indicates lab tidiness with five values 
TO (messiest) to TA (tidiest) We also have four boolean van-
ables denoting whether there is mail in the user's box (A/), 
an outstanding coffee request by the user (CR), the robot has 

'For example software agents as commonly conceived, often 
have this flavor 

JIn (Boutiber and Puterman 1995) we give a full desenption of 
this problem and further details of our algonthms 
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mail (HRM), or the robot has coffee (HRC This gives rise 
to a problem with 400 states 

Process-onented problems typically arise in systems that 
change in certain ways independendy of the agent's actions 
Changes that demand the agent's continuing attention require 
that we model exogenous events that change the state of the 
system. An especially important class of such events wil l be 
user commands so our agent can react to requests, we treat 
user commands as particular exogenous events that cause facts 
like "there is an outstanding request to do X" to become true 
These are not goals in the classical sense, however, for an 
agent is under no obligation to drop what It Is doing and im-
mediately (or ever) satisfy the request. Requests must be 
balanced with other objectives in the derivation of an opti­
mal course of action for the agent The variable CR above 
serves this purpose — it indicates whether the user has issued 
a coffee request that remains unfulfilled In order to model 
OUT problem, we assume three exogenous events occur occa­
sionally the arrival of mail (causing M ) , the user requesting 
coffee (causing CR) and the lab becoming untidy (causing 
T to decrease one unit) We assume the probability of any 
of these events occurring at a given time is known Clearly, 
optimal plans vary with these probabiliues For instance the 
robot may "hang out" at the mailroom if mail arrival is likely 

Our robot has a number of actions at its disposal it can 
move through its domain in either direction (actions Gou 
and GoO), it can pickup mail (PuM) successfully if in the 
mailroom and there is mail, it can deliver mail (DelM) in its 
possession to the user; it can pour coffee (PC) if in the coffee 
room, it can deliver this coffee (DelC) to the user in the office 
(causing a request CR to be fulfilled), it can tidy the lab (Tidy) 
by one unit, and it can do nothing (Stay) 

To construct a plan, an agent must be able to predict the 
system state after execution of an action Here however these 
predictions must account for the possible occurrence of exoge­
nous events A common technique for incorporating events 
is to "roll in " the probability of exogenous event occurrences 
and their effects into the action description For example 
when the robot considers the effect of GoO not only wil l it 
know that its location changes, it expects mail to arrive with 
some probability as well However the natural specification 
of the problem suggests that a user should be permitted to 
specify exogenous events and their effects independendy of 
the action specificanon So in addition to the eight actions, 
we assume that the three events described above (denoted 
ArrM, ReqC, and Mess) are specified independently in much 
the same format as actions Unlike acnons, whose occurrence 
is controlled by the agent, events must also come with a de­
scription of the conditions under and probabilities wiih which 
they may occur For instance, we might assume that ArrM 
occurs with probability 0 2 at any "stage" (see below) 

In order to construct a plan or policy, we can automatically 
"roll in" the event probabilities and effects into the action 
descriptions This is usually a straightforward process, but 
problems arise when an action and an event affect the same 
variable in different ways For instance, suppose the action 
PuM is executed at a certain stage in the plan (causing 7i7) 
and the event ArrM occurs at the same stage (causing M) 
There are no general principles by which the "true" effect of 
the action-evem pair can be constructed from the information 
provided Thus we assume mat for any such conflicts, die 

user is willing to specify the "net effect" on the variable in 
question In our domain, most action-event pairs have pre­
dictable effects on van able s and the few contentious cases are 
resolved explicitly for example lfArrM occurs concurrently 
with PuM, M is true (there is more mail to pick up) We 
describe action-event merging formally in the next section 

