
Generating and Solving Imperfect Information Games

Daphne Kol ler
University of California

Berkeley, CA 94720
daphne@cs berkeley edu

Abstract
Work on game playing in AI has typically ignored
games of imperfect information such as poker In
this paper we present a framework for dealing with
such games We point out several important issues
that arise only in the context of imperfect infor­
mation games particularly the insufficiency ot a
simple game tree model to represent (he players
information state and the need for randomization in
the players optimal strategics We describe Gala
an implemented system that provides the user wi th a
very natural and expressive language for describing
games From a game description Gala creates an
augmented game tree wi th information sets which
can be used by various algorithms in order to find
optimal strategies for that game In particular Gala
implements the first practical algorithm for finding
opt imal randomized strategies in two player imper
fect information competitive games [Koller el al
1994] The running time of this algorithm is palvno
mial in the size ot the game tree whereas previous
algorithms were exponential We present exper­
imental results showing that this algorithm is also
efficient in practice and can therefore form the basis
for a game playing system

1 In t roduc t ion
The idea of getting a computer to play a game has been around
since the earliest days of computing The fundamental idea is
as fo l lows When it is ihe computer s turn lo move U creates
some part of the game tree starting at the current position
evaluates the leaves of this partial tree using a heuristic
evaluation funct ion and then does a minimax search of this
tree lo determine the optimal move al Ihc root This same
simple idea is sti l l the core of most game-playing programs
This paradigm has been successfully applied lo a large class
of games in particular chess checkers othello backgammon
andgo tRusse l landNorv ig 1994 Ch 5] There have been far
fewer successful programs that play games such as poker or
bridge We cla im that this is not an accident These games fall
into two fundamentally different classes and the techniques
thai apply to one do not usually apply to the other

The essential difference lies in the information that is avail
able to the players In games such as chess or even backgam
mon, the current state of the game is fu l ly accessible to both

Avi Pfeffer
University of California

Berkeley, CA 94720
ap@cs berkeley edu

players The only uncertainty is about future moves In games
such as poker (he players have imperfect information they
have only partial knowledge about the current state of the
game This can result in complex chains of reasoning such
as Since I have two aces showing but she raised men she
is either bluffing or she has a good hand but then if I raise
a lot she may realize that 1 have al least a third ace, so she
might fo ld so mavbc I should underbid bul It should
be fairly obvious that the standard techniques are inadequate
lor solving such games no variant of the minimax algorithm
duplicates the type of complex reasoning we just described

In game theory [von Neumann and Morgenslern 1947] on
the other hand virtually all of the work has focused on games
wi th imperfect information Game theory is mostly intended
lo deal wi th games derived f rom real l i fe, and particularly
from economic applications In real l i fe one rarely has perfect
information The insights developed hy game theorists for
such games also apply to the imperfect information games
encountered in AI applications

It is wel l known in game theory lhal the notion of a strai
eg\ is necessarily different for games wi th imperfect mforma
lion In pcrlccl inlormalion games the optimal move for each
player is clearly defined al every stage there is a right move
thai is di feast as good as any other move But in imperfect
information games the situation is not as straightforward In
the simple game of scissors paper stone any deterministic
strategy is a losing one as soon as it is revealed lo the olher
players Intuit ively in games where there is an information
gap it is usually lo my advantage lo keep my opponent in
the dark The only way to do thai is by using randomized
strategies Once randomized strategics are allowed ihe exis
lence of optimal strategies in imperfect information games
can be proved In particular this means lhal Ihcrc exists an
optimal randomized strategy lor poker in much the same way
as there exists an optimal deterministic strategy for chess
Kuhn [19*>0l has shown for a simplif ied poker game lhal the
optimal strategy does indeed use randomization

The optimahly of a strategy has two consequences the
player cannot do better than this strategy if playing against
a good opponent and lurlhermore the player docs not do
worse even if his strategy is revealed IO his opponent i c Ihe
opponent gains no advantage Irom figuring out the player s
strategy This last feature is particularly important in the
context of game-playing programs since they arc vulnerable
lo ihis form of aitack sometimes the code is accessible and
in general since they always play the same way thei rstrategy

KOLLER AND PFEFFER 1 1 8 6

can be deduced by intensive testing Given these important
benefits of randomized strategies in imperfect information
games u is somewhat surprising that none of the AI papers that
deal w i m these games (e g [Blair era / 1993 Gordon 1993
Smith and Nau 1993]) uti l ize such strategics

In this wo rk we attempt to solve the computational problem
associated w i t h imperfect information games Given a concise
description of a game compute optimal strategies for thai
game Two issues in particular must be addressed First
how do we specify imperfect information games' Describing
the dynamics of the players information states in a concise
fashion is a nontnvial knowledge representation task Second
given a game tree wi th the appropriate structure how do we
find optimal strategies for it?

