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Abstract 
Markov decision processes (MDPs) have recently 
been appbed to the problem of modeling decision-
theoretic planning While traditional methods for 
solving MDPs are often practical for small states 
spaces, their effectiveness for large AI planning 
problems is questionable We present an algorithm, 
called structured policy Iteration (SPI), that con­
structs optimal policies without explicit enumera­
tion of the state space The algorithm retains the 
fundamental computational steps of the commonly 
used modified policy iteration algorithm, but ex­
ploits the variable and prepositional independencies 
reflected in a temporal Bayesian network represen 
tation of MDPs The principles behind SPI can be 
applied to any structured representation of stochas­
tic actions, pobcies and value functions, and the 
algorithm itself can be used in conjunction with re­
cent approximation methods 

1 In t roduc t ion 
Increasingly research in planning has been directed towards 
problems in which the initial conditions and the effects of 
actions are not known with certainty, and in which multiple 
potentially conflicting objectives must be traded against one 
another to determine optimal courses of action For this rea­
son, there has been much interest in decision theoretic plan­
ning (Dean and Wellman 1991) In particular, the theory of 
Markov decision processes (MDPs) has found considerable 
popularity recently both as a conceptual and computational 
model for DTP (Dean et al 1993, Boutilier and Dearden 
1994, Tash and Russell 1994) 

While MDPs provide f irm semantic foundations for much 
of DTP, the question of their computational utility for AI re­
mains Many robust methods for optimal policy construction 
have been developed in the operations research (OR) commu­
nity, but most of these methods require expbcit enumeration 
of the underlying state space of the planning problem, which 
grows exponentially with the number of variables relevant to 
the problem at hand This severely affects the performance of 
these methods, the storage required to represent the problem, 
and the amount of effort required by the user to specify the 
problem. Much emphasis in DTP research has been placed 
on the issue of speeding up computation, and several solu­
tions proposed, including local search methods (Dean et al 

1993, Dearden and Bouuher 1994, Barto, Bradtke and Singh 
1995, Tash and Russell 1994) or reducing the state space via 
abstraction (Boutilier and Dearden 1994) Both approaches 
reduce the state space in a way that allows MDP solution 
techniques to be used, and generate approximately optimal 
solutions (whose accuracy can sometimes be bounded a pri­
on (Boutilier and Dearden 1994)) While approximation is 
no doubt crucial, two questions remain a) what if optimal 
solutions are required'7 b) what if the state space reduction af­
forded by these methods is not great enough to admit feasible 
solution? 

The approach we propose is orthogonal to the approxima­
tion techniques mentioned above It is based on a structured 
representation of the domain that allows the exploitation of 
regularities and independencies in the domain to reduce the 
"effective" state space This reduction has an immediate effect 
on the computation of the solution, the storage required and 
on the effort requrred to specify the problem The approach 
has the following benefits 

• It computes an optimal, rather than an approximate so­
lution Thus, it can be applied in instances where opti­
mal] ty is strictly required 

• It employs representations of actions and uncertainty that 
are well known in the AI literature 

• It is orthogonal to, and can be used in conjunction with, 
many ofthe approximation techniques mentioned above 

This third point is especially significant because approxima­
tion methods such as abstraction often require that one opti­
mally solve a smaller problem. 

In this paper, we describe our investigations of a com­
monly used algorithm from OR called modified policy iter­
ation (MPI) (Puterman and Shin 1978) We present a new 
algorithm called structured policy iteration (SPI) which uses 
the same computational mechanism as MPI As in (Boutilier 
and Dearden 1994), we assume a compact representation of an 
MDP, in this case using a "two-slice" temporal Bayesian net­
work (Dean and Kanazawa 1989, Darwiche and Goldszmidt 
1994) to represent the dependence between variables before 
and after the occurrence of an action In addition, we use a 
structured decision tree representation of the conditional prob-
ability matrices quantifying the network to exploit "proposi-
tional" independence, that is, independence given a particular 
variable assignment (see also (Smith, Holtzman and Math-
eson 1993)) Propositional independence is reflected in the 
specific quantification of the network, in contrast to the van-
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able independence captured by the network structure Such 
representations allow problems to be specified in a natural 
and concise fashion, and they have the added advantage of 
allowing problem structure to be easily identified 

