
An Efficient Algori thm for Surface Generation

C h r i s t e r S a m u e l s s o n *
U n i v e r s i t a t des Saar landes, FR 8 7 , C o m p u t e r h n g u i s t i k

Posfach 1150, D-66041 S a a r b n i c k e n , G e r m a n y
I n t e r n e t c h r i s t e r @ c o l i u n i - s b d e

A b s t r a c t

A method is given that "inverts" a logic gram­
mar and displays it from the point of view of the
logical form, rather than from that of the word
string LR-compiling techniques are used to al­
low a recursive-descent generation algorithm to
perform "functor merging" much in the same
way as an LR parser performs prefix merging
This is an improvement on the semantic-head-
dnven generator that results in a much smaller
search space The amount of semantic look-
ahead can be varied, and appropriate tradeoff
points between table size and resulting nonde-
terminjsm can be found automatically

1 I n t r o d u c t i o n

Wi th the emergence of fast algorithms and optimiza­
tion techniques for syntactic analysis, such as the use of
explanation-based learning in conjunction with LR par­
sing, see [Samuelsson & Rayner 1991] and subsequent
work, surface generation has become a major bottleneck
in NLP systems Surface generation is the inverse pro-
blem of syntactic analysis and subsequent semantic in­
terpretation The latter consists in constructing some
semantic representation of an input word-string based
on the syntactic and semantic rules of a formal gram­
mar In this article, we wil l l imi t ourselves to logic
grammars that attribute word strings wi th expressions
in some logical formalism represented as terms with a
functor-argument structure The surface generation pro-
blem then consists in assigning an output word-string to
such a term In general, both these mappings are many-
to-many A word string that can be mapped to several
distinct logical forms is said to be ambiguous A logi­
cal form that can be assigned to several different word
strings is said to have multiple paraphrases

We want to create a generation algorithm that gene­
rates a word string by recursively descending through a
logical form, while delaying the choice of grammar rules
to apply as long as possible This means that we want

"The work presented in this article was funded by the
N3 "Bidirektionole Lingoistische Deduktion (B iLD) " project
in the SonderforschnngBbereich 314 hunitUchc Intelligent—
Wissenabasierte Systeme

to process different rules or rule combinations that intro-
duce the same piece of semantics in parallel unti l they
branch apart This wi l l reduce the amount of spurious
search, since we wi l l gain more information about the
rest of the logical form before having to commit to a
particular grammar rule

In practice, this means that we want to perform "func­
tor merging" much in the same ways as an LR parser per­
forms prefix merging by employing parsing tables compi­
led from the grammar One obvious way of doing this is
to use LR-compilation techniques to compile generation
tables This wil l however require that we reformulate
the grammar from the point of view of the logical form,
rather than from that of the word string from which it
is normally displayed

This gives us the following working plan We wi l l first
review basic LR compilation of parsing tables in Sec­
tion 2 The grammar-inversion procedure turns out to
be most easily explained in terms of the Bern an tic-head -
driven generation (SHDG) algorithm We wil l therefore
proceed to outline the SHDG algorithm in Section 3
The grammar inversion itself is described in Section 4,
while LR compilation of generation tables IS discussed
in Section 5 The generation algorithm is presented in
Section 6 together wi th techniques for optimizing the ge-
neration tables Section 7, finally, discusses the findings

2 LR Compilation for Parsing
LR compilation in general is well-described in for exam­
ple [Aho ct al 1986], pp 215-247 Here we wil l only
sketch out the main ideas

An LR parser is basically a pushdown automaton, l e ,
it has a pushdown stack in addition to a finite set of in­
ternal states and a reader head for scanning the input
string from left to right one symbol at a time The stack
is used in a characteristic way The items on the stack
consist of alternating grammar symbols and states The
current state is simply the state on top of the stack The
most distinguishing feature of an LR parser is however
the form of the transition relation — the action and goto
tables A nondetermimstic LR parser can in each step
perform one of four basic actions In state 5 wi th look-
ahead symbol1 Sym it can

*The lookahead symbol is the next symbol ID the input
sir ing, l e , the symbol under the reader head

