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A b s t r a c t 

Inductive Logic Programming (ILP) is often 
situated as a research area emerging at the in­
tersection of Machine Learning and Logic Pro­
gramming (LP) This paper makes the link 
more clear between ILP and LP, in particular, 
between ILP and Abductive Logic Program­
ming (ALP), 1 e , LP extended with abduc­
tive reasoning We formulate a generic frame-
work for handling incomplete knowledge This 
framework can be instantiated both to ALP 
and ILP approaches By doing so more light 
is shed on the relationship between abduction 
and induction As an example we consider the 
abductive procedure SLDNFA, and modify it 
into an inductive procedure which we call SLD-
NFAI 
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1 I n t r o d u c t i o n 

It is often argued that the use of - a subset of - first or­
der logic as a representation language situates Inductive 
Logic Programming ( ILP) at the intersection of Logic 
Programming and Machine Learning The research in 
ILP IB concerned wi th the derivation of logic programs 
from (positive and negative) evidence in the presence of 
background knowledge Characteristic for this approach 
is the use of induction, i e , a form of synthetic reasoning 
that infers general laws from observations [Muggleton 
and De Raedt, 1994] reviews theoretical results, imple­
mented systems and practical applications in this area 
Two major problems tackled in ILP are predicate learn­
ing and theory revision The former is concerned with 
the induction of rules for an undefined or partially de­
fined predicate from examples, whereas the latter con­
cerns the updating of a theory (a logic program) when it 
is inconsistent wi th newly incoming information Proto-
type systems are - amongst others - the predicate learn-
era MIS [Shapiro, 1983], FOIL [Qumlan, 1990], GOLEM 
[Muggleton and Feng, 1990], CL INT [De Raedt, 1992], 
and the theory revision systems RX [Tankitvanitch and 

Shimura, 1992], KR-FOCL [P BiEani and Brunk, 199l] 
and RUTH [Ade et al, 1994] 

In the area of Logic Programming (LP) abduction has 
been recognised as an important form of non-monotonic 
reasoning It IB a form of synthetic reasoning, which 
- as opposed to induction infers explanations for ob­
served facte, according to known (general) lawH Abduc­
tion has been shown useful for fault diagnosis [Charmak 
and McDermott, 1985], planning and temporaj reason­
ing [Denecker et al, 1992] and knowledge assimilation 
[Kakas and Mancarella, 1990], and it has also been suc­
cessfully applied in Intensional Knowledge Base Updat­
ing approaches such as [Bry, 1990], [Kakas and Mancar­
ella, 1990] and [Guessoum and Lloyd, 1990] A critical 
survey on the extension oflogic programming to perform 
abductive reasoning can be found in [Kakas et al, 1993] 

In this paper we argue that both abduction and in­
duction are different, yet related forms of reasoning on 
incomplete knowledge They are both forms of hypothet­
ical reasoning and attempt to "complete" the knowledge 
by proposing additional hypotheses However, they dif­
fer in the sort of hypotheses 

According to the "declarative semantics", a logic pro-
gram can be seen as a Bet of definitions for a number 
of concepts This interpretation is already present m 
Clark's work on completion semantics [Clark, 1978] Un­
der Clark's interpretation, a program consists of a set 
of possibly empty definitions for all predicates, predi­
cates are defined by enumerating exhaustively the cases 
in which they are true Under this interpretation, a prob-
lem wi th the use of logic programs for knowledge repre­
sentation, is that an expert needs to provide complete 
definitions for all predicates In many applications, such 
complete information is not available A natural solution 
IB to extend the logic program formalism such that only 
a subset of the predicates is to be defined while other 
predicates can be left undefined In addition, partial 
knowledge about these undefined predicates can be given 
using FOL axioms The role of these FOL axioms is in­
timately tied to the representation of uncertainty when 
a number of concepts cannot be defined, then other, less 
precise information may be available which can be rep­
resented as a set of assertions E g , if the predicates 
father/1 and mother/1 are declared as being undefined, 
the axiom mother(X) V father(X) <— parent(X) expresses 
the weaker partial knowledge that it cannot be the case 
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that someone is a parent without being a mother or a 
father 