Using this representation, we can exploit the structure and 
regularities of a domain in order to obviate explicit slate space 
enumeration Roughly, at any point in our computation, states 
are partitioned In two distinct ways those states assigned 
the same action by the 'current" policy are grouped together, 
forming one partition of the state space, and those state whose 
'current" estimated value is the same are grouped, forming a 

second partition MPI-style computations can be performed, 
but need only be considered once for each partition, rather than 
for each state The motivation for our method is similar to that 
underlying Bayes nets and influence diagrams namely that 
many problems seem to exhibit tremendous structure Just as 
network algorithms have proven practical for reasoning under 
uncertainty, we expect SPI to be quite useful in practice 

In Section 2 we briefly describe MDPs and the MPI al­
gorithm, we refer to (Puterman 1994) for a more detailed 
description of MDPs and solution techniques In Section 3 
we discuss our representation of MDPs using decision trees, 
and in Section 4 we describe the structured policy iteration 
algorithm. The two phases of the algorithm, structured suc­
cessive approximation and structured policy improvement are 
described individually We illustrate the algorithm on a de­
tailed example, and describe the results of our implementation 
We refer to the full paper (Bouulier, Dearden and Goldszmidt 
1994) for a much more detailed descnphon of the algorithm 
and implementation, and discussion of additional issues 

2 M o d i f i e d Po l i c y I t e r a t i o n 
We assume a DTP problem can be modeled as a completely 
observable MDP We assume a finite set of states S and ac­
tions A, and a reward function R While an action takes an 
agent from one state to another the effects of actions cannot 
be predicted with certainty, hence we wnte Pr[s\ , a, 32) to 
denote the probability that s2 is reached given that action a 
is performed in state si These transition probabilities can 
be encoded in an matrix for each action Complete 
observability entails that the agent always knows what state it 
is in We assume a bounded, real-valued reward function R 
with R{s) denoting the (immediate) utility of being in state s 
For our purposes an MDP consists of 5, A R and the set of 
transition distributions 

A plan or policy is a mapping where 
denotes the action an agent wi l l perform whenever it is in 
stale Given an MDP, an agent ought to adopt an optimal 
policy that maximizes the expected rewards accumulated as 
it performs the specified actions We concentrate here on dis­
counted infinite horizon problems the current value of future 
rewards is discounted by some factor and 

'The analogy in fact is quite strong Tatman and Shachter (1990) 
have shown that Influence diagram methods perform dynamic pro-
gramming steps on MDP problems in a way that "compacts" the 
state space somewhat. However their method is restricted to ftnice-
honzon problems, and adopts value iteration, which converges much 
100 slowly on the infinite (or indefinite) bonzon problems frequently 
encountered in planning (Puterman 1994) 

2Thus we restnct attention to stationary policies. For the prob-
lems we consider optimal stationary policies always exiSL 

we want to maximize the expected accumulated discounted 
rewards over an infinite time period The expected value of a 
fixed policy at any given stale is given by 

The value of n at any initial state can be computed by 
solving this system of linear equations A policy is optimal 
if for all a S and policies 

Howard's (1971) policy uerabon algorithm constructs an 
optimal policy by improving the "current" (initially random) 
policy by finding for each state some action better than the 
current action for that state Each iteration of the algorithm 
involves two steps, policy evaluation and policy imprvvemenr 

1 For each s 5, compute 
2 For each e e S find the action a that maximizes 

(2) 

The algorithm iterates on each new policy until no im­
provement is found The algorithm wil l terminate with an 
optimal policy and in practice tends to converge in a reason­
able number of iterations 

Policy evaluation requires the solution of a set of \S\ lin­
ear equations in \S\ unknowns This can be computationally 
prohibihve for very large stale spaces However, one can es­
timate through several steps of successive approximation 

is approximated by a sequence of vectors , each 
a successively better estimate The initial estimate is any 
random \S\ vector The estimate (a) is given by 