1414 NATURAL LANGUAGE

SAMUELSSON 1416

A simple semantic-head-dnveD generator might work
as follows Given a grammar symbol and a piece of lo-
gical form, the generator looks for a non-chain rule wi th
the given semantics The constituents o[the RHS of
that rule are then generated recursively, after which the
LHS is connected to the given grammar symbol using
chain rules At each application of a chain rule, the rest
of the RHS constituents, 1 e , the non-head constituents,
are generated recursively The particular combination
of connecting chain rules used is often referred to as a
chain The generator starts off wi th the top symbol of
the grammar and the logical form corresponding to the
string that is to be generated

The inherent problem with the SHDG algorithm is
that each rule combination is tried in turn, while the
possibilities of prefiltering are rather l imited, leading to
a large amount of spurious search The generation al­
gorithm presented in the current article does not suffer
f rom this problem, what the new algorithm in effect does
is to process all chains from a particular set of grammar
symbols down to some particular piece of logical form in
parallel before any rule is applied, rather than to con­
struct and try each one separately m turn

4 Grammar Inversion
Before we can invert the grammar, we must put it in
normal form We wil l USE a variant of chain and non-
chain rules, namely functor-introducing rules correspon­
ding to non-chain rules, and argument-filling rules corre­
sponding to chain rules The inversion step is based on
the assumption that there are no other types of rules

Since the generator wi l l work by recursive descent
through the logical form, we wish to rearrange the gram­
mar so that arguments are generated together wi th their
functors To this end we introduce another difference
list A0 and A to pass down the arguments introduced

Figure 4 Sample grammar in norma] form

by argument-filling rules to the corresponding functor-
introducing rules Here the latter rules are assumed to
be lexical, following the tradition in GPSG where the
presence of the SUBCAT feature implies a preterminal
grammar symbol (see [Gazdar ct al 1985], p 33), but
this is really immaterial for the algorithm

The grammar of Figure 3 is shown in normal form
in Figure 4 The grammar is compiled into this form
by inspecting the flow of arguments through the logical
forms of the constituents of each rule In the functor-
introducing rules, the RHS is rearranged to mirror the
argument order of the LHS logical form The argument-
f i l l ing rules have only one RHS constituent — the seman­
tic head — and the rest of the original RHS constituents
are added to the argument l ist of the head constituent
Note, for example, how the NP is added to the argument
list of the VP in Rule 2, or to the argument list of the
P in Rule 7 This is done automatically, although cur­
rently, the exact flow of arguments is specified manually

We assume that there are no purely argument-filling
cycles For rules that actually fill in arguments, this
is obviously impossible, since the number of arguments
decreases strictly For the slightly degenerate case of
argument-filling rules which only pass along the logical
form, such as the (VP,l) —> (V,,l) rule, this is equiva-
lent to the off-line parsability requirement, see [Kaplan
& Bresnan 1082], pp 264-266 3 We require this in order
to avoid an infinite number of chains, since each possible
chain wi l l be expanded out in the inversion step Since
subcategonzation lists of verbs are bounded in length,
PATR II style VP rules do not pose a serious problem,

*If the RHS V, were a VP, we would have i.
argument-filling cycle of length 1

purely

1416 NATURAL LANGUAGE

which on the other hand the "adjunct-as-argument" ap­
proach taken in [Bouma & van Noord 1994] may do
However, this problem is common to a number of other
generation algorithms, including the SHDG algorithm

Let us return to the scenario for the SHDG algorithm
given at the end of Section 3 We have a piece of logical
form and a grammar symbol, and we wish to connect
a non-chain rule with this particular logical form to the
given grammar symbol through a chain We wil l gene-
ralize this scenario just slightly to the case where a set
of grammar symbols is given, rather than a single one

Each inverted rule wil l correspond to a particular
chain of argument-filling (chain) rules connecting a
functor-introducing (non-chain) rule introducing this lo­
gical form to a grammar symbol in the given set The
arguments introduced by this chain will be collected and
passed down to the functors that consume them in or­
der to ensure that each of the inverted rules has a RHS
matching the structure of the LHS logical form The nor­
malized sample grammar of Figure 4 wil l result in the
inverted grammar of Figure 5 Note how the right-hand
sides reflect the argument structure of the left hand-side
logical forms As mentioned previously, the collected ar­
guments are currently assumed to correspond to functors
introduced by lexical entries, but the procedure can rea­
dily be modified to accommodate grammar rules with a
non-empty RHS, where some of the arguments are con­
sumed by the LHS logical form

