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Abstract

A knowledge-based system uses its database
(a k a its "theory") to produce answers to the
queries it receives Unfortunately, these an
swere may be incorrect if the underlying the-
ory is faulty Standard "theory revision" sys-
tems use a given set of "labeled queries" (each a
query paired with its correct answer) to trans-
form the given theory, by adding and/or delet-
ing either rules and/or antecedents, into a re-
lated theory that is as accurate as possible Af-
ter formally denning the theory revision task
and bounding its sample complexity, this paper
addresses the task's computational complexity
It first proves that, unless P = NP, no poly-
nomial time algorithm can identify the opti
mal theory, even given the exact distribution
of queries, except in the most trivial of situa-
tions It also shows that, except in such trivial
situations, no polynomial-time algorithm can
produce atheory whose inaccuracy is even close
(j e , within a particular polynomial factor) to
optimal  These results justify the standard
practice of hill-chmbing to a locally-optimal
theory, based on a given set of labeled sam-
ples

1 Introduction

There are many fielded knowledge-based systems, rang-
ing from expert systems and logic programs to produc-
tion systems and database management systems [Lev84]
Each such system uses its database of general informa
tion (a k a its "theory") to produce an answer to each
given query, this can correspond to retrieving informa-
tion from a database (eg, finding X such that "(mak«a
acne X) & (color X red)") or to providing a diagno-
sis or repair, based on a given set of symptoms Unfortu-
nately, these responses may be incorrect if the underly
ing theory includes erroneous information If we observe
that some answers are incorrect (e g, if the patient does
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not get better, or the proposed repair does not correct
the device's faults), we can then ask a human expert to
supply the correct answer Theory revision is the pro-
cess of using such correctly-answered queries to modify
the initial theory, to produce a new theory that is more
accurate, i e, which will not make those mistakes again,
while remaining correct on the other queries

Most theory revision algorithms use a set of transfor-
mations to hill-chmb through successive theories, until
reaching a theory whose accuracy is (locally) optimal,
based on a set of correctly-answered queries, c/, [Pol85,
MB88, Coh90, OM94, WP93, CS90, LDRG94] This re-
port addresses the obvious question Is there a better
approach, which will directly yield the globally optimal
theory’

Section 2 first states the theory revision objective more
precisely as finding the theory with the highest accu-
racy from the space of theories formed by applying a se-
quence of transformations to a given initial theory, here
each transform involves either adding or deleting either
a rule or an antecedent It also proves that a polyno-
mial number of training "labeled queries" (each a spe-
cific query paired with its correct answer) is sufficient,
i e, they provide the information needed to identify a
transformation-sequence that will transform the given
theory into a new theory whose accuracy is arbitrarily
close to optimal, with arbitrarily high probability Sec-
tion 3 then addresses the computational complexity of
the task of finding the optimal (or even near-optimal)
revised theory It first proves that the task of comput-
ing the optimal theory within this space of theories is
intractable, even in trivial contexts — eg, even when
dealing with propositional Horn theories, or when con-
sidering with only atomic queries, or when considenng
onl> a bounded number of transformations, etc ' We
then show that this task cannot even be approximated
i e, that no efficient algorithm can find a theory whose
inaccuracy is even close to (i e , within a particular small
polynomial of) optimum' We also prove that these nega-
tive results apply even when we are only generalizing, or
only specializing, the initial theory We also discuss the
efficiency of other restricted variants of theory revision,

throughout, we will assume that P=/NP [GJ79], which
implies that any NP-hard problem is intractable This also
implies certain approximation claims, presented below



providing sharp boundaries that describe exactly when
this task is, versus is not, tractable

We view these results as sanctioning the standard ap-
proach of using a set of transformations to hill-climb to
a local optimum, based on a set of samples The labeled
training samples are required to obtain the needed distri-
bution information, and the realization that no tractable
algorithm will be able to find the global optimum justi-
fies hill-chmbing to a local optimum, within the space
formed using specified transformations

