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Abstract

This paper presents a new approach to induc-
tive learning that combines aspects of instance-
based learning and rule induction in a single
simple algorithm The RISE system searches
for rules in a specific-to-general fashion, start-
ing with one rule per training example, and
avoids some of the difficulties of separate-and-
eonquer approaches by evaluating each pro-
posed induction step globally, le , through an
efficient procedure that is equivalent to check-
ing the accuracy of the rule set as a whole on
every training example Classification is per-
formed using a best-match strategy, and re-
duces to nearest-neighbor if all generalizations
of instances were rejected An extensive empiri-
cal study shows that RISE consistently achieves
higher accuracies than state-of-the-art repre-
sentatives of its "parent" paradigms (PEBLS
and CN2), and also outperforms a decision-tree
learner (C4 5) in 13 out of 15 test domains (in
10 with 95% confidence)

1 Introduction

Several well-developed approaches to inductive learn-
ing currently exist, among them induction of decision
trees [Qumlan, 1993a], rule induction [Clark and Niblett,
1989], and instance-based learning [Aha el al, 1991]
While accuracy in many practical domains is still far
from 100%, it is unclear how much, if any, improvement
is still possible with current methods Empirical studies
have also shown repeatedly that each approach works
best in some, but not all, domains, this has been termed
the selective superiority problem [Brodley, 1993] Ideally,
we would like to have an algorithm that in each domain
of interest performs as well as the best of the algorithms
above, or better While it is now clearly understood
that induction is a "zero-sum game", and thus this goal
is unachievable for the set of all mathematically possi
ble domains [Schaffer 1994], it may well be possible to
produce learners that perform better on a wide variety
of real-world domains, at the cost of worse performance
in domains that never occur in practice One way to
attempt this is by combining two or more of the basic
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approaches into an algorithm that will behave as the
most appropriate of them in each situation This line of
research may be termed "empirical multi-strategy learn-
ing" [Michalski and Tecuc, 1994] MCS [Brodley, 1993],
KBNGE [Wettschereck, 1994] and ITRULE [Smyth et
al, 1990] are examples of systems of this type

Two induction paradigms with largely complemen-
tary strengths and weaknesses are rule induction and
instance-based learning (IBL) Rule induction systems
often succeed in identifying small sets of highly predic-
tive features, and can make effective use of statistical
measures to combat noise However, they can only form
axis-parallel frontiers in the instance space, and they
have trouble recognizing exceptions, or in general small,
low-frequency sections of the space, this is known as the
small disjuncts problem [Holte et al, 1989] Further,
their general-to-specific, "separate and conquer" search
strategy causes them to suffer from the splintering prob
lem as induction progresses the amount of data left
for further learning dwindles rapidly, leading to wrong
decisions or insufficient specialization due to lark of ad-
equate statistical support On the other hand, IBL (also
known as nearest-neighbor) methods can form complex,
non axis-parallel frontiers, and are well suited to han-
dling exceptions, but can be very vulnerable to noise
and irrelevant features

This paper describes an approach to induction that
attempts to overcome each of these methods' limitations
by combining it with the other The approach is imple-
mented in the RISE system Unlike many other empir-
ical multi-strategy systems, RISE does not consist of a
global procedure calling the different algorithms as eub-
procedures, but rather of a single, simple algorithm that
can behave both as a nearest-neighbor classifier and a
rule induction system llence its being termed a "uni-
fied" approach, instead of a 'combined" one, many other
unification schemes are of course possible

The next section presents the RISE algorithm, fol-
lowed by the derivation of an upper bound for its time
complexity An empirical study is then reported, com-
paring RISE and several other systems on 30 domains
from the UCI repository, and the results are interpreted
Finally, related work is discussed, and some directions
for future research are outlined



2 The RISE Algorithm

“RISE” stands for “Rule Induction from a Set of
Exemplars " This paper describes version 2 0 of the al-
gorithm The learning and classification procedures will
be considered 1n turn