We present an implemented system called Gala that ad
dresses both these computational issues Gala consists of four
components The first is a knowledge representation language
that allows a clear and concise specification of imperfect in
formation games As our examples show the description of
a game in Gala is very similar to and not much longer than
a natural language description of the rules of the game The
second component of the system generates game trees f rom a
game description in the language These game trees are aug
menled wi th information tefv a standard concept I rom game
theory thai captures the information slates of the players

The third component of the system addresses the issue of
f inding good strategies for such games Obviously the stan
dard minimax type algorithms cannot produce randomized
strategies The game theoretic paradigm for solving games is
based on taking the entire game tree and transforming it into
a matrix (called the normal or strategic form of the game)
Various techniques such as linear programming can then be
applied lo this matrix in order lo construct optimal strategies
Unfortunately this matrix is typically exponential in the size
of the game tree making the entire approach impractical for
most games

In recent work Koller, Megiddo and von Stengel [1994]
present an alternative approach lo dealing wi th imperfect in
formation games They deline a new representation called
the sequence form whose size is linear in the size of the game
tree They show that many of the standard algorithms can be
adapted to find optimal strategies using this representation
This results in exponentially faster algorithms for solving a
large class of games In particular they present an effective
polynomial time algorithm for solving two player ful lv com
pcti l ivc games (such as poker) We have implemented this
algorithm as part of the Gala system and tesled it on large
examples of several games The results arc encouraging sug­
gesting that in practice ihe running l ime of the algori thm is
a small polynomial in the size of the game tree

The final component of GalapresenLs theopl imal strategics
in a way thai is comprehensible lo the user For any decision
point in the game it lells the user which actions should be
played wi th which probabil i ty The system also provides
other information such as one player s beliefs about the stale
of anolher agent or the expected value of a branch in the
tree This functional i ty makes Gala a useful tool lor game
theory researchers and educators as wel l as for users who
wish lo use Gala as a game-theory based decision support
system Final ly Gala can also play the game according lo the
computed strategy making il a basis for a computer game-

playing system for imperfecl informat ion games

2 Some basic game theory
Game Ihcory is ihe strategic analysis of interactive situations
Several aspects of a situation are modeled expl ic i t ly the
players involved the alternative actions that can be taken by
each player at various limes, the dynamics of the situation
ihe information available to players and die outcomes at the
end Given such a model game theory provides the tools
to formally analyze the strategic interaction and recommend
rational strategies to the players

The standard representation of a game in computer science
is a tree in which each node is a possible stale of the game, and
each edge is an action available to a player that takes the game
to new stale At each node there is a single player whose turn
it is to choose an action The set of edges leading out of a node
arc the choices available lo that player The player may be
chance or nature in which case the edges represent random
events The leaves of the tree specify a payoff for each player
This representation is inadequate for games w i th imperfect
in lormat ion because it docs not specify the in format ion states
ol the players A player cannol dist inguish between states of
the game in which she has ihe same information Thus any
decision taken by the player must be the same at al l such
nodes To encode ihis constraint the game tree is augmented
wi th information sets An information sel contains a set of
nodes that arc indistinguishable lo a player at the time she has
lomakc a decision

Figure 1 presents part of the game tree for a simpli f ied
variant of poker described by Kuhn [1950] The game has
two players and a deck containing the Ihree cards 1 2 and
3 Each player antes one dollar and is dealt one card The
figure shows the part of the game tree corresponding lo the
deals (2,1) (2,3) and (I 3) The game has three rounds
In Ihe first round the first player can either bet an additional
dollar or pass Al ter hearing the first player s bet the second
player decides whether to bet or pass If player 1 passes and
player 2 bets player 1 gets one more opportunity lo decide
whclhcr or nol to bel If both bet or both pass the player
wi th the highest card takes the pot If one player bets and
the other passes then the betting player wins one dol lar Lei
(t d) denote the hands dealt lo the two players Ini t ia l ly,
player 1 only knows his own card so for each possible c he
has one information set 0e containing two nodes, each node
corresponds to the two possibilit ies for player 2 s hand In her
turn player 2 knows d as well as player 1 s action at the first
round Hence she has iwo information sets for each d—\%
and l d —correspond ing lo player 1 s previous action Final ly
player 1 has an information set U'c at the third round

