
AILP . Abductive Inductive Logic Programming

H i l d e A d e and M a r c Denecke r
Department of Computer Science, K U Leuven

Celestijnenlaan 200 A, B-3001 Heverlee, Belgium

A b s t r a c t

Inductive Logic Programming (ILP) is often
situated as a research area emerging at the in­
tersection of Machine Learning and Logic Pro­
gramming (LP) This paper makes the link
more clear between ILP and LP, in particular,
between ILP and Abductive Logic Program­
ming (ALP), 1 e , LP extended with abduc­
tive reasoning We formulate a generic frame-
work for handling incomplete knowledge This
framework can be instantiated both to ALP
and ILP approaches By doing so more light
is shed on the relationship between abduction
and induction As an example we consider the
abductive procedure SLDNFA, and modify it
into an inductive procedure which we call SLD-
NFAI

Keywords Inductive Logic Programming, Abductive
Logic Programming, Incomplete Knowledge, Intensional
Knowledge Base Updating, Theory Revision

1 I n t r o d u c t i o n

It is often argued that the use of - a subset of - first or­
der logic as a representation language situates Inductive
Logic Programming (ILP) at the intersection of Logic
Programming and Machine Learning The research in
ILP IB concerned wi th the derivation of logic programs
from (positive and negative) evidence in the presence of
background knowledge Characteristic for this approach
is the use of induction, i e , a form of synthetic reasoning
that infers general laws from observations [Muggleton
and De Raedt, 1994] reviews theoretical results, imple­
mented systems and practical applications in this area
Two major problems tackled in ILP are predicate learn­
ing and theory revision The former is concerned with
the induction of rules for an undefined or partially de­
fined predicate from examples, whereas the latter con­
cerns the updating of a theory (a logic program) when it
is inconsistent wi th newly incoming information Proto-
type systems are - amongst others - the predicate learn-
era MIS [Shapiro, 1983], FOIL [Qumlan, 1990], GOLEM
[Muggleton and Feng, 1990], CL INT [De Raedt, 1992],
and the theory revision systems RX [Tankitvanitch and

Shimura, 1992], KR-FOCL [P BiEani and Brunk, 199l]
and RUTH [Ade et al, 1994]

In the area of Logic Programming (LP) abduction has
been recognised as an important form of non-monotonic
reasoning It IB a form of synthetic reasoning, which
- as opposed to induction infers explanations for ob­
served facte, according to known (general) lawH Abduc­
tion has been shown useful for fault diagnosis [Charmak
and McDermott, 1985], planning and temporaj reason­
ing [Denecker et al, 1992] and knowledge assimilation
[Kakas and Mancarella, 1990], and it has also been suc­
cessfully applied in Intensional Knowledge Base Updat­
ing approaches such as [Bry, 1990], [Kakas and Mancar­
ella, 1990] and [Guessoum and Lloyd, 1990] A critical
survey on the extension oflogic programming to perform
abductive reasoning can be found in [Kakas et al, 1993]

In this paper we argue that both abduction and in­
duction are different, yet related forms of reasoning on
incomplete knowledge They are both forms of hypothet­
ical reasoning and attempt to "complete" the knowledge
by proposing additional hypotheses However, they dif­
fer in the sort of hypotheses

According to the "declarative semantics", a logic pro-
gram can be seen as a Bet of definitions for a number
of concepts This interpretation is already present m
Clark's work on completion semantics [Clark, 1978] Un­
der Clark's interpretation, a program consists of a set
of possibly empty definitions for all predicates, predi­
cates are defined by enumerating exhaustively the cases
in which they are true Under this interpretation, a prob-
lem wi th the use of logic programs for knowledge repre­
sentation, is that an expert needs to provide complete
definitions for all predicates In many applications, such
complete information is not available A natural solution
IB to extend the logic program formalism such that only
a subset of the predicates is to be defined while other
predicates can be left undefined In addition, partial
knowledge about these undefined predicates can be given
using FOL axioms The role of these FOL axioms is in­
timately tied to the representation of uncertainty when
a number of concepts cannot be defined, then other, less
precise information may be available which can be rep­
resented as a set of assertions E g , if the predicates
father/1 and mother/1 are declared as being undefined,
the axiom mother(X) V father(X) <— parent(X) expresses
the weaker partial knowledge that it cannot be the case