We close this section by describing related research 2

Related Research While most learning systems
begin with an "empty theory" and attempt to learn
a target function (perhaps a decision tree, or a logic
program), theory revision processes work by modify
mg a given initial theory There are several imple-
mented theory revision systems Most use essentially
the same set of transformations we describe — eg,
AUDREY [WP93], FONTE [MB88], EITHER [OM94] and
A [LDRG94] all consider adding or deleting antecedents
or rules Our analysis, and results, can easily be applied
to many other types of modifications — eg, specializ-
ing or generalizing antecedents [OM94], using "n-of-m
rules" [BM93], or merging rules and removing chains
paths of rules that produced incorrect results [Coh90,
Coh92] 3 While these projects provide empirical evi-
dence of the effectiveness of their specific algorithms, and
deal with classification (J e , determining whether a given
element is a member of some target class) rather than
general derivation, our work formally addresses the com-
plexities inherent in finding the best theory, for handling
arbitrary queries

Finally, note that, in some cases, our task can require
extracting the best consistent sub-theory from a given
inconsistent theory From this perspective, our work is
related to "Knowledge Representation” form of theory
revision, a la Gardenfors [Gar88, AGM85], Katsuno and
Mendelzon [KM9I] and many others Our work differs
by using the notion of expected accuracy to dictate which
of the "revisions" is best

2 Framework

We define a "theory" as a collection of (propositional or
first order) Horn clauses, where each clause is a disjunc-
tion of literals, at most one of which is positive Bor-
rowing from [Lev84, DP9I], we also view a theory T as
a function that maps each query to its proposed answer,
hence, T Q-> A, where Q is a (possibly infinite) set of
Horn queries, and A = { No, Yes } is the set of possible

2The technical report [Gre95b] provides a more extensive
literature survey, as well as proofs of the theorems

®The companion paper [Gre95a] considers yet other ways
of modifying a theo we,>y rearranging its component
rules or antecedents

answers * Hence, given

h - a, b
h -1, g
= 1 - g, ]
T, = f -c,d
g - =
q ¢ d e

Ty(h) = Yam, T (1) = No and T,(a

- e, )= Yen
Of course, different theories can return different answers
to & @ven query For example, let Ty be a theory that

differs from T, only by excluding the “g
then Ta{h) = Ne

While the non atomic quenes may seem unusuel at
first, they are actually quite common For example, a
medical expert system typically collects relevant data
{f.{p), 2, (p) } about an individual patient p, then
determines whether p has some specific disease disease,,
te, fTU{1,{p), ,fn(p)} = dimsease,(p), where
T 15 the expert system’s imitial theory that contmins gen-
eral information about disenses, etc Notice this enteil-
ment condition holds ff T | ~£,(p) v v i, (p)V
disease, (p}, 1e, 1ff the Horn query “dimennma,(p)

- £1(p}, . £ (p)" follows from the 1mitial theory
{See also “entailment queries (FP93])

We apsume there 15 a single correct enswer to each
question, and represent it using the real-world oracle
O @ — A Here, perhaps, @(h) = No, meaning
thet “b” should not hold We sny an oracle 18 con-
ststent af 1t produces the same answers as a Horn the-
ory, over the set of quenies @ N b, we will sometimes
deel with 1nconsistent oracles, e g, where O(a) = Yes,
O(b - a)=7Yes, and O{b)} =No

Our goal 18 to find a theory that 18 s close to O )
as possible To quaniify this, we first define the “accu
racy function” a(, ) where a(T, g) 15 the accuracy of
the answer the theory T returned for the query g

oT, q o {1 if T(g) = O(q)

0 otherwise

- &” rule,

(Notice o(T, ) implicitly depends on the oracle 0( ) )
Hence,as @(h) = a(Tz, “b") = 1 s T2 provides
the correct answer while a{ly,."h") = U as T, returns
the wrong answer

This a(T, ) function measures T's accuracy for a sin
gle query In general, our theories must deal with a
range of queries We model this using a stationary, but
unknown, probability function Pr & = [0,1], "where
PT(Q) 1S the probability that the query g will be posed
Given this distribution, we can compute the "expected
accuracy" of a theory, T

A(T) = E[a(T, q)] = Y_ Prig} xa(T.q)
qEQ
We will consider various sets of possible theories,

T= {Tl}‘ where each such T contains the set of theories

“To simplify the presentation, the bulk of this paper will
deal only with proportional logic, Section 2 3 below describes
the extensions needed to deal with predicate calculus
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formed by applying various sequences of transformations
to a given initial theory, see Section 2 1 below Our chal-
lenge is to identify the theory Top: € T whose expected
accuracy is optimal, i e,

YTeT A(Tom) 2z A(T) (2)