Modified policy iteration (Puterman and Stun 1978) uses some 
number of successive approximation steps to produce an es­
timate of at step 1 We refer to (Puterman 1994) for 
theoretical and practical advice for choice of good stopping 
cntena MPI is used frequently in practice for large state 
space problems with good results (Puterman 1994) 

3 Represen ta t i on o f M D P s 
It is unreasonable to expect that DTP problems while for-
mulable as MDPs, wi l l be specified in the manner described 
above Since stale spaces grow exponentially wiih the number 
of propositions relevant to a problem, one should not expect a 
user to provide an explicit probability matrix for each 
action, or a |5|-vector of immediate rewards Regularities in 
action effects and reward structure wil l usually permit more 
natural and concise representations 

We wil l illustrate our representational methodology (and 
algorithm) on a simple example a robot is charged with the 
task of going to a cafe to buy coffee and delivering it to a 
user in their office It may rain on the way and the robot wil l 
get wet unless it has an umbrella. We have six propositions 
(hence64stateB)-XGocationofrobot L at office, at cafe") 
W (robot is wet), U (robot has umbrella), R (raining), HCR 
(robot has coffee), HCU (user has coffee) - and four 
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Figure 1 Action Network for DelC 

Go (to opposite location) BuyC (buy coffee), DelC (deliver 
coffee to user), GetU (get umbrella) Each of these actions 
has the obvious effect on a state, but may fail with some 
probability (see (Boutilier Dearden and Goldszmidt 1994) 
for a full problem specification) 

We discuss one possible representation for actions and uhli 
ties, Bayesuan networks, and in the next secoon show how this 
information can be exploited In MPI While our algorithm de­
pends on the particular representation given, the nature of our 
method does not and could be used with, say the probabilis­
tic STRIPS representation of (Boutilier and Dearden 1994, 
Kushmenck, Hanks and Weld 1994) 

We assume a set V of atomic propositions characterizing 
the relevant features of our domain Because of the Markov 
assumption, the effect of a given action a is completely deter­
mined by the current state of the world, and can be represented 
by a "two-slice" temporal Bayes net (Dean and Kanazawa 
1989 Darwiche and Goldszmidt 1994) we have one set of 
nodes representing the state of the world prior to the action 
(one node for each . another set representing the 
world after the action has been performed and directed arcs 
representing causal influences between these sets 3 Figure 1 
illustrates this network representation for the action DelC (de­
liver coffee), we wil l have one such network for each action 

The post-action nodes have the usual matrices describing 
the probability of their values given the values of their parents, 
under action A We assume that these conditional probabil­
ity matrices are represented using a decision tree (or if-then 
rules) (Smith Holtzman and Matheson 1993) This allows 
independence among variable assignments to be represented, 
not just variable independence (as captured by the network 
structure), and is exploited to great effect below A tree rep-
resentation of the matrices for variables HCU and W in the 
DelC network is shown in Figure 1 along with the induced 
matrix (our convention is to use left arrows for "true" and 
right-arrows for "false") Each branch thus determines a par­
tial assignment to the parents of that variable (in the network) 
with some parents unmenboned The leaf at each branch de­
notes the probability of the variable being true after the action 
is executed given any conditions consistent with that branch 
In this case when and HCR hold pnor 
to the action The tree associated with proposition P m the 

To simplify the exposiuon we only consider binary variables 
and assume that there are no arcs between post action variables 
Relaxing these assumptions (as long as the network: is acyclic) docs 
not complicate our algorithm in any essentia] ways 

Figure 2 Reward Function Network 

network for an action a is denoted Since we are 
interested only in the transition probabilities. for 
a known state s1, we do not require pnor probabilities (or 
matrices) for pre-action variables (the roots of the network) 

We note that many actions affect only a small number of 
variables, to ease the burden on the user, we allow unaffected 
variables to be left out of the network specification for that 
action Persistence is assumed and the arcs (indicated by 
broken arrows) and trees can be constructed automatically 
For instance, all of L, R, W and U are unaffected by the 
action DelC It Is easy to see how such an action representation 
induces a transition matrix over the state space 