The actual procedures for "completing" incomplete 
knowledge developed in the ALP and ILP area, are -
as to be expected - quite different The ALP approaches 
construct hypotheses in the form of ground facts for the 
undefined predicates These factB are seen as the de­
scription of a scenario that explains a given observation 
As opposed to this, ILP systems in general - even in 
case of a specific-to-general search - disallow facts The 
hypotheses they generate are sets of rules that express 
general - scenario independent - information on the un­
defined predicates AB such an ALP approach is appro­
priate when the expert has great confidence in his general 
knowledge, but wants to find a concrete explanation for 
an observation On the other hand, an ILP approach is 
more appropriate when the expert searches for general 
rules that compact the positive and negative evidence, 
and that later can be reused to classify new examples 

A first step towards integration of techniques from 
both domains was taken by [De Raedt and Bruynooghe, 
1992] De Raedt and Bruynooghe argue that - when re­
formulated within a logical framework - both intenBional 
knowledge base updating and predicate learning are in­
stances of the belief updating problem As a proof for 
this claim they present an adapted version of Shapiro's 
MIS system in which techniques from both parent do­
mains are integrated These ideas were later further 
elaborated and implemented in the theory revision sys­
tem RUTH [Ade et al, 1994] 

The contribution of our work is that we reformulate 
the ALP and ILP approaches as instances of a generic 
version of Bry's framework [Bry, 1990] for intensional 
knowledge base updating In doing so we show that there 
is a clear relationship between inductive and abductive 
reasoning Moreover, this setting enables UB to intro­
duce inductive reasoning into an abductive schema, thus 
resulting in a Betting which one could call Abductive In­
ductive Logic Programming (AILP) As an example we 
transform a typical abductive procedure, namely SLD-
NFA into a new procedure SLDNFAI (SLDNFA-with-
Induction) by enhancing it wi th a general-to-specific pro-
cedure for inducing clauses Furthermore, this enhance­
ment could also be beneficial for the ILP approach, since 
SLDNFA is a procedure for normal clauses, whereas the 
ILP setting used to be restricted to definite clauses 

This paper is organized as follows In Section 2 we 
introduce a generic framework that formalizes different 
forms of hypothetical reasoning on incomplete knowl­
edge In Section 3 we map both the ALP and ILP ap­
proaches to this framework, and discuss the similarities 
and differences In Section 4 we elaborate an abductive 
procedure for ILP, by introducing inductive reasoning 
into the abductive procedure SLDNFA Finally, in Sec­
tion 5 we formulate our conclusions 

2 P r o b l e m f o r m a l i z a t i o n 

Intuitively one can outline the problem of handling in 
complete knowledge as follows Given is a logic program 
P, which is declaratively read as the descnption of the 
problem domain One part of this program is regarded 
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3 A b d u c t i o n v e r s u s I n d u c t i o n 

In this section we diacuss the ALP and ILP approaches 
in terms of the generic problem setting of Figure 1 and 
the rewrite rules for the meta-predicate new 

3 1 A L P 
In general, abductive reasoning is concerned wi th the 
construction of explanations for observations using gen­
eral laws These explanations are expressed in terms of 
a predetermined set of predicates, called abducible pred­
icates Moreover, most ALP approaches require the ex­
planations to be a set of ground facts First, this restricts 
the number of possibilities, and Becond, in ALP one is in­
terested in constructing a concrete scenario rather than 
general rules As a consequence updates of a logic pro­
gram P are restricted to removing and inserting ground 
facts for the abducible predicates 

In the formalization of the previous section this means 
that ALP regards the logic program P as having a fixed 
part, consisting of C{P) and I(P), and the set U(P) 
containing the names of the abducible predicates Al l 
of C(P) belongs to the complete part, the incomplete 
part defining the predicates of U{P) is empty Once 
evidence E is given, it is translated into operations on 
the abducible predicates 
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In [Bry, 1990] a non-Horn theory JV for the meta-
predicate new is defined in terms of operations on the 
object program facts and clauses In Definition 4 we 
give a 'generic' version of this theory, in that we re­
placed the actual operations on the object program by 
the predicates eval.pos-atom and cvaLneg.atom that are 
to be instantiated The rules rely on a meta-predicate 
clause that ranges over the clauses of C(P) defining the 
predicates that are not in U{P) More specifically, de­
fine Clause(P) as the meta program consisting of factB 
clause(A <— B) for each rule A ■*— B in C(P) and of facts 
undefined(A) for all atoms A containing a predicate of 
U{P) 

D e f i n i t i o n 2 An update of a logic program P u a 
set of expressions of the form eval_pos_atom(A) or 
eval_neg_atom(A) where A is an atom D 