21 Representation and Search

Each example 18 2 vector of atiribute-value pairs, to-
gether with a specification of the class to which 1t be-
longs, attnbutes can be either nominal (symbolic) or
numenie  Each rule consieta of a conjunction of an-
tecedents and a predicted class FEach antecedent 18 &
copdition on a single attribute, and there 12 at most
one antecedent per attribute Conditions on nominel at-
tnbutes are equality tests of the form a, = v,, where g, 18
the aktnbute and v, 18 one of 1t8 legal values Conditions
on numeric atiributes take the form of allowable 1nter-
vals for the attributes, 1 e, g, € [v)1, 9,2}, where v); and
v,2 are two legal valuea for ¢, Exemplars (1 e , examples
used as prototypes for classification) are viewed as max-
imelly specific rules, with condilions on all attribules
and degenerate (point) intervals for numeric attributes
A rule 18 said Lo cover an example if the example satis-
fiea all of the rule’s conditions, a rule 18 said o wan an
example 1f 1L 18 the nearest rule to the example according
to the distance metric 1that will be described below

The RISE algonthm 1s summenzed in Table 1 RISE
searchea for “good” rules in a specific-to-general fash
ion, sterting with a rule set that 1s Lthe traiming set of
examples 1tself RISE looks at each rule in turn, finds
the nearest example of the same class that 1t does not
already cover (1 &, that 1s at a distance greater than zero
from it), and attempls to mimmally generalize the rule
to cover 1t The generalization procedure 1s outhned 1n
Table 2 If the change’s effect on global accuracy 1s posi-
tive, it 18 retained, otherwise 1t 16 discarded Generahza-
tions are also accepted if they appear to have no eflect on
accuracy, this reflects a emplicity bias This procedure
1 repeated until, for each rule, attemptled generalizalion
faills In the worst case, no generalizations are performed,
and the end result 1s amply a nearest-neighbor classifier
using all the training examples as exemplars

Accuracy 15 measured using a leave-one-ocut methed-
ology when attempting to classify en example, the cor-
responding rule 1s left out, unless 1t already covers other
examples a8 well A potential difficulty with this pro-
cedure 18 that 1t requires metching all tules (or all but
one) with all traming examples, and this would entail
a high computational cost if 1t was repeatedly done ns
outhned Fortunately, al each step only the change 1o ac-
curacy needs to be computed Each example memorizes
the distance to 1ts nearest tule and 1ts assigned class
When a rule 18 generalized, all that 15 necessary 15 then
to match that single rule againat all examples, and check
1T1t wins any that 1t did not before, and what 1ts effect on
these 18 Previously misclassified examples that are now
correctly classified add to the accuracy, and previously
correctly classified examples that ere now rmsclassified
subtract from it If the former are more numerous than
the latter, the change 1n nccurecy 18 positive, and the
generalization 18 accepied

Table ] The RISE algornithm

Input EY 18 the training sat
Procedure RISE (ES)

Let 5 be ES
Compute Aec(RS)
Repeat
For each rule £ 1n RS,
Find the nearest example E to R not already
covered by it {and of the same class)
Let B! = Most Specific.Generalization(R, E)
Let RS = RS with R replated by R’
I Acc(RS') > Acc(RS)
Then Replace RS by RS,
Il A 18 1dentical to another rule 1n RS,
Then delete R’ from RS
Untal no increase 1n Acc(RS) 15 obtained
Return RS

Table 2 Generalization of a rule to cover an example

Inputs R =(a,,a2, ,a@4,cg) 15 arule,
E =(e;,e2, ,eas, cg)1e an example
g, 18 etther True, &, = f\, OF Ty lower € T, < Ty upper

Function Most_Specific_Generalization (R, E)

For each altnbute 1,
Il 2, = True then Do nothing
Elge if 1 1s symbolic and e, # r, then a, = True
Else if &, > 7, upper then 7, wpper = €,
Else if e, < 1, jower then 1, jower = &

2 2 Classification

At performance time, claasification of each test example
18 performed by inding the nearest rule to 1L, and assign-
g the example to the rule’s class The distanee mea
sure used is a combnation of Euclidean distance for nu-
meric attrlutes, and a eimphfied veraion of Stanfill and
Waltz’s value difference metric for symbolic attributes
[Stanfll and Waltz, 1986)