Also taking on added importance in process-onented mod­
els Is the representation of goals and objectives If goals are 
classical (discrete propositions), how should one represent the 
fact that one goal should be achieved before another, or that a 
goal has been achieved and that the next can be pursued^ In 
a decision-theoretic setting, how should one assign rewards 
or costs to fulfillment of objectives (or lack thereof)? In a 
process-onented problem, the usual approach of assigning 
rewards to states in which objectives are satisfied becomes 
problematic — since the objective may remain true in sub­
sequent states, there is a danger of "over-compensating" an 
agent for satisfying an objective once On the other hand, as­
sociating rewards with state transitions (e g , a transition to a 
good state from a bad one) has its own difficulties We discuss 
these issues in detail in (Boutilier and Puterman 1995) 

For this problem, and many in which there are separate 
objectives to be balanced a useful reward model is one where 
penalties are associated with states in which objectives are 
unsatisfied For instance at any state where there is an out­
standing user request CR, the agent is penalized Such request 
variables become false when die objective (in this case, suc­
cessful coffee delivery) is met The magnitude of the penalty 
reflects the relative importance of the objective In our ex­
ample, we associate (additive) penalties with the following 
propositions CR (an outstanding coffee request), M V HRM 
(undelivered mail), and Tn if n < 4 (with penalties varying 
with degree of tidiness) The magnitudes of the penalties cap-
ture the relative priority of mail, coffee and tidiness Optimal 
plans vary considerably with the relative importance of these 
objectives For example, the robot may move to the mailroom 
if there are no current tasks and mail has high priority 

3 MDPs and their Representation 

We model a DTP problem as a completely observable MDP 
These are ideal for representing stochastic domains without 
classical goals, and especially process-onented problems We 
assume a finite set of states 5, a set of actions A and a re­
ward function R An action takes an agent from one state 
to another with each transition corresponding to a stage of 
the process The effects of actions cannot be predicted with 
certainty, hence we write to denote the proba­
bility that s2 is reached given that action a is performed in 
state s 1 These transition probabilities can be encoded in an 

matrix for each action 3 Complete observability 
entails that the agent always knows what state it is in We 
assume a bounded, real valued reward function R, with R(s) 
denoting the (immediate) utility of being in state B 4 For our 
purposes an MDP consists of S, A, R and the set of transition 
distributions 

A plan or policy is a mapping TT where s , de­
notes the action an agent wil l perform whenever it is m state 

3We assume any action can be attempted in any stole 
4Cosu can also be associated with actions in general 
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s5 Policies naturally encode strategies suited for process-
oncnted problems, there is no notion of a bote sequence of 
actions or termination condition as in the classical setting 
Given an MDP, an agent ought to adopt a policy that maxi­
mizes the expected value of its (potentially infinite) trajectory 
through the state space Typically value depends in a com­
positional way on the stales (in particular, the rewards R{s)) 
through which an agent passes The most common value (and 
ophmahty) criterion m DTP for mfinite-honzon problems is 
discounted total reward the current value of future rewards 
is discounted by some factor and we want 
10 maximize the expected accumulated discounted rewards 
over an infinite time period The expected value (under this 
measure) of a fixed policy n at any given state s can be shown 
to satisfy (Howard 1971) 

The value of at any initial state JS can be computed by 
solving this system of linear equations A policy is optimal 

Techniques for constructing optimal policies for discounted 
problems have been well-studied While algorithms such as 
modified policy iteration (Puterman and Shin 1978) are often 
used in practice, an especially simple algorithm is value it 
eration based on Bellman's (1957) "principle of optimality" 
We discuss value iteration because it can, under certain con­
ditions be used directly for average-reward problems as we 
describe below Algorithms such as policy iteration may be 
much more complex in average-reward settings 

We start with a random value function V° that assigns some 
value to each i Given value estimate V for each stale 
s we define 

The sequence of functions V' converges linearly to the op-
timum value in the limit. After some finite number n of 
iteranons, the choice of maximizing action for each s forms 
an optimal policy and approximates its value 6 