D e f i n i t i o n 3 Lei P be a logic program and U an -update 
of P The procedure update is a function that n aps P and 
U to a logic program, such that the following correctness 
criterion is fulfilled 

The effect of the meta-predicate abduce operating on 
the program P is that the atom A is added to the pro­
gram as (part of) the definition for the abducible predi­
cate The meta-predicate avoid -unification has as effect 
that it continuously constrains the atom A so that it can­
not unify with any of the abduced atoms Note that both 
predicates abduce and avoid-unification are sti l l generic 
in the sense that they do not give any exact procedural 
information Every abductive system implements these 
predicates in its own particular way 

3 2 I L P 
In general ILP approaches are concerned with the deriva­
tion of logic programs f rom positive and negative evi­
dence in the presence of background knowledge In most 
systems evidence is a set of positive and negative exam­
ples of predicates for which no or only incomplete defini­
tions are given We wil l call these predicates inducible 
ILP aims at constructing general rules that define the in­
ducible predicates, since one is interested in compacting 
the knowledge represented by the positive and negative 
examples Furthermore, one wants to be able to reuse 
the induced rules for the classification of unknown ex­
amples 

In the formaheation of Section 2 this means that the 
background knowledge is a part of C(P) It is the fixed 
part of P that is correct and complete, and that can 
be used as a logic program W(P) is the set of ITI-
ducible predicates C(P) can contain clauses for these 



A call to the meta-predicatc induce has the following 
effect First it ia checked whether there is a clause in 
C{P) that covere the atom A3 If this is the case, noth­
ing needs to be done Else, a clause is constructed that 
covere the atom A and that IB consistent with the nega­
tive evidence Been so far We formulate the requirements 
for such a clause only in a very general way, since each 
approach has its own particular way of implementing 
the induction of a clause For example in a specific-
to-general approach one would start wi th a most spe­
cific clause, which can then later be generalised, whereas 
a general-to-specific approach would rather construct a 
most general clause covering the example and consistent 
with the negative evidence 

The meta-predicate refine is called when a negative 
example is covered by one or more clauses in the par-
tial definitions for the inducible predicates In that case 
these clauses are refined, 1 e , made more specific, such 
that they no longer cover the negative example Making 
a clause more specific is usually done by adding one or 
more literals to its body, although this is not the only 
way to implement refine E g , MIS [Shapiro, 1983] just 
removes the whole clause, and if necessary, replaces it 
later by a more specific clause 

3 3 D i s c u s s i o n 
Taking a closer look at the rules (1 ) A L P , (2 ) A L P , (l) ILP 
and {2)ILP, one can see some important similarities in 
the reasoning mechanisms of the ALP and ILP ap-
proaches Consider for example the rules ( 1 )ALP and 
( 1 ) I L P The first disjunct of the right hand side looks 
very much the same reduction of a goal via resolution 
with a clause of P The main difference of course lies 
in the second disjunct of the rules, namely in the meta-
predicates abduce and induce The meta-predicate ab­
duce reasons on the level of ground facts, whereas the 
meta-pred icatc induce is concerned w i t h def in i te Horn 
clauses However, there sti l l is a certain analogy in these 
predicates induce first backtracks over the possibly in­
complete definition of the inducible predicate, and only 
if the atom is not covered a new clause in induced Most 
abductive systems realise abduce by just inserting the 
atom as a new fact, but there exist more sophisticated 
abductive approaches that also first backtrack over the 

2 A clause C covers an atom A if P U {C} \= A 

already abduced atoms, and only abduce a new fact 
when unification fails 

Notice that an analogue duality can be found in the 
rules (2)ALP and (2)lLP The first conjunct of the right 
hand side expresses that once a negative atomic goal 
unifies wi th the head of a clause, the instantiated body 
should not be true in Pnew The second conjunct ex­
presses what should be done when the negative goal con­
tains a predicate p of U{P) The difference between the 
ALP and the ILP approach lies in the fact that in ALP 
one must avoid unification wi th the abduced atoms for 
the predicate p, whereas in ILP one must avoid coverage 
by the (induced) clauses for p 

4 S L D N F A I a n a b d u c t i v e p r o c e d u r e 
for ILP 

In this section we consider the abductive procedure, 
SLDNFA [Denecker ti a\, 1992], and show that replacing 
the reasoning on the level of ground facts by an induc­
tive reasoning schema, transforms it into an inductive 
procedure, which we call SLDNFAI 
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'Note that in a classical HP setting under FOL 
•emanticB should entail the positive examples and should be 
consistent with the negative examples When is a 