There are two challenges to finding such optimal the-
ories The first is baaed on the observation that the ex-
pected accuracy of a theory depends on the distribution
of queries, which means different theories will be opti-
mal for different distributions While this distribution is
not known initially, it can be estimated by observing a
set of samples (each a query/answer pan), drawn from
that distribution Section 2 2 below discusses the num-
ber of samples required to be confident of obtaining the
information needed to identify a good T" € T, with high
probability

We are then left with the challenge of computing the
best theory, once given this distributional estimate Sec-
tion 3 addresses the computational complexity of this
process, showing that the task is not just intractable,®
but it is also not approximatable — i e , no efficient al-
gorithm can even find a theory whose expected accuracy
is even close (in a sense defined below) to the optimal
value

We first close this section by describing the transfor-
mations we will use to define the various spaces of the-
ories, then discussing the sample complexity of the im-
plied learning process and finally providing the exten-
sions needed to deal with predicate calculus

21 Standard Transformations

Standard theory revisior aelgorithms imphiatly explore
the space of posaible theories T®[Ty| = {a(Te} | ¢ €
¥*}, which conteins the theones formed by applying
some sequence of theory-to-theory trensformations o €
L™ to the given imtial theory Tg Each o = momo

o1y € ™ sequence 1s formed from £ = EZpaUl g
TpaUTas, where each 7pr € Dpg deletea a rule from
the theory, each Tap € Lar adds a new rule to the
theory, each 7p4 € Zp4 deletes an existing antecedent
from an exieting rule, and each 144 € £, 4 adds a new
sntecedent to an existing rule In some situations, we
will consider “K-bounded sequences”

E = on|rnel&clo) K}

whose members ¢ = 1y 073 0 orm € LIX are
sequences of transformations whose total cost ¢{o) =
elmy)+e(rg)+  +c(r) are at most K, where the cost
¢(7) of the transformation T 18 the qumber of symbols
edded to, or deleted from, T to form 7(T) 1In the
propositional case, c(r44) = (P4} = { {or each trans-
formation that either adds or deletes an antecedent, and

{e=nomno

SAfl a(T, q) requires computing T(g), which can require
proving an arbitrary theorem, this computation alone can be
computationally intractable, if not undecidable OUT results
show that the task of finding the optimal theory is intractable
even given a poly time oracle for these arbitrary derivations
Of course, as we are considering only Horn theories, these
computations are guaranteed to be poly time in the proposi-
tional; case [BCH90]
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cAR) = o(rPR) = [p| for each add-rule (resp, delete-

rule) transformation thet adds {resp , deletes) the rule

p, which has 1 conclusion end |g| —1 antecedent hiterals
As an example, i%plymgﬂihe 3-element sequence

T = T:fe wg @ Ty © Trcd —« with total cost

C(U) = C(T:fe +q) + C(T!;‘fj) + C(T}ch d, —c) =
1+2+1 = 4 wl transform T, mte o(T,) =
A2 L ATARArPA 4 _(Th))) whichs atheory with
8 clauses that differs from T, by including the clause
“g -e,q” rather than “g -a”, 1ncluding the clause
“p -d” rather than “¢ -¢,d”, and by including an extra
clause “b -t"

Finally, we wil] also consider vancus other restricted
spaces of trapsformation-sequences, which are formed
from specified types of transformations, e g,

TR +A = {[e=mome on|nelpaUiasl

TtR-4 = {o=nomo on|n€LsrUIpal
correspond to (unbounded) transformation sequences
that produce more spemfic (resp , more general) theo-
ries, as well as the bounded vanants, e g £~R +4 (K} =
{?=me oamnln € TpaUBas & (o) € K}

Note thet the earler 5> = T+R-E+A -4 509 K =
T+R,-R+A -A(K)

22 Sample Complexity

We can use followng standard Computational Learn-
ing Theory theorem to bound the number of samples
required to obtain the information needed to 1dentify a
good T* € T with high probability, showing 1n partic-
uler how this depends on the space of theornies 7 being
considered

Theorem 1 (from {Vap82, Theorem 6 2]) Gwen a
class of theores T and ¢,6 > 0, let Tu € T be the theory
unth the largest empineal sccuracy after

)

samples (each a labeled query), dravm from the station-
ary dwistnbution, Pr() Then, unth probability ot least
1 -6, the expected accuracy of T. will be unthin € of the
optimal theory n 7, 1e, Pr[A(T,)} 2> A(Top ) — €] 2
1 —§, using the T, from Equation £