The above specification of MDPs requires that one spell out 
the transition matrices for each action and a reward function 
over the explicit state space S Even for a relatively simple 
problem like the "gopher" example, with 400 states this can be 
prohibitive Clearly, we do not expect users to specify prob-
lems in such an explicit form. Recently, a number of action 
representations such as STRIPS and influence diagrams have 
been applied to the problem of representing stochastic actions 
and MDPs generally (Kushmenck, Hanks and Weld 1994, 
Bounber and Dearden 1994, Tatman and Shachter 1990) 
We adopt the "two-slice" temporal Bayes network (Dean and 
Kanazawa 1989) For each action, we have a Bayes net with 
one set of nodes representing the system state prior to the 
action (one node for each variable) another set representing 
ihe world after the action has been performed, and directed 
arcs representing causal influences between the these sets (see 

JSuch policies arc stationary- acuon choice depends only on 
the state, and not the stage For the problems we consider opumal 
stationary policies always exisL 

6We discuss stopping criteria in Section 4 see (Puierman 1994) 

(Boublier, Dearden and Goldsznndt 1995) for a more detailed 
discussion of this representation) 

Figure 1 shows the specification of the action network for 
PuM, describing the effect of PuM independent of any event 
occurrences The tables for the postacbon variables describe 
the effects of the action Nodes labeled Persist are unaf­
fected and retain their preaction value (persistence tables are 
constructed automatically) 

The event network for ArrM m Figure 1 has a somewhat 
different form. While the effects of events are specified as 
with actions (we omit persistence variables for conciseness), 
we must also indicate the probability of the event occurring 
The ArrM network contains a double-circled node denoting 
the occurrence of the event in question, with an unconditional 
probability table The parents of event nodes (though this 
example has none) are those variables that influence the prob-
ability of the event occurrence (e g , ArrM could depend on 
the time of day) 

Finally, the net effect network for PuM is shown we no­
tice that its effect on hoc, HRC and HRM is the same Its 
effect on CR and T is altered, corresponding to the events 
ReqC, Mess; but the combination is derivable automatically 
The contention between the effect of PuM and ArrM on the 
variable M has to be resolved by the user — in this case, we 
assume more mail arrives (1 e , the robot picks up mail at the 
beginning of the period) Implicit in this type of specification 
is the modeling assumption that the action and event networks 
simply describe what hold at the endpomts of a given stage 
The acuon network for PuM says that if the robot is in the 
mailroom and there is mail at the beginning of a stage, the 
robot has the mail at the end of the stage It makes no assump­
tions about how this effect is manifest during the intervening 
interval Therefore, when combined with the event ArrM (in­
terpreted similarly) we cannot predict the interactions of their 
effect on the contentious variable M the user must resolve 
the conflict We do, however, assume that explicit effects Lake 
precedence over "persistence' variables 

We note that these tasks should not be viewed as classical 
goals Depending on the event probabilities and the impor­
tance of it objectives, under some circumstances tasks can 
be ignored For example, if mail is far more important than 
tidiness and mail constantly arrives, the robot wil l never stop 
to ndy the lab under the optimal policy 

4 Average Reward Opt imal i ty 
With goal-oriented problems, there is a straightforward mea­
sure of success In many decision theoretic problems, such as 
finite-horizon influence diagrams one can sum the expected 
utility per stage of the policy But for infinite-horizon process-
oriented problems the total accumulated reward typically di­
verges, making any direct comparison between policies mean­
ingless fhus discounting factors are often introduced With 
a discounting rate less than one, total discounted reward wil l 
be bounded and comparisons can be carned ouL 

Unfortunately the choice of discounting rate can have a 
drastic influence on optimal policies A discounting rate such 
as 0 9 is hard to justify in our robot example and can induce 
an unacceptable bias toward quick rewards This essentially 
means that a unit reward achieved at stage of the pro­
cess is (currently) worth 90% of the value of a unit reward 
achieved at stage n — the motivation for discounting is pn-
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Figure 1 Action, Event and Net Effect Networks 

manly economic But it is difficult 10 provide an economic 
justification for discounting in problems such as these 

In process-onented problems, we are primarily interested in 
the steady-state performance of our agent As such, expected 
average reward per stage is the most appropriate measure of 
a policy By choosing discount raies very close to one, op-
timal discounted policies may be similar to average-optima] 
policies, however, discounted algorithms may converge very 
slowly (e g , value iteration) or involve ill-conditioned sys­
tems (e g , policy iteration) Furthermore, directly computing 
average-optimal policies conforms closely to our intuitions 
about long-term processes We present a brief summary of 
average-optima]try and Its computation, but refer to (Puter-
man 1994) for a detailed expositioon 