As representation language we use functor-free, linked 
Horn clauses The procedure starts wi th an empty 
hypothesis and handles the examples incrementally 
Clauses in are represented as couples of the form 
(c, coverage), where C is a clause and coverage is the 
set of positive examples encountered so far that are cov­
ered by c The clauses of C(P) denning predicates of 
U{P) are considered to belong tc Their coverage is 
initialised to the empty Bet We use a set N to Htore the 
negative examples handled BO far 

We now specify how the predicates induce and refine 
are implemented in our inductive procedure The predi­
cate induce is called when a positive example is encoun­
tered When it is already covered by one or more of the 
clauses in H, it is added to the coverage of each of these 
clauses When the example is not covered by the current 
H, a most general clause is constructed that covers the 
example, and does not cover any of the negative exam­
ples in N The actual construction of such a clause goes 
as follows The procedure starts with a clause with an 
empty body, and wi th as head a variabilized version of 
the positive example This very general clause is then 
gradually refined unti l it does not cover any of the nega­
tive examples in the current N Refining a clause is done 
either by unifying two distinct variables, or by adding a 
literal to the body The arguments of this literal should 
be distinct variables, wi th at least one variable in com­
mon with the original clause The predicate can be any 
predicate of P 
The meta-predicate refine is called for handling a nega­
tive example If the example is covered by one or more 
clauses in H, each of these clauses is refined auch that it 
no longer covers the negative example Next it IB checked 
for each of these refined clauses which examples in their 
coverage are no longer covered The examples that are 
no longer covered by any of the clauses in H are then 
again added to E 

4 3 Introducing induction in SLDNFA 
SLDNFAI 

The basic idea is to maintain the overall structure of 
the SLDNFA procedure and to replace the abduction of 
the set of ground facts A by the induction of a set of 
clauses H using the inductive procedure of Section 4 2 
For doing BO, we wil l consider positive abductive goals as 
positive examples, and negative abductive goals as nega-
tive examples6 The set H is initialized w i th the clauses 
of C(P) defining predicates of U(P), wi th an empty cov­
erage for each of these clauses As in SLDNFA we use 
sets PG and NG to store positive and negative goals 
For a posit ve abductive goal, SLDNFAI extends - if 
necessary - wi th a new clause that is consistent wi th the 
negative examples encountered so far These negative 
examples are stored in the set N Interleaving the com­
putation of the failure tree for a negative abductive goal 

definite program, this is equivalent with under least 
Herbrand Model semantics entails both the positive and the 
negated negative example! 

6 A positive, reap negative, abductive goal is an atom for 
an abduncible predicate, selected in a positive, reap negative, 
goal 
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its variables by Bkolem constants - and adding the re­
sult to In order to solve problems with unification 
wi th skolem constants, classical unification is extended 
In a first phase, extended unification treats skolem con­
stants as variables, in a second phase, it Bkolemnes the 
terms bound to the original skolem constants This IB 
illustrated in Example 1 

The predicate avoid.unification, which handles the 
case where an abductive atom A is selected in a neg­
ative goal Q, is more complex One must compute the 
failure tree obtained by resolving the goal with each of 
the abduced atoms in , A problem is that the final A 
may not be total ly known when A \s selected SLDNFA 
solves this by interleaving the computation of the failure 
tree with the construction of This is implemented 
by storing for each negative abductive goal the triplet 

where Q is the negative abductive goal, Aq 
is the abductive atom Belected in and is the set of 
abduced atoms that have been resolved with Q When 
a new fact is abduced, the stored goal is retrieved and is 
resolved with the new fact 

Finally, SLDNFA has a special negative unification 
procedure for handling the case where skolem constants 
occur in negative goals We wil l not go into detail on this 
procedure We just mention that it produces expressions 
of the f o r m t e r m as constraints on the generated 
solutions 

In [Denecker, 1993] the SLDNFA procedure is formal­
ized and it is proven to be sound w r t completion se­
mantics comp A.s a completeness result it 
IB proven that if the computation terminates, then SLD­
NFA generates at least all minimal solutions 

4 2 A simple inductive procedure 
We design a simple inductive procedure which can be 
seen as prototypical for a general-to-specific incremen­
tal ILP approach to predicate learning In termB of the 
formalization of Section 2, our procedure handles the fol­
lowing problem 
G i v e n 