Let E = (ey,es, es,.cg) be an example with
value ¢, for the :th attribute and class g Let R =
(a1, 02, a4, cr) be arule with ¢lass eg and condition
a, on the ith attribute, where g, = True if there 15 no
condition on 1, otherwise a, 18 2, = r, 1 1 18 symbolic snd
8, 18 7, jpwer < &1 < o upper If t 18 numenic The distance
A(R,E) between R and E 1a then defined as

A
A(R.E)=Y_6) )

where the component distance §(1) for the iLh atinbute
15
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if a; = True

if 2 18 symbolic and a, # True

if 2 18 numerie and a, # Troe
2)

SV DM(r,, ¢,) 18 the simplified value difference metric,

defined as

0
5(1) = { SVDM(r,, )

bnum(a

SVDM(z., z5) = Y |P(ealzs) ~ Plealz))l  (3)

h=1

where z, and £, are any legal values of the atinbute, C
15 the number of classes, c, 18 Lthe Ath class, and P(cp|z)
denotes the probability of ¢; conditioned on z, 1f a value
z, dos not occur m traming, 1ts distance to all other val-
ues 15 taken to be 1 The essential 1dea behind VDM-
type metrics 18 that two values should be considered sim-
uar if they make mimilar ¢less predictions, and dissimi-
lar 1if their predictions diverge This has been found to
give good results in seversl domains [Cost and Salzberg,
1993] Notice that, in particular, SV DM(z,,1,) s al-
ways 01f t = 3

The component distance for numeric attributes 1s de-
fined as

0 if Fiiowar S € 5 Ty upper

e =r
II!III’
F—p—— if g, > Ty upper

5,,,“,“(1) =

T lowsr—&
Emer~—Tmn

iIf e, < 7 tower

{4)

Zmar and ;. being respectively the maximum and
minirnum observed values for the attnibute

The distance from a mussing numeric value to any
other 19 defined as 0 If a symbohc atinbute’s value
18 missing, 1t 18 asaigned the apecial value “?” This 18
treated as a legitimate symbolic value, and 1ts SYDM ta
all other values of Lthe atinbule 18 computed and used In
the present framework, this 18 a sensble policy a muiss-
g value 18 taken to be roughly equivalent to a given
posaible value 1f 1t behaves similarly to 1t, and 1nversely
if 1t doesn’t

When two or more rules are equally close to a test
example, the rule that was most accurate on the trayming
set wing So s to nol unduly favor more specific rules,
the Laplace-corrected accuracy 15 used [INiblebt, 1987)

Nr.a-rr (R) +1
Noon(RY+C ()

where R 15 any rule, C 18 the number of classes, Ny, (1)
18 the total number or examples won by R, Ncorr(R) 18
the number of examples among those that R correctly
classifies, and C 18 the number of classes The effect of
the Laplace correction 1s to make the estimate of a rule’s
accuraecy converge to the “random guess” value of 1/C
as the number of examples won by the rule decreases
Thus rules with high apparent accuracy are favared only
il Lthey alsc have high statistical support, 1e, 1f that
apparent accuracy 18 not simply the resull of a amall
sample

LAcc(R) =
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3 Time Complexity of RISE

This section shows that RISE 18 a computationally effi-
cient algonthm by deriving an upper bound for its time
complexity Let E be the number of examples 1n the
training set, A the number of attributes, Vs (Viy) the ny-
erage number of observed values per symbolic (numerc)
attnibute, R the number of rules, and C the number of
clazses Assume for now that all attributes are symbolic
RISE can be divided mnto two parts 1nitiahzation and
search The imtialization phase of the algorithm conmats
of three operations The first 18 copying the examples Lo
the rules, and takes O(EA) lime The second 18 compil-
ing a table of YDM distances, taking O(EA + AV2()
{£A to run through all the examples, for each one noting
the correspondence between each attribute’s value and
the class, and AVZC to sum the results for all classes,
for each pair of values of each attnbute) The third op-
eration 18 finding each example's closest rule and com-
puting the imtial accuracy of the rule set, which involves
matching all rules againsl all examples Since there are
mitislly £ rules, this takes O(E? 4) ime The total time
necessary for initialization 1s therefore O(E*A+ AVZC)