The expected average reward or gain of a policy is 

where is (be expected total reward when ir is used for 
n stages starting at state a Intuitively, the gain describes the 
steady-state average reward one can expect of a policy when 
starting in state s A policy is average (or gam) optimal if it is 
not dominated by another policy in the usual sense, according 
to this measure In our finite state setting, average-optimal 
stationary policies always exist 

Computing average-optimal policies involves a number of 
subtleties that make approaches such as policy-iieration rather 
complex However one of the interesting aspects of this 
optimality measure, which can be exploited for computational 
gain is its sensitivity to the chain or communicating structure 
of the MDP We can classify an MDP according to the Markov 
chains induced by the stationary policies it admits For a fixed 
Markov chain, we can group states into maximal recurrent 
classes such that each state reaches every other state in that 
class eventually states belonging to no recurrent class are 
called transient An MDP is recurrent if each policy induces 
a Markov chain with a single recurrent class An MDP is 
umchain if each policy induces a single recurrent class with 
(possibly) some transient states An MDP is communicating 

if for any pair of states s, t, there is some policy under which 
s can reach t We call other policies noncommumcating B 

Umchain and recurrent MDPs are especially well-behaved 
the gain of every stationary policy is constant 
is identical for all and methods such as policy and 
value iteration can be used in a relatively straightforward way 
But planning problems wil l seldom exhibit this structure To 
be recurrent, we must know the agent wil l visit each state 
infinitely often no matter what policy it adopts It wil l almost 
always be the case that an agent can choose to avoid certain 
states As soon as we have a domain where an agent can move 
to a certain sections of the state space and remain there (e g 
Stay), the MDP wil l not be unichain or recurrent. 

While not quite so well-behaved, communicating models 
have the nice feature that optimal policies (though not all 
policies) must have constant gam While policy iteration be­
comes much more complicated in this case, value iteration 
can be used directly To construct an optimal policy, we 
run value iteration as described above with / stopping 
when the span9 of the difference between two consecutive 
estimates is small in other words, value iteration stops when 

for some small Thus when the differ­
ence between two value estimates is nearly constant, we are 
close to an average optimal policy However, this algorithm 
can only be used under conditions when we know the optimal 
gain is constant otherwise the algorithm may not converge 10 

Otherwise more complex methods are required Thus, the 
identification of the underlying chain structure of an MDP 
becomes an important computational tool for constructing 
average optimal policies 

We note that the techniques of (Bouulier, Dearden and 
Goldszmidt 1995) can be applied in this setting, allowing 
value iteration to work on groups of states instead of com-

7We assume this limit exists. This may not be the case if the 
MDP admits policies that are periodic in this case the definition 
may use a slightly more robust Cesaro limit (Putennan 1994) 

' in the full paper we ductus weakly communicating MDPs, which 
share nice features with communicating MDPs. 

1DThc algorithm may also not converge if the MDP admits pen 
odic chains, but apenodicity transformations that introduce a small 
amount of noise can be used. Note also that setting & — 1 is not 
problematic relative value iteration can be used If undiscounted 
values get too large See (Putemun 1994) for these details. 
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puting over an explicitly enumerated state space if n can be 
factored (e g , using a Bayes net) Thus, our representation 
can be exploited for computational gain as well 

4 1 Discover ing Commun ica t i ng St ruc ture 

We expect many DTP problems to be communicating These 
problems are such that an agent could with positive probability 
reach any state from any other slate However noncommu-
nicating problems are not rare in planning domains (e g , if 
there are 'irreversible choices" such as a robot going down 
"unclimbable" stairs, or an agent breaking an egg) Thus 
we must take care to classify an MDP before attempting lo 
construct an average optimal policy If the MDP is communi­
cating value iteration can be used directly The classification 
algorithm we use has the added advantage that it can be used 
to apply value iteration (piecewise) to general MDPs (as we 
sketch below) 