Given a game tree augmented w i th informat ion sets, one
can define the notion of strategy A deterministic strategy
l ike a conditional plan in AI is a very expl ici t 'how-to-play
manual that tells the player what to do at every possible point
in the game In the poker example, such a manual for player 1
would contain an entry If I hold a 3 and I passed on the
first round, and my opponent bets then bet 1 " In general
a deterministic strategy for player specifies a move at each
of her information sets Since the player cannot distinguish
between nodes in die same informat ion set the strategy cannot
dictate different actions at those nodes

1186 LEARNING

Figure I A partial game tree for simphlified poker, containing three of the six possible deals A move to the left corresponds to
a pass a move to the right to a be [The information sets are drawn as ellipses some of them extend into other parts of the tree

a behavior strategy) specifies a probabil i ty distr ibution over
Lhe moves at each information set In our poker example
a randomized strategy m1 lor player 1 can be described by
defining the probabil i ty of betting al each information set L'e

and A combination of randomized strategies
fi] one for each player induces a probabil i ty distn
buLion on the leaves of the tree thereby al lowing us to define
the exptdidpu\off for each player i

In his Nobel prize winning theorem Nash showed that the
use of randomized strategies allows us to duplicate the sue
cessful behavior that we gel from deterministic strategies in
the perfect information case In general games there is al­
ways a combination of randomized strategies that
is in equi l ibr ium for any i and any strategy fi[,

That is no player gains an advantage by diverging from the
equil ibr ium solution so long as lhe other players stick (o ll

Just as in lhe case of perfect information games the equi­
l ibr ium strategies arc particularly compel l ing when the game
is zero-sum Then as shown by von Neumann f von Neumann
and Morgenstern 19471 any equi l ibr ium strategy is optimal
against a rational player More precisely the equi l ibr ium
p a i r s a r e precisely those where fi\ is lhe strategy that
maximizes max and ftj is the strategy that
maximizes max (which since hi = —/i]
is precisely min Intuit ively, fi\ is the
optimal defensive strategy Tor player 1 K provides the best
worst-case nayotf It is these strategies that we w i l l be most
conceded wi th finding

3 Gala a game description language
As we mentioned lhe first component of Gala is a knowl­
edge representation language for describing games This is
a Prolog based language, thai uses the power of a declara­
tive representation to allow clear and concise specification
of games The idea of a declarative language to specify
games was proposed by Pell 11992] who util izes it to specify

Deterministic strategies arc adequate for games with per­
fect informat ion where the players always know the current
stale of the game In those games the information sets of both
players are always single nodes and a deterministic strategy
s, for player ? is a function from those nodes at which n is
her turn to move to possible moves al that node The fact
that deterministic strategics suffice for such games is the basis
for the standard mint max algori thm (and Us variants) used for
games such ai chess In such games called zero sum games
there arc two players whose payoffs always sum to zero so
that one player wins precisely what the other loses As shown
by Zermelo [1913] the strategies produced by the mimmax
algori thm are opt imal in a verv strong sense Player i can
not do better than to play the resulting strategy if the other
player is rational Furthermore she can publ icly announce
her intention to do so without adversely affecting her pay
offs A generalized version of the minimax algorithm shows
the existence of optimal deterministic strategics for general
games of perfect information The resulting strategy com
bination (A I S „) has the important property of being in

equilibrium for any J player i cannot pick a better strategy
than 6, if the other players arc all playing their strategy s;

This is a min imal property lhal wc want of a solution to a
game Wi thout it we are drawn back into the web of second
guessing that characterizes imperfect information games (I f
she plays the orthodox strategy then I should do Y but she
w i l l figure out that this is better for me so she II actually do
i but then)

It should be fair ly obvious lhal deterministic strategies w i l l
in general not have dicse properties in games wi th imperfect
informat ion Determinist ic strategies are predictable and pre
dictable play gives the opponent information The opponent
can then f ind a strategy calculated to take advantage of this
information thereby making the original strategy suboptimal
Unpredictable play on the other hand, maintains lhe informa
Uon gap Therefore players in imperteci information games
should use mndonuzed strategies

Randomized strategies are a natural extension of delcrmin
istic strategies Where a deterministic strategy chooses a move
at each informat ion set a randomized strategy (formally called

KOLLERANDPFEFFER 1187

Figure 2 A Gala description of b l ind tic tac-ioc

symmetric chess like games—a class of Iwo-playcr perfecl-
information board games Our language is much more gen
eral and can be used lo represenl a very wide class of games
in particular one-player two-player ajid mult i player games
games where the outcomes arc arbitrary payoffs and game*,
w i th either perfect or imperfect information As we w i l l
show the expressive power of Gala allows for clear and con­
cise game descriptions that arc generally of similar length to
natural language representations of the rules of the game