We assume that the immediate reward R is solely a func­
tion of the state of the world As such, we can use a simple 
"atemporai influence diagram" to capture the regularities in 
such a function Since (immediate) reward is independent 
of stage and the action performed, we need only one net­
work to capture reward Figure 2 illustrates such a network 
Only variables that influence reward need be specified- One 
may also use a tree-structured representation for R as shown 
(where leaves now indicate the reward associated with any 
state consistent with the branch) It is easy to see how such 
a tree determines the reward funcuoni R(s) In this example 
the robot gets a reward of O 9 if the user has coffee and 0 1 if 
it stays dry which are added to determine R(s) 

4 Structured Policy Iteration 
Given a network formulanon of an MDP one might compute 
an optimal policy by constructing the appropriate transition 
matrices and reward vector, and solving with standard tech-
niques But as the number of propositions increase, stale 
spaces grow exponentially, and these methods quickly be­
come infeasible In addition, although these algorithms may 
converge in relatively few iterations, memory requirements 
are quite intensive 4 If a problem can be represented com-
pactly, the representation must exploit certain regularities and 
structure in the problem domain Therefore one can often ex­
pect that optimal policies themselves have certain structure, 
as do value functions Vw The optimal policy for our exam­
ple problem can be expressed quite concisely For example, 
DelC is the best action whenever HCR and L are both true, 
regardless of the truth values of the other four variables Thus 
by associating the action DelC with the proposition , 
we capture the policy for 16 states with one assertion 

We propose a method for optimal policy construction that 
eliminates the need to construct explicit transition matrices, 
reward and value vectors, and policy vectors Our method is 
based on MPI, but exploits the fact that at any stage in the 

4Putennan (1994) describes this as a potential bottleneck, our 
previous experiences also suggests this is often problematic 
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computation (a) The current policy may be structured, and 
(b) The value function for a policy or some estimate 
thereof, may be structured Rather than having a policy vector 
of size |S| individually associating an action with each state, 
one can use a structured representation 

Definition A structured policy is any set of formula-action 
pairs such that the set of propositions] 
formulae partitions the state space This induces 
ihe "explicit" policy 

Structured policies can be represented in many ways (e g , 
with decision lists (Rivest 1987)) We adopt a decision tree 
representation similar to the representation of probability ma 
tnces above Leaves are labeled with the action to be per­
formed given the partial assignment corresponding to the 
branch Thus, if there are k leaf nodes, the state space is 
partitioned into k subsets or clusters Figure 6 (the second 
tree) illustrates a structured policy we have 4 clusters and 4 
action assignments rather than one action assignment for each 
of 64 states5 

A structured value vector can be represented similarly as a 
set of formula-value pairs where states satis­
fying have value Again, we wil l use a tree-structured 
representation for such a para Don In this case, each leaf is 
annotated with the value associated with that partition (see 
Figure 4) 

The insights crucial to our algorithm are the following 

(a) If we have structured policy and a structured value 
estimate for an improved estimate can 
often preserve much of this structure 

(b) If we have a structured value estimate we can 
construct a structured improving policy 

The first observation suggests a structured form of successive 
approximation, while the second suggests that one can im­
prove a policy in a way that exploits structure This gives nse 
to the SPI algorithm for structured policy iteration 

1 Choose a random structured policy ihen LOOP through 2 3 
2 Approximate value function using structured successive 

apprvjamnhon 
3 Produce an improved structured policy (if no improvement 

u possible terminate) 

We describe these components of the algorithm in turn below 
bubal structured policy selection is fairly unconstrained 

In the example below, we adopt the greedy "one-step" policy 
(deliver coffee no matter what the state) 

Simpler policies should be preferred 

4 1 S t ruc tu red Successive Approx ima t i on 
Phase 1 of each iteration of SPI invokes structured succes­
sive approximation (SSA) we assume we have been given 
a structured policy and an initial structured estimate of that 
policy's value During the first iteration of SPI, SSA may use 
the immediate reward tree as its initial structured estimate 
In subsequent iterations the initial estimate is the computed 
value tree for the previous policy 

3We note thai tree representations of policies are someumes used 
in reinforcement learning as well (Chapman and Kaelbling 1991) 
however, the monvanon there is somewhat different- In addiuon, 
the ordering of variables in ihe tree can have a dramaiic impact on 
the me of the representation (sec Section 5) 

