A Dependency-based Method for Evaluating Broad-Coverage

Parsers

Dekang Lin"
Department of Computer Science
University of Manitoba
Winnipeg, Manitoba, Canada R3T 2N2
lindek'OJcs umamtoba ca

Abstract

With tht emergence of broad-coverage parsers, quan-
titative evaluation of parsers becomes increasingly more
important We propose a dependency-based method for
evaluating broad-coverage parsers The method offers
several advantages over previous methods that are based
on phrase boundaries The error count score WL propose
here is not only more mtuitivtlv meaningful than other
scores but also more relevant lo semantic interpreta-
tion We will also present an algorithm for transform-
ing constituency trees into dependency trees so thai the
(.valuation method is applicable to both dependency and
constituency grammars Finally we discuss a set of op
erations for modifying dependency trees that can be used
lo eliminate inconsequential differences among different
parse trees and allow us to selectively evaluate different
aspects of a parser

1 Introduction

With the emergence of broad-coverage parsers, quanti-
tative evaluation of parsers becomes increasingly more
important 1t is generally accepted thai such evaluation
should bt conducted b\ comparing the parser-generated
parse trees (we call them answers) with manually con
structed parse trees (we call them keys) However, how
such comparison should be performed is still subject to
debate Several proposals have been put forward [Black
ct al 1991 1992, Magerman, 1994], all of which are
based on Lhe comparison between phrase boundaries in
answers and kev«, Wt propose a dependency-based eval-
uation scheme m which tht dependency relations rather
than phrase boundaries, are the focus in the compari-
son between answers and keys We then show that the
dependency based scheme offers several advantages over
previous proposals Note that the use of dependency

'The aulhor wishes to Lhank 1JCAI reviewers for point-
ing out several errors in the draft and Mr Wei Xiao for Im
plementing the algorithms presented in the paper The au
thor is a member of the Institute for Robotics and Intelligent
Systems (IRIS) and wishes to acknowledge Lhe support of
the Networks of Centres of Excellence Program of the Gov
eminent of Canada the Natural Sciences and Engineering
Research Council (NSERC), and the participation of PRE-
CARN Associates Inc Thi6 research has also been partially
supported by NSERC Research Grant OGP121338

1420 NATURAL LANGUAGE

relations here does not mean that the scheme is onlv ap-
plicable to dependency grammars It only means that
constituency trees have Lo be transformed into depen-
dency trees before answers and keys are compared A
transformation procedure will be presented in Section
43

2 Previous Approaches

Given a node in a parse tret, the sequence of words dom-
inated bv the node form a phrase and the boundary of
the phrase can be denoted by an integer interval [ij]
where ; is the index of the first word m the phrasr and j
is the index of the last word in the phrase For Lxample
the parse tree in (1) contains three phrase boundaries
[0,2], [1,1], and [1,2]

(1) [They [[came] yesterday]]

Previous evaluation schemes can be classified as
phrase-level or sentence level In a phrase-level (val-
uation, the following goodness scores are computed
Precision and recall The phrase boundaries in the

answer and the key art treated as two sets (A and K
respectively) The recall is defined as the percent-
age of phrase boundaries i]n the kev that are also
found in the answer (kaf) The precision is de
fined as the percentage of phrase boundaries in the

answer that are also found in the key (U&‘/ﬁ" ,

Number of crossing-brackets A pair of phrase
boundaries [i j] and [i' j] are said to be crossing
brackets if i < i' < j < [/ Parsers can be evalu
ated by the dverage pairs of crossing brackets per
sentence

For example, suppose, (1) is the key and (2) is the an-
swer

(2) [[They [came]] [yesterdayl]]

The phrase boundaries in (2) are [0 2], [1,1], [0,1], and
[2,2] Thus, the scores of (2) are precision="=50%,
recall=|=66 7% and there is one pair of crossing brack-
ets [0,1] in the key and [1,2] in the answer These scores
have to be considered together to be meaningful For ex-
ample, treating the sentence "they came yesterday as
a flat list of words [they came yesterday] would achieve
0-crossing-brackets and 100% precision However, the
recall is quite low (1/3=33 3%)

1n a sentence-level evaluation, a sentence 1s considered
to be correctly parsed if certain criteria have been met
In [Black et al, 1992] the correciness erilerion 1s that
the number of crossing-brackets 15 0 1In [Magerman,
1894), a sentence 15 correctly pareed if both precimion
and recall are 100% The scores assigned to parsers ate
thewr percentages of correctly parsed sentences 1 the test
corpus

A problem with the phrasc-levd] scores 15 that they do
not nLeessanly reflect the quabity of parse trees because
a single error may be counted multiple times For evain-
ple, suppose (3a) 1s Lhe kev and (3b) (3¢) are answers
returned by (wo paracrs

(3)

a {1 {saw [[a man] [with [[a dog) and [a car]]]) [in [the
park]]]]

b [l [saw [[a man] [with [[a dog] and [[a cat] [m [the
park] 1]}

c [l [saw [a man] wiili [a dog] and [a cat] in [the
park]]]]

I'he only difference between (3a) and (3b) v that (he

prepositional phrase [in [the park)) is the sistcr of saw

m {3a) bul the mrter of a cat 1 (3b) Howcver, be-

cause of this «ingle attachment error there arc 3 pairs

of crussing Lrackets

] [adog and a cat] vs [acal in the park]

2 [wih a dog and 2 cal] vs [a dog and a cit wm Lhe
parh]

3 [aman with a dog and a cat] vo [with a dog and a
cat i the park]