To illustrate some of the features of Gala Figure 2 presents
an example of a complete description for bl ind tic lac-loe
an imperfect information version of standard tic-tac toe The
player*, lake turns placing marks in squares, but in his turn a
player can choose to mark either an x or an o he reveals lo his
opponent the square in which he makes the mark but nol the
type of mark used As usual Ihe goal is to complete a l ine of
three squares wi th the same mark

A game description in Gala is a list of features each one
describing some asped of the game For example players
(a b] indicates that the game is to be played between two
players named a and b

The Gala language has several layers the lower ones pro
vide basic pr imit ives whi le the higher layers use those pr imi
lives to provide more complex functional i ty The lowesl layer
provides the fundamental primit ives fo r def ining the structure
of a game The choose (P Layer Mo Je Cons t ra in t) p r i m i t i v e
describes the possible moves available lo player at a given
point in the game It allows player lo make any move Move
satisfying constraint This last argument can be an arbitrary
segment of Prolog code In our example Move consists of a
square specified by its coordinates x and Y and a mark Mark
constraint requires lhat the square be empty and that Mark be
either x or o The first argumenl lo choose can also be nature
in which case one of a number of events is chosen at random
By default these random events have uni form probabil i ty
but a different probabil i ty distr ibution may be specified The
outcome pr imit ive describes the outcome of the game at the end
of a particular sequence of moves This w i l l often be a list
of payoffs one for each player but as the example demon­
strates Gala allows Other possibilities The reveal (Player
Fact) pr imit ive describes the dynamics of the players infor­
mation stales It adds Fact lo player s information state The
information added can be simple or an arbitrary Prolog ex
pression In bl ind tic tac-loe a player chooses both a square
and a mark but reveals to his opponent only the mark

At a somewhat higher level the flow feature describes the
course of the game The game can be divided into phases
some may lake place just once whi le others can be repeated

unti l a goal is reached In bl ind tic tac-toc for example the
players take turns executing the sequence of actions specified
in the mark feature, unti l the condit ion specified in the f u l l
or the win feature is satisfied The unless condit ion is tested
before the turn Gala also allows gameflow to be nested
recursively Each phase can be described by its own series
of features which may include flow The f low of bridge for
example can be described as fo l lows

In order to al low a natural specification of the game, Gala
provides a separate representation for the game state where
relevant information about the current state of the game is
stored In bl ind tic-tac-loe the game state contains the currenl
board position This information is accessed, for example, by
choose in order lo determine which moves are possible only
those squares that are empty are legal moves The game state
is maintained by modi fy ing it appropriately e g , by the place
operation when the players make their moves Much of
the functionality in the higher levels of the Gala language is
devoted lo accessing and manipulat ing the game state

The intermediate levels of Gala provide a shorthand for
concepts that occur ubiquitously in games These include lo
cations and their contents pieces and their movement patterns
and resources that change hands such as money In bl ind tic
lac toe the statements that deal w i th the contents of squares
are an instance of locations and their contents other examples
of functionality supported by this level are move(queen(white)
[d 1) (d B)) and pay(gambler pot Bet)

On a more abstract level we have observed lhat certain
structures and combinations appear in vir tual ly all games
Whi le ihese are usually sets of one sort or another they come
in many flavors For example, a flush in poker is a set of
five cards sharing a common property a straight on the other
hand is a sequence of cards in which successive elements
bear a relation to one another a fu l l house is a part i t ion into
equivalence classes based on rank in wh ich the classes are of
a specific size A word in Scrabble and a 21 in Blackjack
are another type of combination a col lect ion of objects bear­
ing no particular relationship lo each other but forming an
interesting group in total i ty

The Prolog language provides a few predicates that describe
sets and subsets We have supplemented these w i th various
predicates thai make it easy to describe many of the combi­
nations occunng in games For example, chain(predicate
set) determines whether sat is a sequence in which succes
sive elements are related by predicate pa r t i t i on (Relation
set classes) partitions set into equivalence classes based
on Relation For a more elaborate example, consider the fol
lowingcode which concisely tests for all types of poker hand
except flushes and straights

de ta i l ed_pa r t i t i on (ma tch_ ran) (Hand Classes Ranks Sizes)
assoc ia te (Sizes Type

