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A b s t r a c t 

A knowledge-based system uses its database 
(a k a its "theory") to produce answers to the 
queries it receives Unfortunately, these an 
swere may be incorrect if the underlying the­
ory is faulty Standard "theory revision" sys­
tems use a given set of "labeled queries" (each a 
query paired with its correct answer) to trans­
form the given theory, by adding and/or delet­
ing either rules and/or antecedents, into a re­
lated theory that is as accurate as possible Af­
ter formally denning the theory revision task 
and bounding its sample complexity, this paper 
addresses the task's computational complexity 
It first proves that, unless P = NP, no poly­
nomial time algorithm can identify the opti 
mal theory, even given the exact distribution 
of queries, except in the most tr iv ial of situa­
tions It also shows that, except in such tr ivial 
situations, no polynomial-time algorithm can 
produce a theory whose inaccuracy is even close 
(j e , within a particular polynomial factor) to 
optimal These results justify the standard 
practice of hill-chmbing to a locally-optimal 
theory, based on a given set of labeled sam­
ples 

1 I n t r o d u c t i o n 
There are many fielded knowledge-based systems, rang­
ing from expert systems and logic programs to produc­
tion systems and database management systems [Lev84] 
Each such system uses its database of general informa 
tion (a k a its "theory") to produce an answer to each 
given query, this can correspond to retrieving informa­
tion from a database (eg, finding X such that "(mak«a 
acne X) & ( co lo r X red ) " ) or to providing a diagno-
sis or repair, based on a given set of symptoms Unfortu­
nately, these responses may be incorrect if the underly 
ing theory includes erroneous information If we observe 
that some answers are incorrect (e g , if the patient does 
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not get better, or the proposed repair does not correct 
the device's faults), we can then ask a human expert to 
supply the correct answer Theory revision is the pro-
cess of using such correctly-answered queries to modify 
the initial theory, to produce a new theory that is more 
accurate, i e , which wil l not make those mistakes again, 
while remaining correct on the other queries 

Most theory revision algorithms use a set of transfor­
mations to hill-chmb through successive theories, unti l 
reaching a theory whose accuracy is (locally) optimal, 
based on a set of correctly-answered queries, c/, [Pol85, 
MB88, Coh90, OM94, WP93, CS90, LDRG94] This re-
port addresses the obvious question Is there a better 
approach, which wil l directly yield the globally optimal 
theory7 

Section 2 first states the theory revision objective more 
precisely as finding the theory with the highest accu­
racy from the space of theories formed by applying a se­
quence of transformations to a given init ial theory, here 
each transform involves either adding or deleting either 
a rule or an antecedent It also proves that a polyno-
mial number of training "labeled queries" (each a spe­
cific query paired with its correct answer) is sufficient, 
i e, they provide the information needed to identify a 
transformation-sequence that wi l l transform the given 
theory into a new theory whose accuracy is arbitrarily 
close to optimal, with arbitrarily high probability Sec­
tion 3 then addresses the computational complexity of 
the task of finding the optimal (or even near-optimal) 
revised theory It first proves that the task of comput­
ing the optimal theory within this space of theories is 
intractable, even in tr iv ial contexts — eg, even when 
dealing with propositional Horn theories, or when con­
sidering with only atomic queries, or when considenng 
onl> a bounded number of transformations, etc 1 We 
then show that this task cannot even be approximated 
i e , that no efficient algorithm can find a theory whose 
inaccuracy is even close to (i e , wi thin a particular small 
polynomial of) optimum' We also prove that these nega­
tive results apply even when we are only generalizing, or 
only specializing, the init ial theory We also discuss the 
efficiency of other restricted variants of theory revision, 

t h r o u g h o u t , we wi l l assume that P=/NP [GJ79], which 
implies that any NP-hard problem is intractable This also 
implies certain approximation claims, presented below 
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providing sharp boundaries that describe exactly when 
this task is, versus is not, tractable 

We view these results as sanctioning the standard ap-
proach of using a set of transformations to hill-climb to 
a local optimum, based on a set of samples The labeled 
training samples are required to obtain the needed distri­
bution information, and the realization that no tractable 
algorithm wil l be able to find the global optimum justi­
fies hill-chmbing to a local optimum, within the space 
formed using specified transformations 

We close this section by describing related research 2 

Related Research While most learning systems 
begin with an "empty theory" and attempt to learn 
a target function (perhaps a decision tree, or a logic 
program), theory revision processes work by modify 
mg a given ini t ia l theory There are several imple­
mented theory revision systems Most use essentially 
the same set of transformations we describe — e g , 
A U D R E Y [WP93], F O N T E [MB88], E I T H E R [OM94] and 
A [LDRG94] all consider adding or deleting antecedents 
or rules Our analysis, and results, can easily be applied 
to many other types of modifications — e g , specializ­
ing or generalizing antecedents [OM94], using "n-of-m 
rules" [BM93], or merging rules and removing chains 
paths of rules that produced incorrect results [Coh90, 
Coh92] 3 While these projects provide empirical evi­
dence of the effectiveness of their specific algorithms, and 
deal with classification (J e , determining whether a given 
element is a member of some target class) rather than 
general derivation, our work formally addresses the com­
plexities inherent in finding the best theory, for handling 
arbitrary queries 