An efficient algorithm for classifying Markov chains known 
as the Fox-Landi algorithm (FL) (Fox and Landi 1968) can 
be extended to the classification of MDPs by considering the 
"reachability" matnx for the MDP Roughly, we construct 
a single transition matnx that assigns positive probabdity to 
entry i, j if there is any action that moves the process from state 
i to state j with nonzero probability FL works by constructing 
paths through the state space using this reachability matrLx, 
producing a labeling and grouping of all states Roughly a 
start state i is chosen and a path is constructed by adding a 
state j reachable from i a stale reachable from j and so on If 
[he path ever loops the entries in the loop are merged into one 
supers late " Note a path can always be extended although 

n might form a cycle If the cycle (or superstate) cannot be 
extended (I e , all states reach only other stales in the cycle) 
then the states in the cycle are grouped into the same recurrent 
class A i l states on the path leading to (but not part of) the 
cycle are classified as transient Then a new unclassified start 
state is chosen If in path extension a previously classified 
state (either recurrent or transient) is ever reached all slates 
on the path are transient, and we begin again If FL classifies 
all states as recurrent and puts them in the same recurrent 
class, then the MDP is communicating and value iteration can 
be used to solve it 

This form of the FL algonthm requires explicit enumera­
tion of the state space, and fails to exploit regularities captured 
in our representation of the system dynamics To avoid this 
we present a structured Fox Landi algonthm (SFL) that uses 
the action descnplions directly SFL can be used to classify 
an MDP directly, or more generally classify any compactly 
represented Markov chain Furthermore, in conjuncnon with 
a structured implementation of value iteration it can be used 
to compute average-optimal policies for arbitrary MDPs (re­
gardless of chain structure) 

Schematic states and paths The key feature of the SFL 
algonthm is its use of a schematic representation for states, 
paths and cycles, allowing entire groups of paths to be ex­
tended in a single operation The schematic path building 
and cycle detection operation then itself involves a number of 
crucial components, which we bnefly describe 

Schematic states (s-states) represent groups of states corre­
sponding lo a partial variable assignment. For example, we 
use (LL ) to capture a state where LL (lab) is true, and 
the other variables (M, T, etc ) have some fixed value In 

general, an s-state consists of n slots to represent values of 
n domain variables A slot can be filled in various ways It 
can have a fixed value such as LL, or an arbitrary fixed value 
from a certain set, denoted (LL,LO) This represents any 
fixed state with one of the specified values We abbreviate all 
values of a variable using a dot as shown above, and we use 
an overhne to denote the complement of the value set 

Schematic paths (s-paths) are constructed by applying ac­
tions to s-states — since a tons have local effects, only certain 
portions of an s-state are affected This can be viewed as im-
plicitly extending every state consistent with the s-state For 
example in Figure 2(a) the s-state above is extended to the 
state {LO ) This is reached by applying action CoO 
(whose effect can be read from its network) This s-path of 
length two actually represents the 80 true paths induced by 
assignment to the variables An s-path with fixed values rep-
resents the set of paths where the variable has some fixed 
value everywhere in that path (unless a different value occurs 
later in the path) We can also represent cycles schematically 
as single states The notation in Figure 2(c) means 
thai any value in that set is "reachable" from any other value 
Thus, it captures a cycle between states where TO and T\ hold 
(all else equal) abbreviates a cycle among all possible 
values of variable Loc (see Figure 2(a)) 

A key element in path construction and cycle detection is 
unification to test whether two s-states intersect (1 e , share 
stales) Unification is straightforward - it identifies the stales 
shared by two s-slates (the unifier) as well as those they do 
not, in a symbolic fashion It is used to join two s-paths or 
form a cycle, but in general when two paths are joined at 
an s-state the unification is not complete (1 e , there wil l be 
states that are not shared) In this case, the s-paths wil l split a 
concatenated s-path wil l be formed using the unifier (common 
states) and the remaining states wil l be split off symbolically 
leaving two more specific s-paths (we see this below) A 
detailed exposition of path splitting is not possible here 