ADE AND DENECKER 1201

that someone is a parent without being a mother or a
father

The actual procedures for "completing" incomplete
knowledge developed in the ALP and ILP area, are -
as to be expected - quite different The ALP approaches
construct hypotheses in the form of ground facts for the
undefined predicates These factB are seen as the de­
scription of a scenario that explains a given observation
As opposed to this, ILP systems in general - even in
case of a specific-to-general search - disallow facts The
hypotheses they generate are sets of rules that express
general - scenario independent - information on the un­
defined predicates AB such an ALP approach is appro­
priate when the expert has great confidence in his general
knowledge, but wants to find a concrete explanation for
an observation On the other hand, an ILP approach is
more appropriate when the expert searches for general
rules that compact the positive and negative evidence,
and that later can be reused to classify new examples

A first step towards integration of techniques from
both domains was taken by [De Raedt and Bruynooghe,
1992] De Raedt and Bruynooghe argue that - when re­
formulated within a logical framework - both intenBional
knowledge base updating and predicate learning are in­
stances of the belief updating problem As a proof for
this claim they present an adapted version of Shapiro's
MIS system in which techniques from both parent do­
mains are integrated These ideas were later further
elaborated and implemented in the theory revision sys­
tem RUTH [Ade et al, 1994]

The contribution of our work is that we reformulate
the ALP and ILP approaches as instances of a generic
version of Bry's framework [Bry, 1990] for intensional
knowledge base updating In doing so we show that there
is a clear relationship between inductive and abductive
reasoning Moreover, this setting enables UB to intro­
duce inductive reasoning into an abductive schema, thus
resulting in a Betting which one could call Abductive In­
ductive Logic Programming (AILP) As an example we
transform a typical abductive procedure, namely SLD-
NFA into a new procedure SLDNFAI (SLDNFA-with-
Induction) by enhancing it wi th a general-to-specific pro-
cedure for inducing clauses Furthermore, this enhance­
ment could also be beneficial for the ILP approach, since
SLDNFA is a procedure for normal clauses, whereas the
ILP setting used to be restricted to definite clauses

This paper is organized as follows In Section 2 we
introduce a generic framework that formalizes different
forms of hypothetical reasoning on incomplete knowl­
edge In Section 3 we map both the ALP and ILP ap­
proaches to this framework, and discuss the similarities
and differences In Section 4 we elaborate an abductive
procedure for ILP, by introducing inductive reasoning
into the abductive procedure SLDNFA Finally, in Sec­
tion 5 we formulate our conclusions

2 P r o b l e m f o r m a l i z a t i o n

Intuitively one can outline the problem of handling in
complete knowledge as follows Given is a logic program
P, which is declaratively read as the descnption of the
problem domain One part of this program is regarded

1202 LEARNING

3 A b d u c t i o n v e r s u s I n d u c t i o n

In this section we diacuss the ALP and ILP approaches
in terms of the generic problem setting of Figure 1 and
the rewrite rules for the meta-predicate new

3 1 A L P
In general, abductive reasoning is concerned wi th the
construction of explanations for observations using gen­
eral laws These explanations are expressed in terms of
a predetermined set of predicates, called abducible pred­
icates Moreover, most ALP approaches require the ex­
planations to be a set of ground facts First, this restricts
the number of possibilities, and Becond, in ALP one is in­
terested in constructing a concrete scenario rather than
general rules As a consequence updates of a logic pro­
gram P are restricted to removing and inserting ground
facts for the abducible predicates

In the formalization of the previous section this means
that ALP regards the logic program P as having a fixed
part, consisting of C{P) and I(P), and the set U(P)
containing the names of the abducible predicates Al l
of C(P) belongs to the complete part, the incomplete
part defining the predicates of U{P) is empty Once
evidence E is given, it is translated into operations on
the abducible predicates

ADE AND DENECKER 1203

In [Bry, 1990] a non-Horn theory JV for the meta-
predicate new is defined in terms of operations on the
object program facts and clauses In Definition 4 we
give a 'generic' version of this theory, in that we re­
placed the actual operations on the object program by
the predicates eval.pos-atom and cvaLneg.atom that are
to be instantiated The rules rely on a meta-predicate
clause that ranges over the clauses of C(P) defining the
predicates that are not in U{P) More specifically, de­
fine Clause(P) as the meta program consisting of factB
clause(A <— B) for each rule A ■*— B in C(P) and of facts
undefined(A) for all atoms A containing a predicate of
U{P)