This means & polynomial number of samples 1s sufli-
cient to identify an e-good theory from T with probabil
1ty at least 1 — &, whenever In{|7]) 1s polynomual 1n the
relevant parameters Notice this 18 true for most of the
classes of theories being considered, eg, as T-7#(T) 18
the power-set of the rules i T, |E~8(T)| = 2/Rules(D|
which means [ln(Z-®(T))| = |Rules(T)| = O(|T|),
which clearly 18 polynomel 1n the size of the mitial the-
ory Thi “In(|T|) = poly(|T|)" claum 18 elightly prob-
lematic for transformations that can add symbols, no-
tably for £+ and E*# DBut even here, the sample
complexaty remains polynomal tn the sze of the re
wised theory, which effectively menns again that sample-
efficent learning remaina pasmble, ¢f, “nonumform”
pac-learming [BI8S]



23 Dealing with Predicate Calculus

To handle predicate calculus expressions, we have to con
sider answers of the form {Yes[ { X,/v,} ]}, where the
expression within each Yes[] 15 a binding hist of the free
vanables, corresponding to a smgle answer to the query
For exnmple, gven the theory®

tall {john) short(fred)
Tpe = rich(john) rich(fred)
eligible(X) - tall(X), rach(X)

the query short(Y) will return T,.(short(Y)) =
{Yes[{Y/tred}]}, the query rich(Z) will return the
pair of answers T,.(rich(Z)) = {Yes[{ Z/Jo}m}]
Yau[{ Z/fred }]}} and T,.(eligible(h))

{ Yes[{A/john}] } As O )and T() each returns e set
of anawers to each query, we therefore define T's accu

racy score s a(T, g) = %%E;%H € [0,1] Al of the

theorems 1n this paper hold even when considening only
non-recurgive Datalog {1 e, “function free”) theores

3 Computational Complexity

Our basic challenge is to produce a theory T,,t whose
accuracy is as large as possible The previous section
supplied the number of samples needed to guarantee,
with high probability, that the expected accuracy of the
theory whose empirical accuracy is largest, T,, will be
within € of the expected accuracy of this Tot This sec-
tion discusses the computational challenge of determin-
ing this T,, given this distributional estimate We show
first that this task is tractable in degenerate trivial situ-
ations when considering (1) only atomic queries posed
to a (2) propositional theory and being allowed (3) an
arbitrarily large number of modifications to the initial
theory, to produce (4) a perfect theory (; e one that
returns the correct answer to every query) This task
becomes intractable, however, if we remove (essentially)
any of these restrictions e g, if we seek optimal {rather
than only seeking "perfect") propositions! theories and
are allowed to pose Horn queries, or if we consider predi-
cate calculus theories It also remains intractable even if
we restrict the number of modifications allowed, which
implies that the task of determining the smallest num-
ber of modifications required to find a perfect theory is
intractable We next show that these tasks are not just
intractable but worse, they are not even approximatable,
except in the most trivial of situations

We also consider two special subtasks by restricting
the allowed types of transformations, to consider revision
processes that only specialize (respectively, only gener-
alize) the initial theory We show that these tasks, also,
are intractable and non-approximatable in essentially all

situations, | e, except when all four of the above con
ditions hold " Figures 1 and 2 summarize the various
cases

®Following PROLOG'S conventions, we will capitalize each
variable, as in the "X" above

7Actually, there is one other tractable case in the gener-
alization situation, see Figure 1

31 Basic Complexity Results
To formally state the problem

Defimtion 1 (TR[Z!] Decision Problem)
INSTANCE
Inatial theory T,

—  Labeied tratning sample § = {{g.,0(q.)}} con
tatning a set of Horn queries and the correct an
swers, ond

—~  Probability value p € [0, 1]

QUESTION s there o theory T’ € T[T such that
As( T ) = ]éTE(q. og nes®Tha) 2 p?