Finally, because an s-path represents a group of paths, and 
can be split into more specific s-paths, we must keep track of 
partially constructed s-paths that have not been extended to 
completion Unlike ordinary FL, which only ever builds one 
path we must keep an open list of such partial s-paths When 
extending the current path, we wil l try to unify the head with 
earlier states in the path (to create cycles) or an existing path 
on the open list- By creating cycles whenever possible, the 
problem representation tends to stay compact 

St ruc tu red Fox -Land l A l g o r i t h m We give a high-level 
sketch of the SFL algorithm (Figure 3) and describe its ap-
plication to our example (Figure 2) We defer a detailed 
description to (BoutilierandPuterman 1995) along with more 
formal definitions and a proof of correctness The example 
here blurs a number of steps in the algorithm for conciseness 

We begin by choosing the initial s-state in Figure 2(a) It 
is called the current paih, and the main loop of the algorithm 
constantly extends the current path by applying an action and 
choosing some possible outcome of that action In this case 
the action GcO is applied several times, extending the palh to 
length 5 The sixth application returns to the initial state in 
the path This is delected by the unification procedure during 
cycle detection Whenever the current path is extended, the 
new head state is compared to all (unclassified) visited s-
stales, either those earlier in the path or those on the open list 
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Figure 2 The Structured Fox-Landi Algorithm 

In this case a cycle is detected and the path is collapsed into 
the s-cycle at the bottom of Figure 2(a) Thus, the robot can 
(with nonzero probability) reach any location from any other 
without disturbing other variables 

We continue in Figure 2(b) by specializing this cycle (the 
head of the current pain) with the value T4 The "rest" of 
the s-cycle is still valid it 1` split from the current path 
and added to the open list for extension in the future We 
apply the action Slay several times under which the lab (with 
nonzero probability) gets messier, giving us the current path 
in Figure 2(b) At each point, one fewer "instance" of T is left 
on the open list, since the head state at each path extension 
step unifies with a specializanon of the s-state on the open list 
(detected in path joining) By the end, the open list is empty 

In Figure 2(c), the action Tidy is applied at the head of the 
current l ist While Tidy only has the desired effect when LL 
holds, the condition ensures that the necessary condition 
LL is reachable But alter the action, LL remain true Cycle 
detection discovers that this new state unifies with a previous 
state on the path, and the new cycle is formed (the second 
path in Figure 2(c)) With several more applications of Tidy, 
we easily get to the state 

It is worth noting, at this point, that we have discovered that 
the "subprocess" consisting of variables Loc and T is now 
known to be communicating, although we haven't explicitly 
constructed a path through all 25 states (5 5) of this process 

Instead, we have shown that all values of Loc communicate 
and that all values of T communicate under some value of 
Loc This simple subprocess illustrates the spirit of SFL We 
expect that problems that can be decomposed into groups of 
variables that have strong mutual influence (within groups), 
but relatively constrained influences between groups, wi l l be 
very well-suited for SFL (see "Heuristics" below) 

We continue in Figure 2(d) by considering the variable M 
We start with value M, and extend it with Stay (making M 
true due to possible mail arrival), this unifies with the initial 
open list, making it empty In an effort to form a quick cycle, 
we apply acbon PuM The condition LM is satisfied by { L * } , 
and holds following the acbon Another effect however in 
HRM This unifies with the initial state but forces the current 
path to split only HRM becomes part of the cycle (nothing 
in PuM can force the robot to lose the mail) The split chain 
HRM stays apart from the cycle Finally, in Figure 2(e) we 
extend this chain with the DelM action if LO holds then 
HRM becomes false and the path collapses into a cycle The 
variables CR and HRC wi l l behave similarly and thus our 
MDP is communicating 

For other problems, the algorithm is somewhat more com­
plex Here we notice that each s-state can be extended to a 
novel s-state by some action until the obvious final step If 
there are multiple recurrent classes, when we complete the 
construction of a maximal cycle, some effort is required to 
ensure that it is a maximal class In particular, we must en-
sure that no action can move the system out of that class of 
states However, given the schematic representation of cy­
cles and paths and the structured acbon representations, this 
can usually be verified quite readily Even in the worst case 
(with no exploitable structure), the effort is no more than that 
needed to construct the reachability matrix for FL 