D e f i n i t i o n 2 An update of a logic program P u a
set of expressions of the form eval_pos_atom(A) or
eval_neg_atom(A) where A is an atom D

D e f i n i t i o n 3 Lei P be a logic program and U an -update
of P The procedure update is a function that n aps P and
U to a logic program, such that the following correctness
criterion is fulfilled

The effect of the meta-predicate abduce operating on
the program P is that the atom A is added to the pro­
gram as (part of) the definition for the abducible predi­
cate The meta-predicate avoid -unification has as effect
that it continuously constrains the atom A so that it can­
not unify with any of the abduced atoms Note that both
predicates abduce and avoid-unification are sti l l generic
in the sense that they do not give any exact procedural
information Every abductive system implements these
predicates in its own particular way

3 2 I L P
In general ILP approaches are concerned with the deriva­
tion of logic programs f rom positive and negative evi­
dence in the presence of background knowledge In most
systems evidence is a set of positive and negative exam­
ples of predicates for which no or only incomplete defini­
tions are given We wil l call these predicates inducible
ILP aims at constructing general rules that define the in­
ducible predicates, since one is interested in compacting
the knowledge represented by the positive and negative
examples Furthermore, one wants to be able to reuse
the induced rules for the classification of unknown ex­
amples

In the formaheation of Section 2 this means that the
background knowledge is a part of C(P) It is the fixed
part of P that is correct and complete, and that can
be used as a logic program W(P) is the set of ITI-
ducible predicates C(P) can contain clauses for these

A call to the meta-predicatc induce has the following
effect First it ia checked whether there is a clause in
C{P) that covere the atom A3 If this is the case, noth­
ing needs to be done Else, a clause is constructed that
covere the atom A and that IB consistent with the nega­
tive evidence Been so far We formulate the requirements
for such a clause only in a very general way, since each
approach has its own particular way of implementing
the induction of a clause For example in a specific-
to-general approach one would start wi th a most spe­
cific clause, which can then later be generalised, whereas
a general-to-specific approach would rather construct a
most general clause covering the example and consistent
with the negative evidence

The meta-predicate refine is called when a negative
example is covered by one or more clauses in the par-
tial definitions for the inducible predicates In that case
these clauses are refined, 1 e , made more specific, such
that they no longer cover the negative example Making
a clause more specific is usually done by adding one or
more literals to its body, although this is not the only
way to implement refine E g , MIS [Shapiro, 1983] just
removes the whole clause, and if necessary, replaces it
later by a more specific clause

3 3 D i s c u s s i o n
Taking a closer look at the rules (1) A L P , (2) A L P , (l) ILP
and {2)ILP, one can see some important similarities in
the reasoning mechanisms of the ALP and ILP ap-
proaches Consider for example the rules (1)ALP and
(1) I L P The first disjunct of the right hand side looks
very much the same reduction of a goal via resolution
with a clause of P The main difference of course lies
in the second disjunct of the rules, namely in the meta-
predicates abduce and induce The meta-predicate ab­
duce reasons on the level of ground facts, whereas the
meta-pred icatc induce is concerned w i t h def in i te Horn
clauses However, there sti l l is a certain analogy in these
predicates induce first backtracks over the possibly in­
complete definition of the inducible predicate, and only
if the atom is not covered a new clause in induced Most
abductive systems realise abduce by just inserting the
atom as a new fact, but there exist more sophisticated
abductive approaches that also first backtrack over the

2 A clause C covers an atom A if P U {C} \= A

already abduced atoms, and only abduce a new fact
when unification fails

Notice that an analogue duality can be found in the
rules (2)ALP and (2)lLP The first conjunct of the right
hand side expresses that once a negative atomic goal
unifies wi th the head of a clause, the instantiated body
should not be true in Pnew The second conjunct ex­
presses what should be done when the negative goal con­
tains a predicate p of U{P) The difference between the
ALP and the ILP approach lies in the fact that in ALP
one must avoid unification wi th the abduced atoms for
the predicate p, whereas in ILP one must avoid coverage
by the (induced) clauses for p

4 S L D N F A I a n a b d u c t i v e p r o c e d u r e
for ILP

In this section we consider the abductive procedure,
SLDNFA [Denecker ti a\, 1992], and show that replacing
the reasoning on the level of ground facts by an induc­
tive reasoning schema, transforms it into an inductive
procedure, which we call SLDNFAI