The Ef[] function maps e theory to e set of candidate
revised theories, here, we will consider various DR 4
transformation sets To simphfy our notation, we will
write A{ T ) for Ag{ T )

We wll also consider the following special cases
TRg,-;[T!] requires that p = 1 (1e, seeking perfect
theories, rather than ‘optimal” theories TRop [},
TR p.op|E1] deals with propositional logie {rather than
predicate calculus, TR p,aca[E']), and TR 41om[E]
deals with only atomic queries (as opposed to Horn
quenes, TR forr)[E']) We will aleo use TRp,,,[T]
to refer to the task when the queries can he arbitrary
disyunctions, which need not be Horn {Whle the other
subscripts are restrictions on TR[Z'], this Disy case
1s more permussive } We will also combine subscripts,
with the obvious meanings When TR, [E!] 15 & special
case of TRy[ZT], finding that TR, [C'] 1s hard imme-
diately implies that TR4[T!] 1s hard Sumilarly, seeing
that TR, [E!] 1s easy immediately implies that each spe-
cial case of TR[Z'] 15 ensy As a final note all of the
hardness results presented 1n this paper hold even if we
only consider “3-CNF Horn theories” — 1 e, rules whose
antecedents contain &t most 2 literals

Here, 1t 18 essy to find the optimal theory in cer-
tain degenernte ceases, where either the individual queries
can be decoupled (e g, when using atomic propositional
queries) or when our actions are {orced (e g, when seek-
ing perfect propositional theories) just throw away the
onginal theory, then edd in propoeitions corresponding
to the “Yas-labeled queries” In every other case, how
ever, the terk 15 intractable

Theorem 2 The TR prop Atom {opg)[EW] and

TRProp {Horn) Pcrf[Em] deciston pmblem are easy,
each other problern 19 NP-hard

(This information 18 summarnzed 1n lower left “Un-
bounded, Arbitrary” graph of Figure 1)

The above theorem describes the complexity of com-
puting the best theory when we are allowed to use an
arbitromly erpenswe sequence of trapsformations We
get an even stronger negative results if we restrict the
“expense” of the transformation sequence

Theorem 3

For some K € Z%, the TRpyop atom Pers[EF] dectsion
problem w NP-hard This ta irue even if we consuder
only lobeled queres produced by a consutent oracle f1e,

GREINER 1165



Bounded (Al NP-Hard ® )

Inaey

Horo

Unbounded Agm™ Prop TredCal

Perf{
Opt

Arbitrary (ZF)

O = Easy to solve, @ = NP-hard
Bounded = “K < oo, Unbounded = “K = =”

(All NP-Hard ® )

Generalization (G)

Arbitrary TX
Generalization {
Speciallzation & ¢

(All NP-Hard ® )

Disy
Horn
Atom

Prop PredCal
Perf

Speciabzation (S)
= TR -A -R +A (K)
€ (TR ~AUD DR poA ()
[E-R 44K p-R(K) T+A K) )

Any tesk that “projects” down to ap NP-hard task, along any axis, 18 NP-hard Here, this means &ll of the “cross terma” are
NP-hard (For example ThRevp, cdcat Forn Pert|E™| 18 NP-hard, as its projection to the “Prop—PredCal x Perf-Opt” plane,
ThRevpredcal Atom Pers[E™] 18 NP-hard ) The ThRevpcep Horn opt|E™] case 18 shown exphatly as each of its projections 1s

easy, the figures omit all other cross-terme

Figure 1

even when there is a Horn theory that correctly labels all
of the queries)

The observation that determining such "it-step perfect
theories" is NP-hard leads immediately to

Corollary 3 1 It is NP-hard to compute the minimal-
cost transformation sequence required to produce a per-
fect theory (i e, to compute the smallest K for which
there is i Tperfeer € B [T such that A{Tperfect) =1),
even m the propositional case when considering only
atomic queries ft is also NP-hard to compute the
"minimal-length" transformation, where the length of the
transformation sequence T, © T3 © o T iS simply k —
j € , when each transformation has "unit cost”

This negative result shows the intractability of the ob-
vious proposal of using a breath-first transversal of the
space of all possible theory revisions First test the ini-
tial theory To against the labeled queries, and return
Ty if it is 100% correct If not, then consider all theories
formed by applying a single (unit-cost) transformation,
and return any perfect T; € E![Ty], and if not, consider
all theories in E*[Ty] (formed by applying sequences of
transformations with cost at most two), and return any
perfect Tg € Ez]_Tn], and so forth