Heuristics We note that in our example the algorithm 
verifies the communicating structure in under 30 steps of path 
extension Even with the overhead of unification, this is con­
siderably better than the i steps (in this case, roughly 
160,000) required by FL Ofcourse, we have exploited "good" 
action and outcome choices in performing the algorithm here 
A crucial aspect of SFL is the use of heuristic information 
encoded in the action representation when choosing the "d i ­
rection" in which to extend a path 

The mam guiding principle is that we attempt to find the "lo­
cal communicating structure" of individual or small groups of 
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Figure 4 Influence Graph for Example Problem 

variables that are, to some extent, shielded from the influence 
of other variables In particular, we try to find short s-cycles 
in small groups of variables, choosingparticular variables and 
outcomes that wi l l unify with earlier states We choose the 
variables to extend using an influence graph that describes 
influences between variables (see Figure 4) In our example 
hoc is expanded first since no other variables under any action 
influence the probability of hoc (as indicated by the graph) 
the structure of Loc is independent of any other conditions 
In our example this means under all circumstances it can be 
ignored when determining the structure of other variables A l l 
variables are partially ordered by the graph and are expanded 
roughly reflecting this order 11 

4 2 Exp lo i t i ng Commun ica t i ng St ruc ture 
Our algorithm has three outcomes of interest either a sin 
gle recurrent class is discovered, a single class plus transient 
states, or more than one recurrent class (plus possibly transient 
states) If our aim is to simply categorize an MDP as commu­
nicating or not, the algorithm can be terminated as soon as any 
transient states (or multiple recurrent classes) are identified 
If identified as communicating a simple algonihm like value 
iteration, or related methods based on structured representa­
tions (Boutiher Dearden and Goldszmidt 1995), can be used 
to determine the average optimal policy 

If the algonthm discovers more than one recurrent class 
then the MDP is multichain (i e general) If a single recur­
rent class is discovered together with transient states, then it 
may be weakly communicating or multichain Weakly com-
municating MDPs also have constant gain and can be solved 
using value iteration however, determining this fact requires 
examination of individual policies something our algonthm 
does not currently do If the process is multichain, more 
complex methods may have to be used 

However, Ross and Varadarajan (1991) have proposed a 
method for decomposing general MDPs We are currendy 
adapting this method for use with SFL to constructing average 
optimal policies using (piecewise) value lteradon Roughly, 
the recurrent classes identified by SFL can be "solved" inde­
pendently using value iteration (since they must have constant 
gain) Then these states are "eliminated " Transient states are 
reclassified in this reduced MDP, and FL is run again on the re­
mainder of the state space (ignonng these recurrent classes) 
The second level of FL provides new recurrent classes for 
which optimal gain (in the sub-problem) is constant These 
can be pieced together with the previously classified states 

"The precise meaning of the graph and lis construcuon are de 
scribed in (Boutiher and Puterman 1995) 

to determine a new policy if the gam in the subproblem is 
greater, these states adopt actions that keep them from the 
earlier states The procedure continues until all states are 
classified 

5 C o n c l u d i n g R e m a r k s 
We have argued that many planning problems are process-
onented and that special consideration must be given to these 
especially in the choice of reward and acoon representation 
We also claim that average-optimality is the most appropri­
ate measure of performance for many process problems, and 
have presented the SFL algonihm to determine the communi­
cating structure of an MDP, an important part of constructing 
average-optimal policies, using compact action representa­
tions We are currently explonng further heunsucs for the 
algonthm conducting experiments to determine general prob-
lem characteristics that predict good performance of SFL as 
compared to standard FL, and extending our approach to mul­
tichain problems 

Future research includes applying these ideas to semi-
Markov models where actions can take varying amounts of 
time and the use of more genera) modeling assumptions for 
events The discovery of weakly-commumcatmg MDPs using 
structured paths is also of interest 
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