The search part of the algorithm consists of repenting
four steps for each rule (see Table 1) finding its neareat
example, generalizing 1t to cover the example, companng
ihe altered rule to all examples to see if any are newly
won, and (if the change 15 adopted) companng the rule
to all other rules to check for duplications These oper-
ations consume respectively O(EA), O(4), O(EA) and
O(RA) time, for a total of O(EA + RA) Doing ths for
all rules thus takes O[R(EA 4+ RA)] tume In RISE ench
example produces at most one rule, therefore B < E and
this time 15 at worst O( E2A)

How many “repeat” cycles can the algorithm perform
in the worst case? Two anewers sre possible, depend-
ing on how Lhe stopping criterion 18 interpreted If 1t 18
applied individuelly, 1 e , generalization of & given rule
stopa as soon as covering the nearest example produces
no improvement, then the “repeat” cycle 18 performed
at warst (J(A) times, since each cycle must remove ai
least one condition, and & rule contams at most A con-
ditione, thie being true for each rule On the other hand,
if the stopping criterion 18 apphied globelly, 1 ¢ general-
1zation of a given rule atopa only when no change to any
rule produces an 1mprovement, the “repeat™ cycle can 1n
theory be performed up to O(E A} times, because 1n the
worst case only one condition of one rule will be dropped
m each entire cycle, each time causing some currently-
unprofitable change 1n another rule to become profitable
1n Lhe next round This, however, 18 extremely unhikely
The two policies were empirically compared, showing no
appreciable difference between the two n accuracy or
time (By default, glabal stopping 18 used ) Multiplying
the values above by the cost of a single cycle yields a
total time complexity of O(E?A?) or O(E®A?) respec-
tively Since E > Vg, and assuming that A > C, which
18 generally the ease, the smaller of those values domi-
nates the complexity of the imtialhization phese, and both
therefore constitute upper bounds gn the time complex-
1ty of the whole elgorithm in their respective situations

Results o [Clark end Niblett, 1989) show that the ba-



Teble 3 Experimental results

omRIn RISE Default Conf PEBLS  Coni CN2 Conl Cd9 Conf
Audiology B93+03 20836 895 Y58XEZ 900 694x5¢ 0935 T0TE60 DI
Annealing 974090 762+22 0895 99007 995 821466 995 936+16 995
Echocardiogram | 66 2459 681469 900 631266 995 683+69 950 658+70 -
Glass 70656 314450 995 586+59 995 642460 995 644+77 085
Heart (Cleve ) 79B8+37 551%38 995 782443 990 785k36 975 T62+43 995
Horee colic B20+30 &841+38 995 761437 995 830436 975 810438 950
Hypothyroid 96807 95109 995 943416 995 980+07 995 98707 995
LED B9 8+71 T3+32 995 530470 995 H5B+95 995 HBALET -
Mushroom 99704 483414 995 938=x013 - 996104 975 993406 995
Post-operative 640475 T10X62 895 D5BBJLTY 995 621+75 975 675483 995
Promoters BEOEH 3 42153 995 906452 995 T424987 995 T90498 995
Solar flare TIHXIT7 254441 995 682435 9356 698+45 975 T1dxd 1 -
Sonar 779192 510470 995 7691461 - BEBL76 995 664165 995
Sphce junctions | 914417 540%34 995 929+12 995 B3I8+32 995 905+20 990
Zoology 93937 405463 985 949442 97H 919052 905 908k54 985

sic step of the CN2 and AQ rule induction algorithms
takes O(EAS) time plus a logarithmic term where S is
a user-set parameter related to the width of the search
This step is embedded in loops that may run up to
O(EA) times, yielding a worst-case total time in ex-
cess of O(E°A’S) RISE's worst-case complexity is thus
competitive with that of standard rule induction algo-
rithms

The introduction of numeric values simply increases
the values above by a factor of Vy, since the single step
removal of a condition may now be replaced by at most
O (V n) steps of expanding the corresponding interval In
practice only a 6mall number of step6 may actually be
required