Given a policy we wish to determine its value The 
basic step of successive approximation involves producing a 
more accurate estimate of a policy's value given some 
previous estimate using Equation 3 Successively better 
estimates are produced until the difference between and 

is (componentwise) below some threshold.6 
SSA embodies the intuition that, given a structured value 

vector the conditions under which two states can have 
different values can be readily determined from the 
action representation In particular, although an action may 
have different effects at two states if this difference is only in 
variables or variable assignments not relevant to the structured 
value vector , then these stales must have identical values 
in Since is tree-structured, the SSA algorithm can 
easily determine what assignments are relevant to value at 
stage i The crucial feature of the algorithm is its use of the 
acDon representation to cluster the states , form a new tree 

under which the policy must have the same value at 
stage By doing so, we can c a l c u l a t e o n c e for each 
leaf of the tree rather than for each state in the stale space 
This may have a signifj cant impact on both tune and memory 
requirements in many cases 

We first describe the mam loop of the SSA assuming a 
single action (uniform policy) to be executed (see Algorithm 
Explain Tree m Figure 3), and give a detailed exam­
ple We then describe how general policies are dealt wim 

We accept a structured value vector Tree , the current 
estimated value for the current policy and an acnoD a to 
be performed at stage t (as if we were computing in 
Eq 2) Given an action a to be performed, the states that can 
have different values are diose that lead (under action a) 
to different partitions of Tree with different probability 
Roughly Tree describes not only what is relevant to the 
value of the policy (executed for i stages), but also how its 
value depends on (or is independent of) the particular variable 
assignments in the tree To generate the Tree we want 
to explain the partitions in That is, we want to 
generate the conditions that, if known pnor to the action, 
would cause a state transition with some fixed probability to 
fixed partitions (or leaves) of Tree 

Since the probability of reaching a given partition in 
is a function of the probabilities of the individual variables 
on its branch, we can build explanation componentwise 

6Betier stopping cntem are possible (Puterman 1994) but have 
no bearing on our algorithm 
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we consider the variables in Tree{V') individually More 
precisely explanations are generated by a process we call 
abducnve repaninoning, quite similar in spirit to probabilistic 
Horn abduction (Poole 1993) A given traversal of Tree(Vl) 
induces an ordering of relevant (post-action) variables, we 
"explain" variables in Tree(V') according to this order (Step 3 
of Figure 3) 

For each variable X in Tne(Vl), the conditions under 
which the probability of X vanes when action a is executed 
16 given by which Is simply read from the network 
for a (see Step 3b 1) Hence explanation generation for the 
individual variables is trivial - an explanation consists of the 
tree whose branches are partial truth assignments and whose 
leaves reflect the probability that the variable becomes true 
This explanation must be added to the current (partial) tree 
for (Step 3b 1) However, it need not be added to the 
end of every partial branch asserts the conditions 
under which X is relevant to value, the explanation for X 
need only be added to the leaves where those conditions are 
possible (Steps 3a and 3b) Since the tree is generated in the 
order dictated by the probabilities of the relevant 
variables are already on the leaves of the partial tree Once 

is added to the required leaves the new leaves of 
the tree now have Pr(X) attached in addition to the proba­
bilities of the previous variables (Step 3b 2), and these can 
be used to determine where the explanation for the next van-
able must be placed Should the variable labeling a node of 
Tree(X\a) occur earlier in the partial tree for V , + ' , that node 
in Tree(X\a) can be deleted (since the assignments to that 
node in must be either redundant or inconsistent-
Step 3b 1) Thus, much shrinkage is possible (see below)7 

Figure 4 illustrates the value trees that result for two suc­
cessive approximation steps, and as well as the fiftieth 
step in our example, using the initial policy DelC The gener­
ation of from is straightforward The first 
relevant variable HCU wi l l have different outcome probabili­
ties as dictated by Tree{HCV\DelC) in Figure 1 this requires 
the addition of variables The 
other relevant variable W has its tree added to each of the 
leaves of Tree(HCU\ DelC), 6ince it is relevant no matter how 
HCU turns out. This results in the tree structure shown in 
Figure 4 labeled 