[([4 1] four_of_a_kind> ([3 2] fu l l_houae)
([3 1 1] three_o£_a_kind) ([2 2 1] two_pai rs)
([2 1 1 1 1 one_pair) ([1 1 1 1 1] n o t h i n g)])

The predicate detai led_part i t ion takes two inputs a set—
in this case Hand—and an equivalence re lat ion—in this case
match-rank, which relates two cards if they have the same
rank It partitions the set into equivalence classes and pro­
duces three outputs a list ciassed of the equivalence classes

1188 LEARNING

In decreasing order of size a corresponding list of the defin
ing property o f the equivalence classes in this case the Ranks

present in the hand and a list sizes of the sizes of the dif­
ferent classes In this example if Hand is
6 0] t h e n C l a s s e s W o u l d b e | Ranks

would be [6 9] and sizes would be [3 2] In poker, sizes
contains the relevant structure of the hand and it is used to
classify the hand using an association list The above hand
for example is immediately classified as a fu l l house

The high level modules of Gala build on the intermediate
levels to provide more specifie functionality thai is common
to a certain class of games such as boards that form a grid
playmgcards dice and so on In the bl ind tic-tac toe example
we declare a grid-board object This makes a whole range of
predicates available that depend on the board being rectilinear
The straight l ine predicate is an example it tests for a straight
line of three squares containing the same mark This predicate
is defined in terms of chain In general high level predicates
are typical ly very easy to define in terms of the intermediate
level concepts so that adding a module for a new class of
games requires l i t t le effort

A useful feature of Gala is that it allows some parameters
of the game to be left unspecified in the game description and
provided when the game is played In bl ind tic-lac toe the
board size is such a parameter This makes it very easy to
encode a large class of games in a singlt program These
parameters can actually be code-containing features Thus, it
is possible to provide the movement patterns of pieces in a
game at runtime This allows a simple interface between Gala
and Pell s Metagame program [Pell 1992] which generates
symmetric chess like games randomly

Given a description of a game in the Gala language Gala
generates the corresponding game tree wi th information sets
as described in Section 2 The tree is defined by the choose
reveal and outcome primitives The Gala interpreter plays
the game and constructs the game tree as it encounters these
operations When it encounters a choose primit ive a node
is added lo the tree and an edge is added for every option
available to the player The interpreter then explores each
branch of the tree corresponding to each ol the options If
the first argument lo choose is a player, the system also adds
the node to the appropriate information set of that player
the one that contains all the nodes where the player has the
same informat ion slate The information slate consists of all
facts revealed lo the player by the reveal primit ive the list of
choices available to the player and all decisions previously
taken by the player If the first argument to choose is random,
then the node is marked as a chance node and the probabil i ty
of each random choice is recorded When the interpreter
encounters the outcome pr imit ive it adds a leaf to the tree and
backtracks to explore other branches

4 Solving imperfect information games
How do we find equi l ibr ium strategies in imperfect informa
t ion games? This is in general a very diff icult problem
Consider the poker example from Section 2 There we spec­
if ied a strategy for each of the players using six numbers
When try ing to solve a game we need lo find an appropriate
set of numbers that satisfies the properties we want That is
we want to treat the parameters of the strategy as variables
and solve for them The general computational problem is

Maximize x m in y h(x, y)
subject lo x represents a strategy for player 1 (*)

y represents a strategy for player 2

where h(x y) denotes the expected payoff to player 1 if the
strategies corresponding to x y arc played

It turns out that the heart of the problem is finding an
appropriate set of variables for representing the strategy The
first atlempl is lo use the move probabilit ies in the behavior
strategy In the poker example we would then have x =

representing player 1 s strategy, and
representing player 2 s strategy

The problem is that this payoff is a nonlinear function of
the x s and y s In order to avoid this problem which would
force us louse nonlinear optimization techniques the standard
solution algorithms in game theory do not use game trees and
behavior strategics as their primary representation Rather
they operate on an alternative representation called the normal
form In the two player case the normal form is a matrix A
whose rows are all the deterministic strategics of the first
player and whose columns are all the deterministic strategies
of the second The entry in the zth row and j t h column is the
expected payoff lo the players when player 1 plays strategy
s'| and player 2 plays strategy A randomized strategy
can now be viewed as a probabil i ty distr ibution over all the
deterministic strategies Hence x is simply a probabil i ty
distribution over rows it has a variable T, for each row such
that for all i and If player 1 plays a-
and player 2 plays y then lhe expected payoff of the game
is simply Ay Under this representation of strategies
takes apart icularly simple form It is then fairly easy lo show
that that appropriate vectors s and y can be found from A
using standard linear programming methods