Finally, note that, in some cases, our task can require 
extracting the best consistent sub-theory from a given 
inconsistent theory From this perspective, our work is 
related to "Knowledge Representation" form of theory 
revision, a la Gardenfors [Gar88, AGM85], Katsuno and 
Mendelzon [KM9l ] and many others Our work differs 
by using the notion of expected accuracy to dictate which 
of the "revisions" is best 

2 F r a m e w o r k 

We define a "theory" as a collection of (propositional or 
first order) Horn clauses, where each clause is a disjunc­
tion of literals, at most one of which is positive Bor­
rowing from [Lev84, DP9 l ] , we also view a theory T as 
a function that maps each query to its proposed answer, 
hence, T Q-> A, where Q is a (possibly infinite) set of 
Horn queries, and A = { No, Yes } is the set of possible 

answers 4 Hence, given 

2The technical report [Gre95b] provides a more extensive 
literature survey, as well as proofs of the theorems 

3The companion paper [Gre95a] considers yet other ways 
of modifying a t h e o r y , b y rearranging its component 
rules or antecedents 

(Not ice o ( T , ) imp l i c i t l y depends on the oracle 0( ) ) 
Hence, a s N o , a s T 2 provides 
the correct answer whi le as T1 re turns 
the wrong answer 

This a ( T , ) func t ion measures T 's accuracy for a sin 
gle query In general, our theories must deal w i t h a 
range of queries We model this using a s ta t ionary , bu t 
unknown, p robab i l i t y funct ion Pr "where 
PT(Q) IS the p robab i l i t y t ha t the query q w i l l be posed 
Given this d i s t r i bu t i on , we can compute the "expected 
accuracy" of a theory, T 

We w i l l consider various sets of possible theories, 
where each such T contains the set of theories 

4To simplify the presentation, the bulk of this paper wi l l 
deal only wi th propor t ional logic, Section 2 3 below describes 
the extensions needed to deal wi th predicate calculus 
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There are two challenges to finding such optimal the­
ories The first is baaed on the observation that the ex­
pected accuracy of a theory depends on the distribution 
of queries, which means different theories wil l be opti­
mal for different distributions While this distribution is 
not known initially, it can be estimated by observing a 
set of samples (each a query/answer pan), drawn from 
that distribution Section 2 2 below discusses the num­
ber of samples required to be confident of obtaining the 
information needed to identify a good with high 
probability 

We are then left wi th the challenge of computing the 
best theory, once given this distributional estimate Sec­
tion 3 addresses the computational complexity of this 
process, showing that the task is not just intractable,5 

but it is also not approximatable — i e , no efficient al­
gorithm can even find a theory whose expected accuracy 
is even close (in a sense defined below) to the optimal 
value 

We first close this section by describing the transfor­
mations we will use to define the various spaces of the-
ories, then discussing the sample complexity of the im­
plied learning process and finally providing the exten­
sions needed to deal w i th predicate calculus 

5Afl a(T, q) requires computing T (g ) , which can require 
proving an arbitrary theorem, this computation alone can be 
computationally intractable, if not undecidable OUT results 
show that the task of finding the optimal theory is intractable 
even given a poly time oracle for these arbitrary derivations 
Of course, as we are considering only Horn theories, these 
computations are guaranteed to be poly time in the proposi­
t ional; case [BCH90] 
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formed by applying various sequences of transformations 
to a given init ial theory, see Section 2 1 below Our chal­
lenge is to identify the theory whose expected 
accuracy is optimal, i e , 

(2) 



3 Computa t iona l Complex i ty 

Our basic challenge is to produce a theory To p t whose 
accuracy is as large as possible The previous section 
supplied the number of samples needed to guarantee, 
with high probability, that the expected accuracy of the 
theory whose empirical accuracy is largest, T „ , wil l be 
within € of the expected accuracy of this Topt This sec­
tion discusses the computational challenge of determin­
ing this T , , given this distributional estimate We show 
first that this task is tractable in degenerate trivial situ­
ations when considering (1) only atomic queries posed 
to a (2) propositional theory and being allowed (3) an 
arbitrarily large number of modifications to the initial 
theory, to produce (4) a perfect theory (; e one that 
returns the correct answer to every query) This task 
becomes intractable, however, if we remove (essentially) 
any of these restrictions e g, if we seek optimal {rather 
than only seeking "perfect") propositions! theories and 
are allowed to pose Horn queries, or if we consider predi­
cate calculus theories It also remains intractable even if 
we restrict the number of modifications allowed, which 
implies that the task of determining the smallest num­
ber of modifications required to find a perfect theory is 
intractable We next show that these tasks are not just 
intractable but worse, they are not even approximatable, 
except in the most tr iv ial of situations 