More interesting is the generation of '. using 
illustrated in Figure 5, which we now describe 

in some detail The four variables in are ordered 
HCU, L, HCR, W We start by inserting 
(Slagel) which explains HCU The probability of HCU 
given the relevant assignment labels the leaf nodes The 
next variable L is "explained" by , however, 
from we notice that L is only relevant when 
is false Therefore, we only add L to those leaves where 

We notice that such leaves only exist be-
low the node L in our partial tree We also notice that 

contains only the variable L (by persistence), 
thus, no additional branches need to be added to the tree (any 

In general, one has to consider also the impact of the immediate 
reward function, whose tree can be incorporated into the tree 
(see Step 5), however this is often unnecessary when the reward 
function is used as an Initial value estimate 

1Wc don't use , is relevant to value whenever 
is less than certain 

further partitioning on Lis either redundant or inconsistent) 
The net result is the simple addition of a probability label for 
L on these leaves (see Stage2) In general, for more compli­
cated trees, we wi l l add a tree of the form to a leaf 
node, and eliminate some (but perhaps not all) of its nodes 

The next variable is HCR, which is only relevant when 
and L bold, and Tree(HCR\DelC) is added only at leaves 

where However as with L, 
the addinon of i (containing only the variable 
HCR) is redundant since leaves satisfying this condition he 
below node HCR is die partial tree (see Stage3) Finally, the 
variable W must be explained W is relevant at all points in 
the partial tree, so its is added to each leaf node (Stage4) 

Finally, with the probability labels the value tree . the 
reward tree, and the discounting factor (here the 
leaf nodes can be labeled with the values for V2 (Figure 4) 
In this example, abductive repartitioning gives rise to six 
distinct values in the estimates and Our mechanism 
generates a tire with eight leaves, but two pairs of these can 
be identified as necessarily having the same value (indicated 
by the broken ovals), see Section 5 Thus, in principle, only 
six value computations need be performed rather than 64 

To deal with general policies instead of single actions, SS A 
proceeds as follows We assume the policy is represented 
structurally as For each action a that occurs in the 
explanation algorithm is run, as above The nee generated 
for an action a is then appended to the leaves of at 
which a occurs Since may make certain distincuons 
that occur in the appended 'acuon trees," we delete any re­
dundant nodes to simplify the tree (either during or after its 
construction) 

The SSA algorithm requires some number of rounds of 
successive approximation before a reasonable estimate of the 
policy's value can be determined and die policy improvement 
phase can be invoked While the number of backups per step 
can potentially be reduced exponentially, there may be con­
siderable overhead involved m determining the appropriate 
partitions (or me reduced "state space") We first note that 
the reduction wil l often be worth the additional computation, 
especially as state spaces become (realistically) large — even 
as domains increase, the effects of actions may be quite local­
ized in many problem settings We can expect this reduction 
for a particular policy to be quite valuable In addition, and 
more importantly, this reparti honing need not be performed at 
each successive approximation step As the following theo-
rem indicates, once the partition stabilizes for two successive 
approximations, it cannot change subsequently 

Thus, the backups for successive estimates can proceed 
without any repartitioning Essentially, the very same com-
putations are performed for each partition as are performed for 
each state in (unstructured) SA, with no additional overhead 
In our example, we reach such convergence quickly When 
repartitioning to to compute we discover that the partition is 
unchanged the tree-representation of is identical to that 
for Thus, after one repartitoning the partition of our 
value vector has stabilized and backups can proceed apace 
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Figure 4 Fi f ty Iterations of SSA 

Figure 5 Generation of Abductively Repamnoned Vector 

The value vector V 5 0 contains the values that are within 0 4% 
of the true value vector , as shown in Figure 4 

It is important to note that while the value vector approx­
imates the true value function for the specified policy, the 
approximation is an inherent part of the pol icy evaluation 
algorithm No loss of information results from our partition­
ing The structured value estimates V are the same as those 
generated in the classic successive approximation (or MPI) 
algorithm they are simply expressed more compactly 