Let us for the Bake of comparison discuss how 
SLDNFA would have operated on the same exam­
ple First, SLDNFA would not take into account 
clause (6), since it assumes that ini t ial ly there is no 
definition for the abducible predicates The first three 
steps in example 2 stay the same for SLDNFA In 
step 4 howeveT, SLDNFA would abduce the atom 
conn-to-empty-battery wi th sk1 a skolem con­
stant, and add it to A Step 5 and 6 stay the 
same as for SLDNFAI, but step 7 is again different 
Since conn-to -empty.battery is a negative abduc-
tive goal, unification wi th eonn-to.empty.battery { 
should be avoided Therefore SLDNFA adds the con­
straint sk1 The result is that SLDNFA has ab-
duced that lamp l1 has an empty battery sk1 which is 
different from b2 

Which of both solutions - i e , the one produced by 
SLDNFA or the one produced by SLDNFAI - is prefer 
able of course depends on the actual problem situation, 
I e , whether one is interested in general rules, or in a 
concrete scenario 

Finally, we want to make two important remarks con­
cerning SLDNFAI First, we claim that in a "degener­
ate" case, SLDNFAI reduces to the inductive procedure 
of Section 4 2 Indeed, when SLDNFAI is given as ini­
t ia l query the conjunction of all positive and negative 
examples, it wi l l behave as the inductive procedure we 
described, and produce a set of clauses that covers all the 
positive examples, and none of the negative examples 

And second, we claim that by using the SLDNFA ap­
proach, SLDNFAI provides an elegant way of extending 
ILP approaches to handle normal clauses The use of 
completion - as in SLDNFA - allows to extend the covers 
relation in a straightforward way to cope wi th negated 
atoms in the body of clauses This approach was also 
taken by [Taylor, 1993] in their extension of a particular 
generalization operator, nl absorption, towards normal 
clauses in an inductive learning context Moreover, since 
SLDNFA can cope both wi th positive and negative goals, 
it functions in a very natural way as an example gen­
erator for both positive and negative examples for the 
inducible predicates, as can be seen in Example 2 

5 C o n c l u s i o n s 

In this paper we have made the link more clear between 
ALP and ILP We have argued that both induction and 
abduction are different, yet related forms of hypothetical 
reasoning on incomplete knowledge On the one hand, 
abductive procedures complete this incomplete knowl 
edge by hypotheses containing ground facts Such a 
solution is appropriate when one has confidence in the 
available general laws, and one is interested in finding 
a concrete scenario that explains certain observations 
On the other hand, inductive procedures produce gen­
eral rules to complete the incomplete knowledge This 
is interesting in case one is interested in compacting the 
positive and negative evidence, and in later reusing the 
rules for classifying new examples 

Borrowing ideas of Bry's setting [Bry, 1990] for inten 
sional knowledge base updating, we have developed a 
generic framework that formalises the problem of com-
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and the construction of the set A is replaced by refin­
ing H each time a new negative example is encountered 
We clarify this idea by i l lustrating SLDNFAI on a small 
example 

E x a m p l e 2 Consider the following fault diagnosis prob­
lem for lamps 

The predicate conn_to_empty_battery is inducible Note 
thai this implies that clause (8) is not necessarily com 
plete and correct The following enumeration describes 
how SLDNFAI operates in order to make the initial query 
succeed In each step we indicate the operation and the 
updated datasiructures 



pleting incomplete knowledge In thin framework a 
declarative expression of an update of a logic program P 
resulting in a logic program Pne,w is a set of logical for­
mulas using a meta-predicate new that applies on atoms 
and negated atoms A set of rewrite rules translates 
these formulas into operations on the object level pro­
gram 

Next, we mapped our framework both to the ALP 
and ILP approaches In doing so, more light is shed on 
the relationship between abduction and induction As 
an il lustration we considered the abductive procedure 
SLDNFA of [Denecker and De Schreye, 1992] "We refor­
mulated this procedure as an instantiation of our generic 
approach and showed that this enabled US to replace in 
a straightforward way the abduction of ground facts by 
a general-to-specific procedure for inducing clauses We 
call the resulting procedure SLDNFAI, 1 e , SLDNFA ex­
tended with induction Finally, we claim that this en­
hancement of SLDNFA can also be beneficial for the ILP 
approach, since SLDNFA works with normal program 
clauses, whereas ILP is restricted to definite clauses 