4 Experiments and Results

4 1 Experimental Design

In order to verify if RISE'S expected benefits are ob-
served in practice, experiments were carried out on 30
datasete from the UCI repository [Murphy and Aha
1995] Half of the domains were first used to select a
default version of RISE by 10-fold cross-validation The
domains used in this phase were breast cancer, credit
screening (crx), chess endgames (kr-vs-kp), Pima dia-
betes, hepatitis, iris, labor negotiations, lung canter,
liver disease, contact lenses, lymphography, primary tu-
mor, soybean (small), voting records, and wine The ver-
sion of RISE thus selected is the one described in previ-
ous sections RISE was then compared with state-of-the-
art representatives of other approaches on the remaining
15 domains PEBLS 2 1 for IBL [Cost and Salzberg,
1993], CN2 6 1 for rule induction [Clark and Boswell,
1991], and C4 5 for induction of decision trees [Quin-
lan, 1993a] PEBLS 2 I's inability to deal with missing
values was overcome by grafting onto it an approach sim-
ilar to the one used by RISE, and numeric values were
discretized as directed in the manual C4 5RULES, the
version of C4 5 that converts trees to rules, was chosen
because rules have been observed to achieve the highest
accuracies [Quinlan, 1987], and because they are more di-

rectly comparable to RISE The default classifier, which
assigns all tesl examples to the most frequent class, was
also included in the study to provide a baseline

The default versions of all algorithms were used This
ensures a fair comparison RISE is tested on domains
for which it was not fine-tuned, and its default version is
compared with other default versions (If anything, this
procedure is unfavorable to RISE, because the test suite
includes domains which were used in the development
of the other algorithms, as reported in the references
above)

Each dataset was randomly divided 50 times into a
training set containing two-thirds of the examples, and
a testing set containing the remainder To speed the ex-
periments, datasets with more than 1000 examples were
first reduced to this size by random selection Each
algorithm was then trained on each of the 50 training
sets, and its accuracy on the corresponding testing set
recorded

4 2 Results

Table 3 shows the average accuracy and sample stan
dard deviation for each algorithm in each domain The
accuracy column for each algorithm is followed by a col-
umn showing the confidence level for the difference in
accuracy between RISE and that algorithm, using a one-
tailed paired t test A dash denotes less than 90% con-
fidence

These results are more easily understood by summa-
rizing them in a few comparative measures These are
shown in Table 4 The first line shows the number of
domains in which RISE achieved higher accuracy than
the corresponding system, vs the number in which the
reverse happened In each case the comparison is highly
favorable to RISE The second line considers only those
domains in which the observed difference is significant
with at least 95% confidence, and shows that most of
the previous "wins" were indeed significant The third
line shows the results of applying a sign test to the val-
ues of line one This consists of considering the number
of wins as a binomial variable, and asking how unlikely
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Table 4 Summary of experimental results

Measure RISE PEBLS CN2 C45
No wine - 10-2 12-3 132
No sigmf wins - 8-4 12-3  10-2
Sign test - B50 980 995
Wilcoxon test - 98 0 g9 6 994
Average 810 786 66 783
Score 48 0 320 310 310

the value obtained is (e g , 13 wins in 15 trials vs C4 5)
This results in a confidence greater than 95% that RISE
is a more accurate learner than CN2 and C4 5, if the set
of domains used is assumed to be representative of real-
world tasks The comparison with PEBLS in not con-
clusive (only 85% confidence) The sign test, however,
can be misled by very small, insignificant differences, a
more sensitive procedure is the Wilcoxon signed-ranks
test [DeGroot, 1988], which also takes into account the
relative magnitudes of the differences between each pair
of accuracies being compared This produces confidences
greater than 95% for all comparisons, reflecting that the
larger, more significant differences in accuracy tend to
be in RISE's favor, and inversely for the smaller, more
uncertain ones

The average accuracy across all domains is a measure
of questionable significance, but it is often reported, and
is also included here RISE achieves the highest average
accuracy Finally, a comparison of all the algorithms was
carried out by, for each domain, assigning 4 points to the
most accurate algorithm, 3 to the second most accurate
one, and so on RISE obtains the highest score by a wide
margin This reflects the fact that RISE performs con-
sistently well, | e , even when it is not the most accurate
algorithm, it is almost always the second best one