The grammar inversion step is combined with the LR-
compilation step This is convenient for several rea­
sons Firstly, the termination criteria and the database
maintenance issues are the same in both steps Secondly,

since the LR-compilation step employs a top-down rule-
invocation scheme, this wi l l ensure that the arguments
are passed down to the corresponding functors In fact,
invoking inverted grammar rules merely requires first in­
voking a chain of argument-filling rules and then termi­
nating it wi th a functor-introducing rule

5 LR Compilation for Generation
Just as when compiling LR-parsing tables, the compiler
operates on sets of dotted items Each item consists of
a partially processed inverted grammar rule, with a dot
marking the current position Here the current position
is an argument position of the LHS logical form, rather
than some position in the input string

New states are induced from old ones For the indica-
ted argument position, a possible logical form is selected
and the dot is advanced one step in all items where this
particular logical form can occur in the current argument
position, and the resulting new items constitute a new
state A l l possible grammar symbols that can occur in
the old argument position and that can have this logi­
cal form are then collected From these, all rules with a
matching LHS are invoked from the inverted grammar
Each such rule wi l l give rise to a new item where the dot
marks the first argument position, and the set of these
new items will constitute another new state If a new
set of items is constructed that is more specific than an
existing one, then this search branch is abandoned and
the recursion terminates If it on the other hand is more
general, then it replaces the old one

The state-construction phase starts oft" by creating
an init ial set consisting of a single dummy item with
a dummy top grammar symbol and a dummy top logi­
cal form corresponding to a dummy inverted grammar
rule In the sample grammar this would be the rule
{S'tt{l),W0lW,e,t) - {S,Z,W0lW,c,c) The dot is
at the beginning of the rule, selecting the first and only
argument The rest of the states are induced from this
one The first three states resulting from the inverted
grammar of Figure 5 are shown in Figure 6, where the
difference lists representing the word strings are omitted

The sets of items are used to compile the generation

SAMUELSSON 1417

tables in the same way as is done for LR parsing The
goto entries correspond to transiting from one argument
of a term to the next, and thus advancing the dot one
step The reductions correspond to applying the rules of
items that have the dot at the end of the RHS, as is the
case when LR, parsing There IB no obvious analogy to
the shift action — the closest thing would be the descend
actions transiting from a functor to one of its arguments

Note that there IB no need to include the logical form
of each lexicon entry in the generation tables Instead, a
typing of the logical forms can be introduced, and a re­
presentative of each type used in the actual tables, rather
than the individual logical forms This decreases the size
of the tables drastically For example, there is no point
in distinguishing the states reached by traversing John,
nary and par i s , apart from ensuring that the correct
word is added to the output word-6tnng This is accom­
plished much in the same way as preterminals, rather
than individual words, figure in LR-parsing tables

6 A New Generation Algor i thm
The generator works by recursive descent through the
logical form while transiting between internal states It
is driven by the descend, goto and reduce tables A pu­
shdown stack is used to store intermediate constituents

When generating a word string, the current state and
logical form determine a transition to a new state, cor­
responding to the first argument of the logical form,
through the descend table A substring ie generated re-
cursively from the argument logical form, and this con­
stituent is pushed onto the stack The argument logical
form, together wi th the new current state, determine a
transition to the next state through the goto table The
next state corresponds to the next argument of the ori­
ginal logical form, and another substring is generated
from this argument logical form, etc When no more
arguments remain, an inverted grammar rule is selected
nondeterministicaily by the reduce table and applied to
the top port ion of the stack, constructing a word string
corresponding to the original logical form and comple­
ting this generation cycle 3