1204 LEARNING

'Note that in a classical HP setting under FOL
•emanticB should entail the positive examples and should be
consistent with the negative examples When is a

As representation language we use functor-free, linked
Horn clauses The procedure starts wi th an empty
hypothesis and handles the examples incrementally
Clauses in are represented as couples of the form
(c, coverage), where C is a clause and coverage is the
set of positive examples encountered so far that are cov­
ered by c The clauses of C(P) denning predicates of
U{P) are considered to belong tc Their coverage is
initialised to the empty Bet We use a set N to Htore the
negative examples handled BO far

We now specify how the predicates induce and refine
are implemented in our inductive procedure The predi­
cate induce is called when a positive example is encoun­
tered When it is already covered by one or more of the
clauses in H, it is added to the coverage of each of these
clauses When the example is not covered by the current
H, a most general clause is constructed that covers the
example, and does not cover any of the negative exam­
ples in N The actual construction of such a clause goes
as follows The procedure starts with a clause with an
empty body, and wi th as head a variabilized version of
the positive example This very general clause is then
gradually refined unti l it does not cover any of the nega­
tive examples in the current N Refining a clause is done
either by unifying two distinct variables, or by adding a
literal to the body The arguments of this literal should
be distinct variables, wi th at least one variable in com­
mon with the original clause The predicate can be any
predicate of P
The meta-predicate refine is called for handling a nega­
tive example If the example is covered by one or more
clauses in H, each of these clauses is refined auch that it
no longer covers the negative example Next it IB checked
for each of these refined clauses which examples in their
coverage are no longer covered The examples that are
no longer covered by any of the clauses in H are then
again added to E

4 3 Introducing induction in SLDNFA
SLDNFAI

The basic idea is to maintain the overall structure of
the SLDNFA procedure and to replace the abduction of
the set of ground facts A by the induction of a set of
clauses H using the inductive procedure of Section 4 2
For doing BO, we wil l consider positive abductive goals as
positive examples, and negative abductive goals as nega-
tive examples6 The set H is initialized w i th the clauses
of C(P) defining predicates of U(P), wi th an empty cov­
erage for each of these clauses As in SLDNFA we use
sets PG and NG to store positive and negative goals
For a posit ve abductive goal, SLDNFAI extends - if
necessary - wi th a new clause that is consistent wi th the
negative examples encountered so far These negative
examples are stored in the set N Interleaving the com­
putation of the failure tree for a negative abductive goal

definite program, this is equivalent with under least
Herbrand Model semantics entails both the positive and the
negated negative example!

6 A positive, reap negative, abductive goal is an atom for
an abduncible predicate, selected in a positive, reap negative,
goal

ADE AND DENECKER 1206

its variables by Bkolem constants - and adding the re­
sult to In order to solve problems with unification
wi th skolem constants, classical unification is extended
In a first phase, extended unification treats skolem con­
stants as variables, in a second phase, it Bkolemnes the
terms bound to the original skolem constants This IB
illustrated in Example 1

The predicate avoid.unification, which handles the
case where an abductive atom A is selected in a neg­
ative goal Q, is more complex One must compute the
failure tree obtained by resolving the goal with each of
the abduced atoms in , A problem is that the final A
may not be total ly known when A \s selected SLDNFA
solves this by interleaving the computation of the failure
tree with the construction of This is implemented
by storing for each negative abductive goal the triplet

where Q is the negative abductive goal, Aq
is the abductive atom Belected in and is the set of
abduced atoms that have been resolved with Q When
a new fact is abduced, the stored goal is retrieved and is
resolved with the new fact

Finally, SLDNFA has a special negative unification
procedure for handling the case where skolem constants
occur in negative goals We wil l not go into detail on this
procedure We just mention that it produces expressions
of the f o r m t e r m as constraints on the generated
solutions

In [Denecker, 1993] the SLDNFA procedure is formal­
ized and it is proven to be sound w r t completion se­
mantics comp A.s a completeness result it
IB proven that if the computation terminates, then SLD­
NFA generates at least all minimal solutions

4 2 A simple inductive procedure
We design a simple inductive procedure which can be
seen as prototypical for a general-to-specific incremen­
tal ILP approach to predicate learning In termB of the
formalization of Section 2, our procedure handles the fol­
lowing problem
G i v e n