42 S t ruc tu red Policy Improvement 
When we enter Phase 2 of the SPI algorithm, we have a current 
structured policy and a structured value vector The 
policy improvement phase of MPI requires that we determine 
possible "local" improvements in the policy — for each state 
we determine the action thai maximizes the one-step expected 
reward, using our value estimate as a terminal reward 
function, that is, the a that maximizes Should a be 
different from we replace by a in our new policy 

Once again, we want to exploit the structure in the net­
work to avoid explicit calculation of all |S||A| values While 
there are several ways one might approach this problem, 
one rather simple method is based on the observation made 
above For any fixed structured value vector and action 
a we can determine the value vector using the algorithm 
Explain described above Abducuve reparti-
boning is used to identify the relevant pre-action conditions 
that Influence this outcome, and provides us with a new parti­
tion of the state space for a, dividing the space into clusters of 
states whose value is identical We 
determine one such partitioning of the state space for each 
action a and compute the value of a for each partition 

Figure 6 illustrates the value trees generated by the abduc 
tive repatationg scheme for the two actions DelC (the tree 

V5 0 from Figure 4) and Go The values labeling the leaves 
indicate the values in the policy improve­
ment phase of the algorithm — these are determined by using 
the probability labels generated by abduebve reparunoning 
and the tree for (We ignore actions BuyC and GeiU which 
generate similar trees to DelC but which are dominated by 
DelC at this stage of the algorithm ) We note that these values 
are undiscounted and do not reflect immediate reward With 
out action costs these factors cannot cause a change in the 
relative magnitude of total reward for an action Thus, actions 
need only be compared for expected .fature rewards (although 
action costs are easily incorporated)9 

With these values we must now determine a new locally 
improved policy choosing either Go or DelC for each state 
Given mat the expected value of the action only vanes be­
tween partitions, we can use the trees to quickly determine 
which action is best in each partition In the worst case, 
where the partitions are orthogonal, we must consider their 
cros6-product Here however, the trees share much structure 
Our current algorithm performs a reasonably straightforward 
merging of the trees in question, keeping the coarsest parti­
tions possible to produce a tree with the dominating values 
and action choices The result of this process is illustrated in 
Figure 6 which shows the maximally improved policy While 
there are a number of methods for merging the trees for each 
action, our current implementation reorders the trees so that 
the variable ordenngs are consistent (with the current value 

pWe should point out that while Tree{Go) has 20 value partitions, 
in fact, there are only 12 distinct values among these twenty More­
over these coincident values are due to structural properties of the 
problem and can be identified beforehand as necessarily having the 
same value For legibility we ornii the ovals that join these leaves 
with the same value 
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Action Co + Action I M C ■ M u k u l y Improved Policy 

Figure 6 Value Trees for Candidate Actions and the Improved Policy 

ordering if feasible), this allows a straightforward comparison 
of leaves to determine dominance and the structure of the new 
policy tree 

We note that if both Go and DelC provide equal value at a 
given state, the action of the earlier policy is chosen for that 
slate, as is usual in policy iteration Thus some of the states 
where DelC is chosen may have had equal value if Go had 
been chosen, but the persistence condition dictates our choice 
of DelC The net effect is often a simpler policy tree It also 
allows the easier detection of the termination condition 

43 Analys is 
The final policy produced by the SPI algorithm (1 e, some 
number of SSA and improvement steps) is shown in Figure 7 
along with the value function it produces This policy is pro­
duced on the fourth iteration A fifth policy improvement 
step is attempted but no improvement is possible (note that 
for this fifth iteration no value approximation of the policy's 
value is performed) Thus, the state space is partitioned into 
8 clusters allowing a very compact specification of the pol­
icy The value tree corresponds to 50 backups of successive 
approximation Since all value trees for prior iterations are 
(strictly) smaller than this, we see thai we had to consider 
at most 18 distinct "states" at any given time (the first three 
policies peaked at 8, 10 and 14 partitions), rather than the 64 
slates of the original state space In fact, the 4 sets of dupli­
cate values are easily show to have exactly the same value 
because of structural properties of the problem Though we 
have not yet implemented the algorithm to take advantage of 
this property, in principle we could use at most 14 clue ten 
and compute at most 14 value estimates instead of 64 