The logical form can be inspected down to an arbitrary
depth of recursion when compiling the sets of items, and
this parameter can be varied This is closely related to
the use of lookahead symbols in an LR parser, increasing
the depth is analogous to increasing the number of look-
ahead symbols The amount of semantic lookahead is
reflected in the goto and descend entries The key para­
meter influencing the generation speed 15 the amount of
nondetermimsm in each "reductive state" , 1 e , each state
where the dot is at the end of some rule Increased se­
mantic lookahead wil l split potential nondetermimsm in
the resulting reductive states into distinct seta of items,
yielding reductive states with less nondetermimsm

No semantic lookahead would mean only taking the
functor of the logical form into consideration, and in the

T h u u a bol tom-up rule invocation scheme It could
easily be modified so that a rule is instead applied before
constructing the substrings recursively, resulting in & top-
down rnle-iDvocation scheme, which might be a good idea in
conjunction wi th semantic lookahead §ee the following

running example, a typical action table entry would be
doac«nd(l ,mod(_ _) , 2) 4 This would mean that the
generator would operate on State 2 of Figure 6 when ge­
nerating from the first argument of the nod(_ ,_) term,
and both the S alternative and the (merged) VP alter­
nat ive^) would be attempted nondetermimsticaliy

By taking the arguments of the logical form into ac­
count, the degree of nondeterminism can be reduced, and
for the sample grammar used throughout this article, it
is eliminated completely In the example, if the second
argument of the mod(_,_) term is ynq, then only the
S alternative wi l l be considered when generating from
the first argument, since the relevant states and descend
entries wil l be those of Figure 7

The optimal depth may vary for each individual table
entry, and even wi th in i t , and a Bcheme has been devised
to automatically find such an opt imum by inspecting the
number of items left in each reductive state The Bcheme
employs a greedy algorithm with iterative deepening to
thiB end In the running example, the first argument
o fnod (_ ,_) contributes no important information when
descending from State I, while the second one does The
scheme correctly finds the optimal depths when transi­
t ing from State 1, resulting in the State 2 and descend
entry of Figure 8 This is described in detail elsewhere

7 Summary and Discussion
The proposed algorithm is an improvement on the
semantic-head-driven generation algorithm that allows
"functor merging", l e , enables processing various gram­
mar rules, or rule combinations, that introduce the same
semantic structure simultaneously, thereby greatly redu­
cing the search space The algorithm proceeds by re­
cursive descent through the logical form, and using the

*Here a_" denotes a don't-care variable

1418 NATURAL LANGUAGE

terminology of the SHDG algorithm, what the new al­
gorithm in effect does is to process all chains from a
particular set of grammar symbols down to some parti­
cular piece of logical form in parallel unti l a reduction
is attempted, rather than to construct and try each one
separately in turn This requires a grammar-inversion
technique that is fundamentally different from techni­
ques such as the essential-argument algorithm, see the
following, since it must display the grammar from the
point of view of the logical form, rather than from that of
the word string LR-compilation techniques accomplish
the functor merging by compiling the inverted grammar
into a set of generation tables

The set of applicable reductions can be reduced by
using more semantic lookahead, at the price of a larger
number of internal states, and there is in general a trade­
off between the size of the resulting generation tables and
the amount of nondeterminism when reducing The em­
ployed amount of semantic lookahead can be varied, and
a scheme has been devised and tested that automatically
determines appropriate tradeoff points, optionally based
on a collection of training examples

The grammar inversion rearranges the grammar as a
whole according to the functor-argument structure of
the logical forms Other inversion schemes, such as the
essential-argument algorithm, see [Strzalkowski 1990] or
the direct-inversion approach, see [Mmnen et al Forth­
coming], are mainly concerned with locally rearranging
the order of the RHS constituents of individual gram­
mar rules by examining the flow of information through
these constituents, to ensure termination and increase
efficiency Although this can occasionally change the set
of RHS symbols in a rule, it is done to these ends, rather
than to reflect the functor-argument structure

Some hand editing is necessary when preparing the
grammar for the inversion step, but it is l imited to spe­
cifying the flow of arguments in the grammar rules Fur­
thermore, this could potentially be fully automated