We also consider two special subtasks by restricting 
the allowed types of transformations, to consider revision 
processes that only specialize (respectively, only gener­
alize) the init ial theory We show that these tasks, also, 
are intractable and non-approximatable in essentially all 
situations, l e, except when all four of the above con 
ditions hold 7 Figures 1 and 2 summarize the various 
cases 

6Following PROLOG'S conventions, we will capitalize each 
variable, as in the "X" above 

7Actually, there is one other tractable case in the gener­
alization situation, see Figure 1 
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Figure 1 Tractability of Theory Revision Tasks 

even when there is a Horn theory that correctly labels all 
of the queries) 

The observation that determining such " i t -step perfect 
theories" is NP-hard leads immediately to 

Coro l l a ry 3 1 It is NP-hard to compute the minimal-
cost transformation sequence required to produce a per­
fect theory (i e , to compute the smallest K for which 
there is c such that 
even m the propositional case when considering only 
atomic queries ft is also NP-hard to compute the 
"minimal-length" transformation, where the length of the 
transformation sequence is simply k — 
j e , when each transformation has "unit cost" 

This negative result shows the intractabil ity of the ob­
vious proposal of using a breath-first transversal of the 
space of all possible theory revisions First test the ini­
tial theory To against the labeled queries, and return 
T0 if it is 100% correct If not, then consider all theories 
formed by applying a single (unit-cost) transformation, 
and return any perfect and if not, consider 
all theories in (formed by applying sequences of 
transformations with cost at most two), and return any 
perfect and so f o r t h 

3 2 A p p r o x i m a t a b i l i t y 

Many decision problems correspond immediately to opti­
mization problems, for example, the M I N G R A P H C O L O R 
decision problem (given a gTaph G = (N} E) and a pos­
itive integer A", can each node be labeled by one of K 
colors in such a way that no edge connects two nodes of 
the same color, see [GJ79, pl91(Chromatic Number)]) 
corresponds to the obvious minimization problem Find 
the minimal coloring of the given graph G We can sim-
darly view the decision Droblem as either the 
maximization problem "Find the whose ac­
curacy is mammal" or the minimization problem "Find 
the whose inaccuracy is minimal", where a 
theory's inaccuracy is obviously I N A ( T ) = 1 - A( T ) 

(While the maximally accurate theory is also mini 
mally inaccurate, these two formulations can lead to 
different approximatability results ) For notation, let 

(resp , refer to the 
maximization (resp , minimization) problem 

Now consider any algorithm B that, given any 
instance x = (T, S) wi th init ial theory T 

and labeled training sample S, computes a syntactically 
legal, but not necessarily optimal, revision 
Then B's "performance ratio for the instance is de­
fined as 
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Bounded (All NOTPOLYAPPROX • ) (All NOTPOLYAPPROX • ) (All NOTPOLYAPPROX • ) 

hard, this problem is clearly in NP 
9There are such constants for some other NP-hard min­

imization problems For example, there is a polynomial-
t ime algori thm that computes a solution whose cost is 
with in a factor of 1 5 for any T R A V E L I N G S A L E S M A N W I T H -
T R ! A N G L E _ E Q U A L I T Y problem, see [GJ79, Theorem 6 5] 

(See middle and right of Figure 2 ) 
In each of these cases, however, there is a tr ivial 

polynomial-time algorithm that can produce a theory 
whose accuracy (n b , not inaccuracy) is within a factor 
of 2 of optimal That is, using the ratio of an algorithm's 
accuracy to the optimal value, 
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The companion paper [Gre95a] considers other related 
cases, including the above special cases in the context 
where our underlying theories can use the not ( ) opera­
tor to return Yes if the specified goal cannot be proven, 
1 e , using Negation-as-Failure [Cla78] It also considers 
the effect of re-ordenng the rules and the antecedents, in 
the context where such shufflings can affect the answers 
returned In most of these cases, we show that the cor 
responding maximization problem is not approximatable 
within a particular polynomial 



(The extended [Gre95b] explainB the asymmetry be­
tween TRprop Perf[Ersus T R P r o p perf[E+R], and 
discusses how these results relate to both inductive logic 
programming, and to default theories ) 

4 C o n c l u s i o n 
A knowledge-based system can produce incorrect an­
swers to quenes if its underlying theory is faulty A 
"theory revision" system attempts to transform a given 
theory into a related one that is as accurate as possi 
ble, using a given set of correctly answered "training 
quenes" This report describes both the sample and 
computational complexity of this task It first provides 
the number of samples required to obtain the statistics 
needed to identify a theory (from within a class of the-
ories defined by applying various standard transforma­
tions to a given init ial theory) whose accuracy wil l be 
within e of the optimal theory in this class, with prob­
ability at least 1 — 6 It then shows that, in general, 
the task of computing this globally optimal theory is 
intractable — and worse, that no polynomial time algo-
ri thm can be guaranteed to find a solution that is even 
close to optimal (given the standard P =/ NP assump-
tion) We also present special cases of these tasks, which 
pin-point exactly when the task becomes tractable 
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