For non zero-sum games the normal form also forms the
basis lor essentially all solution algorithms Gala provides
access to the normal form algorithms using an interface to the
GAMBIT system developed by McKelvey and Turocy [M c K
eclvey, 1992] GAMBIT provides a toolkit for solving various
classes of games including games wi th more than two players
and games where the interests of the players arc not strictly
opposing Since Gala allows a clear and compact specifi
cation of such games the combined system provides both a
represenlation language and solution algorithms for games
describing mult i agent interactions

Unfortunately the normal form algorithms arc practical
only for very small games The reason is that the normal form
is typically exponential in the size of the game tree This is
easy lo see A determin i t i c strategy must specify an action at
each information set The total number of possible strategies
is therefore exponential in the number of information sets
which is usually closely related to the size of Lhe game tree
Consider our poker example generalized lo a deck wi th k
cards For each card c player 1 must decide whether to pass
or bet and if he has the option whether lo pass or bet at the
third round There are three courses of action for each c so
the total number of possible strategies is 3K Player 2 on the
other hand, must decide on her action for each card d and
each of the two actions possible for the first player in the first
round The number of different decisions is therefore 2k so
the total number of deterministic strategies is Since
the normal form has a row for each strategy of one player and
a column for each strategy of the other it is also exponential

KOLLER AND PFEFFER 1 1 B 9

in k whi le the size of the game tree is only 9k + 1 In general
the normal fo rm conversion is typically exponential in terms
of both t ime and space

This problem makes the standard solution algorithms an
unrealistic opt ion for many games Due to the large branch­
ing factor in many games even the approach of incrementally
solv ing subtrees would not suffice to solve this problem (This
approach also encounters other diff icult ies in the context of
imperfect informat ion games see Section 6) Recently a
new approach to solving imperfect information games was
developed by Kol ler Megiddo and von Stengel [1994] This
approach uses a conversion to an alternative form called the se
quence form, which allows it to avoid the exponential blowup
associated w i t h the normal form We w i l l describe the main
ideas briefly here for more details see [Kol ler et al 1994]

The sequence form is based on a different representation
of the strategic variables Rather than representing proba
bil it ies of indiv idual moves (as in the non linear representa
l ion above) or probabil it ies ol fu l l deterministic strategies
(as in the normal form) the variables represent the realiza
tion weight of different sequences of moves Essentially a
sequence for a player corresponds to a path down the tree
but it isolates the moves under that player's direct control
ignor ing chance moves and the decisions of the other players
In our poker game for example player 1 would have 4k + 1
sequences In addit ion to the empty sequence (which corre
sponds to the root of the game) he has four sequences for each
card c [bet on c] (in which case there is no third round) [pass
on c] , [pass on c, bet in the last round] and [pass on c pass
in the last round] Player 2 also has 4k + 1 sequences the
empty sequence and for each card d the four sequences [bet
on d alter seeing a pass] [pass on d after seeing a pass] [bet
on d after seeing a bet] [bet on d after seeing a bet] Given a
randomized strategy the realization weight of a sequence for a
player is the producL of the probabil i t ies of the player s moves
encoded in the sequence Essentially the realization weight
of the sequence corresponding to a path down the tree is a
conditional probabil i ty the probabil i ty that this path is taken
given that the other players and nature all cooperate to make
this possible The probabi l i ty that a path is actually taken in
a game is therefore the product oi the realization weights of
all the players sequences on that path times the probabil i ty
ot all the chance moves on the path

The sequence form of a two player game consists ol a pay­
off matrix A and a linear system ol constraints for each player
In a two player game the zth row ot A corresponds to a se
quence a\ lor player I and the j t h column to a sequence cr^
for player 2 The entry atJ is the weighted sum of the payoff
al the leaves that are reached by this pair of sequences (they
are weighted by the probabil it ies of the chance moves on the
path) If a pair of sequences is not consistent w i th any path
to a leaf the malnx entry is zero So lor example the matrix
entry for the pair of sequences [bet on 2] and [pass on 1 after
seeing a bet] is 1 The matrix entry for the pair [bet on 2]
and [pass on 1 after seeing a pass] is 0, since this pair is not
consistent w i th any leaf