Let us for the Bake of comparison discuss how
SLDNFA would have operated on the same exam­
ple First, SLDNFA would not take into account
clause (6), since it assumes that ini t ial ly there is no
definition for the abducible predicates The first three
steps in example 2 stay the same for SLDNFA In
step 4 howeveT, SLDNFA would abduce the atom
conn-to-empty-battery wi th sk1 a skolem con­
stant, and add it to A Step 5 and 6 stay the
same as for SLDNFAI, but step 7 is again different
Since conn-to -empty.battery is a negative abduc-
tive goal, unification wi th eonn-to.empty.battery {
should be avoided Therefore SLDNFA adds the con­
straint sk1 The result is that SLDNFA has ab-
duced that lamp l1 has an empty battery sk1 which is
different from b2

Which of both solutions - i e , the one produced by
SLDNFA or the one produced by SLDNFAI - is prefer
able of course depends on the actual problem situation,
I e , whether one is interested in general rules, or in a
concrete scenario

Finally, we want to make two important remarks con­
cerning SLDNFAI First, we claim that in a "degener­
ate" case, SLDNFAI reduces to the inductive procedure
of Section 4 2 Indeed, when SLDNFAI is given as ini­
t ia l query the conjunction of all positive and negative
examples, it wi l l behave as the inductive procedure we
described, and produce a set of clauses that covers all the
positive examples, and none of the negative examples

And second, we claim that by using the SLDNFA ap­
proach, SLDNFAI provides an elegant way of extending
ILP approaches to handle normal clauses The use of
completion - as in SLDNFA - allows to extend the covers
relation in a straightforward way to cope wi th negated
atoms in the body of clauses This approach was also
taken by [Taylor, 1993] in their extension of a particular
generalization operator, nl absorption, towards normal
clauses in an inductive learning context Moreover, since
SLDNFA can cope both wi th positive and negative goals,
it functions in a very natural way as an example gen­
erator for both positive and negative examples for the
inducible predicates, as can be seen in Example 2

5 C o n c l u s i o n s

In this paper we have made the link more clear between
ALP and ILP We have argued that both induction and
abduction are different, yet related forms of hypothetical
reasoning on incomplete knowledge On the one hand,
abductive procedures complete this incomplete knowl
edge by hypotheses containing ground facts Such a
solution is appropriate when one has confidence in the
available general laws, and one is interested in finding
a concrete scenario that explains certain observations
On the other hand, inductive procedures produce gen­
eral rules to complete the incomplete knowledge This
is interesting in case one is interested in compacting the
positive and negative evidence, and in later reusing the
rules for classifying new examples

Borrowing ideas of Bry's setting [Bry, 1990] for inten
sional knowledge base updating, we have developed a
generic framework that formalises the problem of com-

1206 LEARNING

and the construction of the set A is replaced by refin­
ing H each time a new negative example is encountered
We clarify this idea by i l lustrating SLDNFAI on a small
example

E x a m p l e 2 Consider the following fault diagnosis prob­
lem for lamps

The predicate conn_to_empty_battery is inducible Note
thai this implies that clause (8) is not necessarily com
plete and correct The following enumeration describes
how SLDNFAI operates in order to make the initial query
succeed In each step we indicate the operation and the
updated datasiructures

pleting incomplete knowledge In thin framework a
declarative expression of an update of a logic program P
resulting in a logic program Pne,w is a set of logical for­
mulas using a meta-predicate new that applies on atoms
and negated atoms A set of rewrite rules translates
these formulas into operations on the object level pro­
gram

Next, we mapped our framework both to the ALP
and ILP approaches In doing so, more light is shed on
the relationship between abduction and induction As
an il lustration we considered the abductive procedure
SLDNFA of [Denecker and De Schreye, 1992] "We refor­
mulated this procedure as an instantiation of our generic
approach and showed that this enabled US to replace in
a straightforward way the abduction of ground facts by
a general-to-specific procedure for inducing clauses We
call the resulting procedure SLDNFAI, 1 e , SLDNFA ex­
tended with induction Finally, we claim that this en­
hancement of SLDNFA can also be beneficial for the ILP
approach, since SLDNFA works with normal program
clauses, whereas ILP is restricted to definite clauses