32 Approximatability

Many decision problems correspond immediately to opti-
mization problems, for example, the MINGRAPHCOLOR
decision problem (given a gTaph G = (N; E) and a pos-
itive integer A", can each node be labeled by one of K
colors in such a way that no edge connects two nodes of
the same color, see [GJ79, pl91(Chromatic Number)])
corresponds to the obvious minimization problem Find
the minimal coloring of the given graph G We can sim-
darly view the TR, {Z?] decision Droblem as either the
maximization problem "Find the T' € E![T] whose ac-
curacy is mammal" or the minimization problem "Find
the T' € Bt[T] whose inaccuracy is minimal”, where a
theory's inaccuracy is obviously INA(T) =1 -A(T)
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Tractability of Theory Revision Tasks

(While the maximally accurate theory is also mini
mally inaccurate, these two formulations can lead to
different approximatability results ) For notation, let
“MAXTR,[EY)" (resp, “MINTR,|Zf|") refer to the
maximization (resp , minimization) problem

Now consider any algorithm B that, given any
MINTR, [Zf] instance x = (T, S) with initial theory T
and labeled training sample S, computes a syntactically
legal, but not necessarily optimal, revision B(z) € L[T]
Then B's "performance ratio for the instance £” is de-
fined as

MinPerfMINTR,[ZY( B,z) =
{a'-z’%‘i‘ﬁ’s o INA( opt(z) } £0 (3}
D

otherwise
where apt(z) = OPtMunTR, (E1){(Z) 18 the optimal solution
for this nstance, i1 e, opt(z) 15 the theory T,, € E1[T]
with minimal 1naccurncy over §

We say a function ¢( ) “bounde B’s performance ratio
(over MINTR, [Z1])” Wff

¥z € MINTR,[Z1],
MinPerf[MINTR,[ZY](B,z) < g{|z|)

where |z| 16 the s1ze of the instance z = (T, §), which we
define to be the number of symbols in T plue the number
of symbols used in § Intwitively, this g( ) function in-
dicates how closely the B algonthm comes to returming
the best answer for z, over all MINTR, [£1] mstances z

Now let Paly{ MINTR,[Z!]) be the collection of
all polytime algonthms that return legal anewers to
MINTR, [E'] instances It 16 natural to ask for the algo-
rithm 10 Poly{ MINTR, [£1] ) with the best performance
ratio, this would indicate how close we can come to the
optimal solution, uemng only a feamble computational
tume For example, if this function was the constant 1
for MINTR p,sp[Z], then a poly-time algonthm could
produce the optimal solution to any MINTR p,.,[Z%]
instance, a8 TRp,gp[L°°] 18 NP-complete,® this would

*While Theorem 2 only proves TRp,.,[E*] to be NP-



Bounded (All NOTPOLYAPPROX * )
Dus) .
Unbounded Horn .
Atom § 7

Prop PredCal

Arbitrary (IX)

(# = NOTPOLYAPPROX,

O = Easy (as poly time decision),

(All NOTPOLYAPPROX * ) (All NOTPOLYAPPROX * )

Dhs) . sy .
Horn . Horn .
Atom Atom

Prop PredCal Prop PredCal

Generalization (¢) Specialization (5}

7 = unknown approximatability claas)

Figure 2 Approximatability of Theory Revision Tasks

mean P = NP, which 15 why we do not expect to ob-
tamm this result Or if this bound wes some constant
c(x) = ¢ € R, then we could efficiently obtain 2 solu
tion within a factor of ¢ of optimal, which may be good
enough for some applications °

However, not all problems can be so apprcximated
Following [CP91, Kan92], we define

Defnition 2 A minimization problern MINP 13 NoOT-
POLYAPPROX if there 13 a v € RT such that

¥B € Poly( MINP), Iz € MINP,
MwmnPerf[MINF]( B,z) = {z|”

Lund and Yannalakis [LY93] prove that the “MIN-
GRAPHCOLOR minimization problem” 18 NOTPoLY AP-
PROX We can use that result to prove

Theorem 4 I'nless P = NP, each of
MINTRProp D1y [E), MINTR preacary (Hor)[E®] and
MINTRp,op atom [EX] 18 NOTPOLYAPPROX

W hile these results may at first seem trivial, given that
1t 15 NP-hard to determine 1if a perfect theory exists, no-
tice from Equation 3 that MinPerf[MINTR[E=]]( } es-
sentially 1gnores such perfect theories Note also that
this result holds 1 the context based on an “inconsis-
tent” oracle, in such situations, no theory can be perfect