The intent of this paper is to suggest methods by which 
structure implicit in problem representations can be imposed 
on policy and value vectors in policy construction Clearly 
we cannot expect SPI or related methods to work well on 
all MDPs, for not all problems have compact representations 
that can be exploited, or even if a compact representation 
is possible, the optimal policy may not be compact. The 
most we might hope for is that a problem witii a compact 
description (input) and optimal policy (output) can be com­
puted efficiently using SPI (e g , in polyume in the size of 
the input/output) Unfortunately, even this cannot be guar­
anteed Consider the following example, whose network is 
diagramed in Figure 8 We assume n propositions P, and 
actions Action A, wi l l cause P, to become true as 

Figure 8 Description of Action A, 

long as are all true but it has the side effect of 
setting each of false Each of the n actions can 
be represented in 0(n) space Our reward function assigns 1 
to the state making all P, true and 0 to all other states Thus the 
problem is representable In space With a discounting 
rate the optimal policy has die form do A], 
else if . " which in tree form requires 
space But the value is different at each state e Since 
SPI makes all distinctions relevant to value, it must produce 
a complete tree of size (requiring tune exponential m 
the problem description and solution)10 

Our initial experiments have provided some suggestions 
about the types of problems on which SPI should work well 
and where further optimizations can be made Not surpris­
ingly SPI spends relatively more time on policy improvement 
vs evaluation compared to MPI This is due to the overhead 
involved in merging action trees Good tree manipulation al­
gorithms wil l play a role here The evaluation phase of SPI 
compares favorably to MPI even when overhead is accounted 
for When many iterations of successive approximation are 
needed, the overhead is amortized (due to Theorem 1) and 
SPI outperforms MPI considerably 

Naturally, as trees become larger the overhead of SPI be­
comes a crucial factor Our experience with small (64-800 
state) problems suggests that SPI requires problems whose 
structure allows (the equivalent of) deletion of roughly 4-6 
variables (i e, overhead appears to be proportional to tree-

l0EssenQally the optimal policy winds through the stale space 
like a binary counter VT(a) could be compactly encoded with an 
appropriate of "parameterized" metric representation 
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size), further experimentation with large problems is neces­
sary to venfy this conjecture The performance of SPI with 
relatively small trees suggests that a hybrid approach (using 
SPI and switching to MPI if trees become too large) may 
work well in practice In other words, we can use SPI until 
the effort required to discover irrelevant distinctions ceases 
to pay off As a general remark goal based problems with 
competing objectives seem to be especially well-suited to SPI 
(as opposed to process-onented problems) since choosing a 
particular goal to pursue tends to render features related to 
other objectives irrelevant 

5 Concluding Remarks 
We have presented a natural representational methodology 
for MDPs that lays bare much of a problem's structure, and 
have presented an algonthm that exploits this structure in the 
construction of optima] policies The key component of our 
algonthm uses an abductive mechanism that generates parti­
tions of the state space that, at any point in the computation, 
group together states with the same estimated value or best ac­
tion This allows the computation of value estimates and best 
actions to be performed for partitions as a whole rather than 
for individual states This work contnbutes both to Al (a spe 
cific DTP algonthm) and OR (a representational methodology 
and clustenng technique for MDPs) 

Currently we are investigating a number of extensions to 
this model Our experimental results point out two important 
bottlenecks The first involves multivalued variables which 
if relevant, cause branching on all values In many domains 
features are relevant if a vanable has one value, but not oth 
ers Using decision lists (or hybnds) to quantify Bayes nets 
wil l help in this regard, they can be used also to represent 
policies and value vectors The second involves the ordering 
of variables in trees good heunsti.es may help keep the size 
of policy and value trees close to optimal Related is the use 
of acyclic graph representations instead of trees 

One of the most promising aspects of this work is the fact 
that it provides structures that should help in approximating 
optimal policies The conditional relevance of variables can 
be quantified and trees can be pruned by deleting nodes having 
the least impact on value, even at intermediate stages In 
this way, abstraction methods such as those of (Boutlier and 
Dearden 1994) can be made. far more "adaptive " 
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