Although the sample grammar used throughout the
article is essentially context-free, there is nothing in
principle that restricts the method to such grammars
In fact, the method could be extended to grammars em­
ploying complex feature structures as easily as the LR-
parsing scheme itself, see for example [Nakazawa 1991],
and this is currently being done

The method has been implemented and applied to
much more complex grammars than the simple one used
as an example in this article, and it works excellently
Although these grammars are sti l l too naive to form the
basis of a serious empirical evaluation lending substantia]
experimental support to the method as a whole, it should
be obvious from the algorithm itself that the reduction in
search space compared to the SHDG algorithm is most
substantial Nonetheless, such an evaluation is a top-
priority item on the future-work agenda

Acknowledgements
I wish to thank greatly Gregor Erbach, Jussi Karlgren,
Manny Rayner, Hans Uszkoreit, Mats Wiren and the an­
onymous reviewers of ACL, EACL and 1JCAI for valua­
ble comments and suggestions to improvements on draft

and previous versions of this article and other related pu­
blications Special credit is due to Kristma Striegmtz,
who assisted wi th the implementation of the system

R e f e r e n c e s
[Aho et al 1986] Alfred V Aho, Ravi Sethi and Jeffrey

D U11 man Compilers, Principles, Techniques and
Tools Addison-Wesley 1986

[Alshawi (ed) 1992] Hiyan Alahawi, editor The Core
Language Engine M I T Press 1992

[Bouma U van Noord 1994] Gosse Bouma and Gertjan
van Noord "Constraint-based Categonal Grammars",
Procs SSnd Annual Meeting of the Association for
Computational Linguistics, pp 147-154, ACL 1994

[Gazdar et al 1985] Gerald Gazdar, Ewan Klein, Geof­
frey Pul lum, and Ivan Sag Generalized Phrase Struc­
ture Grammar Harvard University Press 1985

[Kaplan & Bresnan 1962] Ronald M Kaplan and Joan
Bresnan "Lexical-Functional Grammar A Formal
System for Grammar Representation1' In Joan Bres­
nan, editor, The Mental Representation of Gramma­
tical Relations, pp 173-281 M I T Press 1982

[Minnen et al Forthcoming] Guido Minnen, Dale Ger-
demann and Erhard Hinrichs "Direct Automated In­
version of Logic Grammars" To appear in New Ge­
neration Computing, 1995

[Nakazawa 1991] Tsuneko Nakazawa "An Extended LR
Parsing Algori thm for Grammars Using Feature-based
Syntactic Categories" Procs 5th Conference of the
European Chapter of the Association for Computatio­
nal Linguistics, pp 69-74, ACL 1991

[Samuelsson 1994] Christer Samuelsson "Notes on LR
Parser Design" Procs 15th Int Conference on Conv-
putational Linguistics, pp 386-390, ICCL 1994

[Samuelsson k Rayner 1991] Christer Samuelsson and
Manny Rayner "Quantitative Evaluation of
Exp Ian at ion-Based Learning as an Optimization Tool
for a Large-Scale Natural Language System" Procs
12th Int Joint Conference on Artificial Intelligence,
pp 609-615, Morgan Kaufmann 1991

[Shieber et al 1990] Stuart M Shieber, Gertj an van
Noord, Fernando C N Pereira and Robert C Moore
"Sema'itic-Head-Driven Generation" Computational
Linguistics 16(1), pp 30-42, 1990

[Strzalkowski 1990] Tomek Strzalkowski "How to In­
vert a Natural Language Parser into an Efficient Ge­
nerator An Algor i thm for Logic Grammars" Procs
ISth Int Conference on Computational Linguistics,
pp 347-352, ICCL 1990

[Uszkoreit et al 1994] Hans Uszkoreit, Rolf Backofen,
Stephan Busemann, Abdel Kader Diagne, Elizabeth
A Hinkelman, Walter Kasper, Bernd Kiefer, Hans-
Ulnch Kneger, Klaus Netter, Gunter Neumann, Ste­
phan Oepen and Stephen P Spackman "DISCO
— an HPSG-based NLP System and its Application
for Appointment Scheduling" Procs 15th Int Con
ference on Computational Linguistics, pp 436-440,
ICCL 1994

SAMUELSSON 1419