We now solve (*) using realization weights as our strate­
gic variables We w i l l have a variable x 0 | for each sequence
a] of player 1, and a variable y„2 for each sequence a2 of
player 2 Using the analysis above we can show that the
expected payof f of the game h(x, y) is xT Ay This is pre

usely analogous to the expression we obtained for the norma]
form It remains only to specify constraints on x and y guar­
anteeing that they represent strategies For the norma] fo rm
these constraints simply asserted that these vectors represent
probabil i ty distributions In this case, the constraints are de
nved f rom the fo l lowing fact If is the sequence for p layer :
leading to an information set al wh ich player i has to move '
and m\ , m* are the possible moves at that informat ion
set then we must have that The
only other constraints are that the realization weight of the
empty sequence is 1 (because the root of the game is reached
in any play of the game) and that for all r

Note that the sequence form is at most linear in the size of
the game tree since there is at most one sequence for each
node in the game tree, and one constraint for each information
set Furthermore, it can be generated very easily by a single
pass over the game tree The format of the sequence form
resembles that of the normal form jn many ways and it appears
thai many normal form solution algorithms can be converted
to work for the sequence form The work of [Kol ler et al
1994] focuses on the two playercase They provide sequence
form variants for ihe best normal form algorithms for solving
both zero-sum and general two player games The resulL
which is of most interest lo us is the fo l l ow ing

Theorem 4 1 The optimal strategies of a two player zero
sum game are the solutions of a linear program each of whose
dimensions is linear in the size of the game tree

The matrix of the linear program mentioned in the theorem
is essentially the sequence fo rm The result ing matrix can
then be solved bv any standard linear programming algori thm
such as the simplex: algorithm which is known to work wel l
in practice We can also use a different l inear programming
algori thm whose worst-case running t ime is guaranteed lo be
polynomial Hence this theorem is the basis for an efficient
polynomial time algori thm for f inding optimal solutions lo
two player zero sum games

5 Experimental results
The sequence-form algor i thm for two-player zero sum games
has been fu l ly implemented as part of the Gala system The
system generates the sequence form creates the appropriate
linear program and solves it using the standard opt imizat ion
l ibrarv of CPLEX We compared this algori thm to the tradi
tional normal form algori thm by using GAMBiT lo convert the
game trees generated by Gala to the normal fo rm, and CPLEX
lo solve the resulting linear program We experimented wi th
two games the simpl i f ied poker game described in Section 2
increasing the number of cards in the deck and an inspection
game which has received significant attention in the game
theory community as a model of on site inspections for arms
control treaties lAvenhaus et al 1995] The result ing running
times are shown in Figure 3 They are as one wou ld expect in a
comparison between a polynomia l and exponential algori thm

These results arc continued for the sequence fo rm in F ig­
ure 4 (It was impossible to obtain normal- form results for the
larger games) There we also show the div is ion of t ime be
iween generating the sequence fo rm and solv ing the resul t ing

This formulauon requires that the players never forget their own
moves or information they once had This implies that there is at
most one sequence o leading lo this information set

1180 LEARNING

Figure 3 Normal form vs sequence form running time

Figure 4 Time for generating and solving the sequence form

linear program Tor the poker games we can see that gener­
ating the sequence form lakes the bulk of the time Solving
even the largest of these games lakes less than 10 seconds
Tins leads us to believe lhal these techniques can be made
to run considerably faster by opt imizing the sequence form
generator Final ly note that the algori thm is much faster for
poker games than for the inspection games In the lu l l paper
we explain these results and define certain characteristics of
a game lhal lend to have a significant effect on the running
time of the sequence-form algori thm

As we remarked above the final component of the Gala
system reads in the strategies computed by this algorithm
and interprets them in a way that is meaningful wi th respect
to the game In particular it allows the strategies to be ex
amined by the user who can then use them as part of ihe
decision making process We have discovered that examin
ing these strategies often yields interesting insights about the
game Figure 5 shows the strategies for both players in an
eight card simpl i f ied poker Consider the probabil i ty that the
gambler bets in Ihe first round n is fair ly high on a 1 some­
what lower on a 2 0 on the middle cards and then goes up for
the h igh cards The behavior for the low cards corresponds to
bluff ing a characteristic lhal one lends to associate with the
psychological makeup of human players Similarly after see­
ing a pass in the first round the dealer bets on low cards wi th
very high probabi l i ty Psychologically we interpret this as an

attempt lo discourage the gambler f rom changing his mind
and bell ing on the final round In more complex games we sec
other examples where human behavior (e g underbidding)
is game-theoretically optimal