As a general conclusion we can say that our paper
has established a clear relationship between ALP and
ILP We pointed out that it is worthwhile transferring
results and techniques from one domain to the other
E g , ILP could benefit from formal and theoretical re­
sults obtained in ALP, whereas ALP could benefit from
inductive techniques to alleviate the restriction to abduc-
ing only ground facts We are convinced that the first
promising results achieved in this paper suggest that fur­
ther research on this issue can lead to interesting results

Acknowledgements
We wish to thank Maurice Bruynooghe, Gunther Sablon
and Luc De Raedt for their comments on earlier versions
of this paper, and for the inspiring discussions Research
for this paper was partially supported by the Esprit Bra
nr 6020 (ILP) We are also grateful to the anonymous
reviewers for their encouraging comments

References
[Ade et al, 1994] H Ade, B Malfait, and L De Raedt

RUTH an ILP Theory Revision System In Proceed­
ings of ike 8th International Symposium on Method
ologies for Intelligent Systems (ISMIS94), 1994

[Bry, 1990] Francois Bty Intensional updates abduc­
tion via deduction In D Warren and P Szeredi,
editore, Proceedings of the 7th International Confer
ence on Logic Programming, pages 561-578 The M I T
Press, 1990

[Charniak and McDermott, 1985] E Charmak and
D McDermott Introduction to Artifical Intelligence
Addison Wesley, 1985

[Clark, 1978] K L Clark Negation as failure In H Gal-
laire and J Minker, editors, Logic and Databases,
pages 293-322 Plenum Press, 1978

[De Raedt and Bruynooghe, 1992] L De Raedt and
M Bruynooghe Belief updating from integrity con­
straints and queries Artificial Intelligence, 53 291-
307, 1992

[De Raedt, 1992] L De Raedt Interactive Theory Re­
vision an Inductive Logic Programming Approach.
Academic Press, 1992

[Denecker and De Schreye, 1992] M Denecker
and D De Schreye SLDNFA an abductive procedure
for normal abductive programs In K R Apt , editor,
Proc of the International Joint Conference and Sym
posium on Logic Programming, pages 686-700, 1992

[Denecker ei al, 1992] M Denecker, L Missiaen, and
M Bruynooghe Temporal reasoning wi th abductive
event calculus In B Neumann, editor, Proceedings
of the 10th European Conference on Artificial Intelli
gence, pages 384-388 John Wiley & Sons, 1992

[Denecker, 1993] M Denecker Knowledge Represen
tation and Reasoning in Incomplete Logic Program­
ming PhD thesis, Department of Computer Science,
K U Leuven, 1993

[Guesspum and Lloyd, 1990] A Guessoum and JW
Lloyd Updating knowledge bases New Generation
Computing, 8 71-88, 1990

[Kakae and Mancarella, 1990] A C Kakas and P Man­
carella Database updates through abduction In Proc
of the 16th Very large Database Conference, pages
650-661, 1990

[Kakas et al, 1993] A C Kakas, R A Kowalski, and
F Tom Abductive Logic Programming Journal of
Logic and Computation, 2(6) 719-770, 1993

[Muggleton and De Raedt, 1994] S Muggle-
ton and L De Raedt Inductive logic programming
Theory and methods Journal of Logic Programming,
19,20 629-679, 1994

[Muggleton and Feng, 1990] S Muggleton and C Feng
Efficient induction of logic programs In Proceedings
of the 1si conference on algorithmic learning theory,
pages 368-381 Ohmsma, Tokyo, Japan, 1990

[Pazzam and Brunk, 199l] M Pazzani and C Brunk
Detecting and correcting errors in rule-based expert
systems an integration of empirical and explanation-
based learning Knowledge Acquisition, 3 157-173,
1991

[Quinlan, 1990] J R Quinlan Learning logical defini­
tions from relations Machine Learning, 5 239-266,
1990

[Shapiro, 1983] EY Shapiro Algorithmic Program De
bugging The M I T Press, 1983

[Tankitvamtch and Shimura, 1992]
S Tankmani tch and M Shimura Refining a rela­
tional theory with multiple faults in the concept and
subconceptB In Proceedings of the 9th International
Workshop on Machine Learning, pages 436-444 Mor­
gan Kaufmann, 1992

[Taylor, 1993] K Taylor Inverse Resolution of Normal
Clauses In Proceedings of the 3rd International Work­
shop on Inductive Logic Programming, pages 165-177,
1993

ADE AND DENECKER 1207