As |2| can get arbitrary large, this result means that
these MINTR,, [£7] tasks cannot be approximated by any
constant, nor even by any loganthmic factor por any
sufficiently small polynomial, etc

33 Special Cases

If the theory 15 too general (1 e, returns Yes too often),
then we may want to consider “specializing” it by apply-
mg ozly the “delete rule” and “add antecedent” transfor
metions In particular, recall that Z+4 ~®[T] 1s the set
of thecries obtained usmE an arbttrary number of such
transformations, and =~ 7[T]} (reap , +*[T]), 18 the set
of theones obtained by applyipg an arbitrary number
of “delete rule” (respectively, “sdd entecedent”) trans-
formations Simularly, if the theory 15 too specific {te,

hard, this problem is clearly in NP

®There are such constants for some other NP-hard min-
imization problems For example, there is a polynomial-
time algorithm that computes a solution whose cost is
within a factor of 1 5 for any TRAVELINGSALESMAN WITH-
TR!ANGLE_EQUALITY problem, see [GJ79, Theorem 6 5]

returns Ne too often), then we may went to consider
“generahzing” 1t by applying only the “add rule” and
“delete antecedent™ transformations, here, we consider
L+R =A[T], E*8[T] and E-4[T], which are the set of
theones obtmned by applving an erbitrary pumber of
such transformations

Ever using only these transformations, almost all of
these tasks reman intractable

Theorem 5 It 19 eosy to solve
TRPrap Peff[g] fOT‘ G c {E+R -4 E+ﬂ‘ E-A}
TRprop Atom Pers [S] for S € {E'-R +4 ' E-R, E+A}
However, every other mtuation, formed by any other
combination of restrictions (read “subscripis”) 13 NP
haord (See middle and rght of Figure 1)

Worse.

Theorem 6 Urless P = NP, each of the follourng 19
NoTPoLY APPROY
. MINTR(PredC’aJ} Atam['s]: MINTRProp {Horn)[Sl
for S € (T R+4A p-R p+i g
. MINTR(PPeanI} Atom [g]: MlNTRPer Draz [g]
forG e {E+R-A §+R §F-4 ]
L4 MINTRProp Atom[ET]
] p+A-R(K) p-R{K) g+AK)
for & E{ F-A+R(K) THR(K) §-A(K) }
(See middle and right of Figure 2 )

In each of these cases, however, there is a trivial
polynomial-time algorithm that can produce a theory
whose accuracy (n b, not inaccuracy) is within a factor
of 2 of optimal That is, using the ratio of an algorithm's
accuracy to the optimal value,

Af opt(=z

MazPerfMaxTR,[EN( B,2) = S

Theorem 7
For ¥ € {Z-R+4 -7 g4 ptR-A §+R §-A}
3B € Poly( MAXTR[¥]),
MazPerfMaxTR[¥])(B,z) < 2

The companion paper [Gre95a] considers other related
cases, including the above special cases in the context
where our underlying theories can use the not( ) opera-
tor to return Yes if the specified goal cannot be proven,
1 e, using Negation-as-Failure [Cla78] It also considers
the effect of re-ordenng the rules and the antecedents, in
the context where such shufflings can affect the answers
returned In most of these cases, we show that the cor
responding maximization problem is not approximatable
within a particular polynomial
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(The extended [Gre95b] explainB the asymmetry be-
tween  TRyop  perfefSUS  TRprop  pedE+Y),  and
discusses how these results relate to both inductive logic
programming, and to default theories )

4 Conclusion

A knowledge-based system can produce incorrect an-
swers to quenes if its underlying theory is faulty A
"theory revision" system attempts to transform a given
theory into a related one that is as accurate as possi
ble, using a given set of correctly answered "training
quenes” This report describes both the sample and
computational complexity of this task It first provides
the number of samples required to obtain the statistics
needed to identify a theory (from within a class of the-
ories defined by applying various standard transforma-
tions to a given initial theory) whose accuracy will be
within e of the optimal theory in this class, with prob-
ability at least 1 — 6 It then shows that, in general,
the task of computing this globally optimal theory is
intractable — and worse, that no polynomial time algo-
rithm can be guaranteed to find a solution that is even
close to optimal (given the standard P =/ NP assump-
tion) We also present special cases of these tasks, which
pin-point exactly when the task becomes tractable
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