6 D i s c u s s i o n

As in the case of perfect information games game trees for
full-f ledged games are often enormous Al though we expect
to solve games wi th hundreds of thousands of nodes in the
near future full-scale poker is much larger than thai and it is
unlikely we w i l l be able to solve it completely Of course
chess-playing programs are very successful in spite of the
fact lhat we currently cannot solve full-scale chess Can
we apply the standard game-playing techniques to imperfect
information games' We believe that the answer is yes but the
issue is noninvial Even the concepl of a subtree' is not wel l
defined in such games For one thing the program cannot
simply crcalc the subtree starting at the current state since it
does not know precisely which node of the game tree is the
actual slate ol the game it knows only that the node is one of
those in a certain information set In addition information sets
belonging to other players may cross the subtree boundary'
as was the case in Figure 1 It is not obvious how to deal w i th
these problems We hope lo address this issue in future work
Another approach that may wel l prove f ru i t fu l is based on the
observation that there is a lot of regularity in the strategies

KOLLER AND PFEFFER 1191

Figure 5 Strategies for 8 card poker

for small poker garnes the player often behaves the same tor
a variety of different hands This suggests thai in order lo
solve large games we could abstract away some features of
the game, and solve the resulting simplified game completely
For the game ot poker we could abstract by partitioning the set
of possible deals into clusters and then solve the abstracted
game Our experimental results indicate that the resulting
strategies would be very close to optimal

Most of the techniques we discussed in this paper also apply
to more general classes of games Gala prov ;des the function-
alily for specifying arbitrary multi-player games Currently
these can only be solved using the traditional (normal-form)
algorithms accessed through our GAMBIT interface and these
are practical only for small games However the sequence
form can be used to represent any perfect recall game and the
results of iKoIler et al 1994] indicate that many of the stan
dard techniques could carry over from the normal form to the
sequence form We hope lo use the sequence form approach
for more general games and show that the resulting expo
nenlial reduction in complexity indeed occurs in practice If
so the resulting system may allow an analysis of multi-player
games a class of games that have been largely overlooked
Perhaps more importantly the system could also be used to
solve games that model multi-agent interactions in real life

We believe that the Gala system facilitates future research
into these and other questions Its ability to easily specify
games of different types and lo generate many variants of
each game allows any new approach lo be extensively tested
We intend lo make this system available through a WWW
sile (h t t p ''www cs be r ke l ey edu ' "daphne g a l a ')
in the hope that it wi l l provide the foundation for other work
on imperfect information games

Acknowledgements

We are deeply grateful to Richard McKelvey and Ted Turocy
for going out of their way to ensure that theGAMBlT functional­
ity we needed for our experiments was ready on time We also
thank the International Computer Science Institute at Berke­
ley for providing us access lo the CPLEX system We also wish
to thank Nimrod Megiddo Barney Pell Stuart Russell John
Tomlin and Bernhard von Stengel for useful discussions

References
fAvenhaus et al 1995] R Avcnhaus B von Stengel and

S Zamir Inspection games In Handbook of Game Theory
Vol 3 to appear North Holland 1995

[Blamr et al 1993] J R S Blair D Mutchler and C Liu
Games with imperfect information In Working Notes AAAI
Fall Symposium on Games Planning and Learning 1993

[Gordon 1993] S Gordon A comparison between prob
abilistic search and weighted heuristics in a game with
incomplete information In Working Notes AAAI Fall Sym
posium on Games Planning and Learning, 1993

[Koller et al 1994] D Koller N Megiddo and B von Sten
gel Fast algorithms for finding randomized strategies in
game trees In Proceedings of the 26th Annual ACM Sym
posium on the Theon of Computing, pages 750-759 1994

[Kuhn, 1950] HW Kuhn A simplified two-person poker
In Contributions to the Theon' of Games I pages 97-103
Princeton University Press 1950

[McKelvey 1992] RD McKelvey GAMBIT Interactive Ex
tensive Form Game Program California Institute of Tech
nology 1992

[Pell, 1992] B Pell Melagame in symmetric chess-like
games In Heuristic Programming in Artificial Intelligence
? — The Third Computer Olympiad Ellis Horwood 1992

[Russell and Norvig 1994] S J Russell and P Norvig Ar
tificial Intelligence A Modern Approach Prentice Hall
1994

[Smith and Nau 1993] SJJ Smith and D S Nau Strategic
planning for imperfect-information games In Working
Notes AAA1 Fall Symposium on Games Planning and
Learning 1993

[von Neumann and Morgenstern, 1947] J von Neumann and
O Morgenstern The Theon of Games and Economic
Behavior Pnnceion University Press, 2nd edition, 1947

[Zermelo 1913] E Zermelo Uber eine Anwendung der
Mengenlehreauf dieTheonedes Schachspiels In Proceed
tngs of the Fifth International Congress of Mathematicians
II pages 501-504 Cambridge University Press 1913

1 1 9 2 LEARNING