As a general conclusion we can say that our paper 
has established a clear relationship between ALP and 
ILP We pointed out that it is worthwhile transferring 
results and techniques from one domain to the other 
E g , ILP could benefit from formal and theoretical re­
sults obtained in ALP, whereas ALP could benefit from 
inductive techniques to alleviate the restriction to abduc-
ing only ground facts We are convinced that the first 
promising results achieved in this paper suggest that fur­
ther research on this issue can lead to interesting results 

Acknowledgements 
We wish to thank Maurice Bruynooghe, Gunther Sablon 
and Luc De Raedt for their comments on earlier versions 
of this paper, and for the inspiring discussions Research 
for this paper was partially supported by the Esprit Bra 
nr 6020 (ILP) We are also grateful to the anonymous 
reviewers for their encouraging comments 

References 
[Ade et al, 1994] H Ade, B Malfait, and L De Raedt 

RUTH an ILP Theory Revision System In Proceed­
ings of ike 8th International Symposium on Method 
ologies for Intelligent Systems (ISMIS94), 1994 

[Bry, 1990] Francois Bty Intensional updates abduc­
tion via deduction In D Warren and P Szeredi, 
editore, Proceedings of the 7th International Confer 
ence on Logic Programming, pages 561-578 The M I T 
Press, 1990 

[Charniak and McDermott, 1985] E Charmak and 
D McDermott Introduction to Artifical Intelligence 
Addison Wesley, 1985 

[Clark, 1978] K L Clark Negation as failure In H Gal-
laire and J Minker, editors, Logic and Databases, 
pages 293-322 Plenum Press, 1978 

[De Raedt and Bruynooghe, 1992] L De Raedt and 
M Bruynooghe Belief updating from integrity con­
straints and queries Artificial Intelligence, 53 291-
307, 1992 

[De Raedt, 1992] L De Raedt Interactive Theory Re­
vision an Inductive Logic Programming Approach. 
Academic Press, 1992 

[Denecker and De Schreye, 1992] M Denecker 
and D De Schreye SLDNFA an abductive procedure 
for normal abductive programs In K R Apt , editor, 
Proc of the International Joint Conference and Sym 
posium on Logic Programming, pages 686-700, 1992 

[Denecker ei al, 1992] M Denecker, L Missiaen, and 
M Bruynooghe Temporal reasoning wi th abductive 
event calculus In B Neumann, editor, Proceedings 
of the 10th European Conference on Artificial Intelli 
gence, pages 384-388 John Wiley & Sons, 1992 

[Denecker, 1993] M Denecker Knowledge Represen 
tation and Reasoning in Incomplete Logic Program­
ming PhD thesis, Department of Computer Science, 
K U Leuven, 1993 

[Guesspum and Lloyd, 1990] A Guessoum and JW 
Lloyd Updating knowledge bases New Generation 
Computing, 8 71-88, 1990 

[Kakae and Mancarella, 1990] A C Kakas and P Man­
carella Database updates through abduction In Proc 
of the 16th Very large Database Conference, pages 
650-661, 1990 

[Kakas et al, 1993] A C Kakas, R A Kowalski, and 
F Tom Abductive Logic Programming Journal of 
Logic and Computation, 2(6) 719-770, 1993 

[Muggleton and De Raedt, 1994] S Muggle-
ton and L De Raedt Inductive logic programming 
Theory and methods Journal of Logic Programming, 
19,20 629-679, 1994 

[Muggleton and Feng, 1990] S Muggleton and C Feng 
Efficient induction of logic programs In Proceedings 
of the 1si conference on algorithmic learning theory, 
pages 368-381 Ohmsma, Tokyo, Japan, 1990 

[Pazzam and Brunk, 199l] M Pazzani and C Brunk 
Detecting and correcting errors in rule-based expert 
systems an integration of empirical and explanation-
based learning Knowledge Acquisition, 3 157-173, 
1991 

[Quinlan, 1990] J R Quinlan Learning logical defini­
tions from relations Machine Learning, 5 239-266, 
1990 

[Shapiro, 1983] EY Shapiro Algorithmic Program De 
bugging The M I T Press, 1983 

[Tankitvamtch and Shimura, 1992] 
S Tankmani tch and M Shimura Refining a rela­
tional theory with multiple faults in the concept and 
subconceptB In Proceedings of the 9th International 
Workshop on Machine Learning, pages 436-444 Mor­
gan Kaufmann, 1992 

[Taylor, 1993] K Taylor Inverse Resolution of Normal 
Clauses In Proceedings of the 3rd International Work­
shop on Inductive Logic Programming, pages 165-177, 
1993 

ADE AND DENECKER 1207 