Many widely-used domains were not included in this
study, because they had previously been used to fine-
tune RISE As a further check that the results obtained
were not a fortuitous consequence of the choice of do-
mains, the same experimental procedure was applied to
the "training" domains, and the results merged with the
above ones The percentage of domains in which RISE
wins vs CN2 and C4 5 is now somewhat smaller, and
vs PEBLS itis higher Overall the differences and confi-
dences obtained are substantially higher than before, re-
flecting the fact that twice as many domains were used
The sign and Wilcoxon tests both yield confidences in
RISE'S superiority in excess of 99% VB all algorithms
Thus there is strong evidence that, if the domains used
are considered representative, RISE is the most accurate
of the algorithms tested

Another significant observation is that, in approxi-
mately half of the test domains used (and similarly for
the training ones), RISE's accuracy exceeds the highest
of PEBLS's and CN2's This shows that a multistrategy
learning approach can not only often match the results
of the best of its "parent" paradigms, but also achieve
new synergies between them
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4 3 Discussion

The results above can be interpreted as follows

Compared with IBL algorithms, RISE has the cru-
cial advantage of being able to select different sets of
relevant features in different sections of the instance
space Several well-known methods for removing irrel-
evant features in nearest-neighbor classifiers exist [Aha
and Bankert, 1994], but the decisions they make are very
coarse, applying to the whole instance space at once
The same consideration holds for the many feature-
weighting schemes that have been proposed [Mohri and
Tanaka, 1994] Rule induction systems are able to detect
that certain features are relevant only in the context of
others, and RISE shares this ability a feature may be
dropped in some rules, but not others Also, the VDM-
type metrics used by PEBLS and other systems are ef-
fective in reducing the influence of irrelevant features,
but require numeric attributes to be discretized, losing
the ordering information they contain If a Euclidean-
type distance is used for numeric attributes, irrelevant
ones may seriously affect the results RISE is able to
use Euclidean distance for numeric features, and gener-
alize or drop them if they are irrelevant Additionally,
RISE's search strategy is such that it only diverges from
a nearest-neighbor classifier if this causes an estimate of
accuracy to improve, and thus as long as this estimate
is good RISE should be able to not perform worse in
general than such a classifier

Compared with rule induction algorithms (and deci
sion tree ones, which share many biases with them),
RISE has several notable advantages First, due to the
best-match policy it employs for classification, it is able
to form complex, non-axis-parallel frontiers in the search
space, and is thus at an advantage when these are appro-
priate Second, because of its specific-to-general search
direction, and the Laplace accuracy measure used to
choose a winner when several rules cover an example,
RISE is better able to deal with exceptions and small
disjuncts they will often be retained when generalizing,
because absorbing or expanding them into larger rules
would decrease accuracy, and at classification time, they
will prevail over those larger rules if their Laplace accu-
racy is higher Finally, RISE's "conquering without sep-
arating" search strategy avoids some of the difficulties of
"separate and conquer" ones each induction step is eval-
uated with respect to how it affects the accuracy of the
rule set as a whole on the entire training set, mitigating
the splintering problem

RISE has some disadvantages It is on average the
slowest of the systems compared, although this is only
of any significance in the largest domains (in all others,
every algorithm runs in seconds on a Sun 670) The
two slowest domains were hypothyroid and splice junc-
tions, where RISE took respectively 119 minutes and
20 minutes RISE has not been optimized, however,
and several important components of the system are
amenable to such optimization Beyond that, window-
ing and other sampling techniques can be used without
expected loss in accuracy [Catlett, 1991] Also, even
though RISE's memory cost is much smaller than that
of a simple nearest-neighbor classifier, the rule sets it



produces are not as compact as those output by C4 5
or CN2 RISE'S greater costs will generally be a price
well worth paying for the additional accuracy obtained
However, for domains of very large size, and/or when
eomprehensibility is paramount, a system like C4 5 will
still be the first choice

5 Related Work

The RISE approach should be seen in the context
of previous work in inductive learning Several algo-
rithms proposed in the literature can be seen as em-
pirical multi-strategy learners, but combining different
paradigms from RISE's decision trees, IBL and linear
machines [Brodley, 1993], decision trees and rules [Quin-
lan, 1987], decision trees and perceptrons [Utgoff, 1989],
rules and Bayesian classification [Smyth t al, 1990],
back-propagation and genetic algorithms [Belew f{t al,
1992], etc Qmnlan [Quinlan, 1993b] has successfully
combined IBL with trees and other methods, but for the
purpose of regression as opposed to classification, per-
forming this combination only at classification time, and
in a way that depends critically on the predicted value
being continuous

AQ15 [Michalski et al, 1986] is a rule induction system
that employs best-match classification Its approach was
earned further in the FCLS system [Zhang, 7990], which
combines rules with exemplars in an attempt to alleviate
the small disjuncts problem Unlike RISE, FCLS em-
ploys different representations for rules and exemplars
and uses a separate-and-conquer strategy similar to that
of its AQ ancestors

Golding and Rosenbloom's Anapron system [Golding
and Rosenbloom, 1991] combines case-based and rule-
based reasoning in a name pronunciation task It differs
substantially from RISE in that it does not learn rules,
but rather makes use of a pre-existing knowledge base
It also treats cases and rules separately, and employs a
different matching procedure

A system more similar to RISE is EACH/NGE
[Salzberg, 1991], which produces and uses hyperreetan
glee generalized from specific instances It differs from
RISE in many ways, however it is applicable only
in purely numerical domains, is an incremental algo-
rithm, never drops attributes, uses different heuristics
and search strategies, allows only nested hyperreetan
gles as opposed to arbitrary intersecting ones, always
prefers the most specific hyperrectangle, etc Recently
Wettechereck and Diettench [1995] have carried out
a detailed comparison of NGE and k-nearest-neighbor
(kNN), and designed an algorithm that combines the
two [Wettsehereck, 1994], but does not achieve greater
accuracy than kNN alone They found that NGE per
forms substantially worse than kNN and that the chief
cause of this is NGE's use of overlapping rectangles The
fact that RISE performs better than nearest-neighbor,
while NGE performs worse with a representation that is
similar in the case of numeric attributes, deserves some
attention

In the cross-validation studies reported above, RISE's
tie-breaking policy based on Laplace accuracy was com-
pared with one selecting the most specific rule as in NGE,

and found to be clearly superior This can be under-
stood as follows In regions of overlap, NGE arbitrar-
ily assigns all examples to the class of the most specific
hyperrectangle In contrast, RISE's learning strategy
approximates the optimal decision rule of placing the
boundary between two classes at the point where the
density of examples from one overtakes that of the other
[Duda and Hart, 1973] This is because a rule is started
from each example, and its generalization halts when it
would include more examples of other classes than of
the example's one The use of Laplace accuracy then
implies that, given similar-sized samples, each rule pre-
vails in areas where the density of examples of its class
is greater RISE's batch-learning approach also avoids
the problems that NGE's incremental learning one was
observed to suffer from These factors, and the exper-
imental results reported above, support the conclusion
that generalizing instances ro rules can indeed produce
substantial improvements in accuracy, if done in an ap-
propriate manner

6 Future Work

A priority area for future research is carrying out lesion
studies and experiments in artificial domains to verify
whether the interpretation of results in the previous dis-
cussion section is indeed correct More detailed observa-
tion of RISE's workings is also needed to find out how
well and how RISE is dealing with the splintering and
small disjuncts problems

Another important direction for research is extending
RISE to make use of domain knowledge, bringing the
analytical component into the current multistrategy ap-
proach

7 Conclusions

This paper presented an approach to inductive learning
that attempts to combine the best features of IBL and
rule induction The RISE algorithm searches for rules
in a specific-to-general fashion, avoiding some of the pit-
falls of "separate and conquer" methods, and uses a best-
match classification procedure, enabling it to form non-
axis-parallel frontiers in the instance space At the same
time it shares with rule induction methods the ability to
find small sets of highly predictive features in a context-
sensitive manner In experiments on a large number of
practical domains, RISE achieved significantly higher ac-
curacies than either of its parent approaches alone, and
also compared favorably with a decision-tree algorithm
These results show that multistrategy learning can cre-
ate significant synergies between the methods it com-
bines, and thus produce improved classifiers
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