The recall of (3b) 18 [F=060% and the preasion 1
-&:f)i 8% In contrast (3¢} 1+ a very shallow parse of
the sentrnee 11 has no crossing brackeis, perficl pre-
asion (100%) and a better recall (L=70%) than (3b)
[ntutlively the struciuee (b} has a lol more 1n common
with (3a) than (3c) Yet {3D) scored mucl poorly than
($¢) according to the precision recall and the number of
crossiug-hrachets

In sentence-level evaluations, an error will noi he
counted more than once However the other extremd has
to be adoptcd no matter how many mistakes a parscr
makes 10 a parse tree they are only counted as onc er-
ror Thus an answcr with a simple error s treated the
sAme as an anawer wtlh many serious errors Sinee how
much a parse tree deviates from the correct one greatly
influence the chanee of the scntcnce being interpreted
correctly, the evaluation scheme should (ake the degree
of the deviation mto account

3 Desiderata

In this section, we molivatc the dependency-based eval-
uation by pointing out several desirable properties that
are missing from previous evaluation schenies

3 1 Ignornuag the mnconsequential differences

An objective of an evaluation scheme 1s o 1dentify the
differences between answers and keys However, certamn

types of differences are of no consequence to the inlerpre-
lation of a scnlence An 1deal evaluslion scheme should
make provisions to 1gnore such differences

For example consider senteince sttuctures 1n (4)

(4
a |[Bellows [made [the requesi]]] [while [[ihe
all-woman jury] [was [out [of [the courtroom]]]]]]]

b [Bellows [[madc [the request]] [while [[Lhe
{[all-woman] jury}] [was [out of [the courtroomijlj]}
In (4a), the clause {while] 15 Lhe sisier of [Bellows
made the request] In (4b), 1t1s the sisier of [made (lie
request] hfferences such as this arc typiealiy of no con-
scquence to Lthe iterpretation of the sentence However,
if (1b) 15 evaluated against (4a) 1is scores arc as [ollows
recall=5=81 8% precision=15=75 0% cross-
mgs=1
If u sentence-leve] (valuation 1s used (4h} would he (Jas
siicd as incorreel, even though from lingmsiac point of
view, 1t may wdll be as reasonable as (4a)

3 2 Selective evaluation

Previous evalualion schemes only assess the overal) per
lormance of pareers A more fluible scheme should he
able Lo selcetively ¢valuale parsers with respect o anv
given Lypes of syniactic phenomena 1 would be m-
teresting to know for example how well a parser han
dles conjunctions or hiow well a parser would perform
if prepositional attachinents were 1gnored Answers to
these questions would help to deterrmine the suitability
of a parser for a parlicular purpose

3 3 Facilitate the diagnosis of incorrect parses

Besides measuring the performance of parsers, another
service Lhat should be provided by a parser evaluation
scheme 18 Lo help developers Lo improve Lheir parscrs by
pm-pointing exacily where the errors are A< we have
discussed earlier a single atlachment crror mav cause
several crossing brickets and several spurious/missing
phrase boundaries (xiven Lhe list of crossing brackets or
the sets of spurious/intssing phrase boundanes 11 1s not
obvious what caused them to occur

4 Dependency-based Evaluation

In this seciion we propose a dependency hased parser
evaluation schemc that offers the desirable properins
discussed in the previous section Inskead of phrase
houndaries, the scheme 18 based on the companson be-
iween the dependency relations m answers and heys

41 Depcndency trees

In a depeadency tree, «very word 1n Lhe sentence 15 a
medifier of exactly one other word (called its head), ex-
cepl the head word of the sentence, which does not have
a head [Mel cnk, 1987] We use o list of tuples o specify
a dependency iree A tuple has the following formal
(modafier cat position haad [relationship])

where, mod1f1er is 2 word 1 vhe senlence, cat 15 1ts
lexical category head 1s the word that modafier mod-
1fies, relationehip 8 an oplonal epecification af the

LIN 1421

(9)

a [l [saw [[a man] [with [[a dog] and [a caL]]]} [In [the park]]]]
b [l [saw [[a man] [with [[a dog] and [[a cat] [in [the park]]]]}]]]

kev (58) Answer (Bb) error
I < sa¥ subj I H < sas sub)
may ¥ - sav v »
n Dat < man Bpec a Dat < man Bpec
man | > paw cmpl RED N > sae cmpl
rith P > man adjn wath P > =man adjn
c] Det < dog Bpac a Det < dog Bspec
dog] < and dog] < and
and Con) > with cmpl and Con) > wath cmpl
a Det < cat epec a Det < cat Bpac
cat | > and cat B > and
in P > sad ad)n n P > cat adjn yes
the Det < park spec the Det <. park spec
park N > 1 cEpl park N 't cupl
(6)
a [l [saw [a man] with [a dog] and [a cat] in [the park]]]]
key (5a) Apnswer (ba) erTor
I < naw aub) 1 N < saw esub)
maw v L ARV v *
a Det < man spec a Dat < Ean Bpec
man N > =mav cmpl man H > sav capl
wmath P > man adjn with P ? yes
b a Det < dog epec a Det < deog spac
dog .| < and dog | ? yen
and Cony > with cmpl and Cony 7 yes
a Det < cat spec a Dat < cat apec
cat .| > and cat) K yas
an P > saw adjin in p ? yes
the Det < perk s8pec the Det < park Bpec
park N > 1n cmpl park N > in cmpl

type of the dependency relationship between head and
modifier, such as subj (subject), adjn (adjunct) cmpl
(complement), spec (specifier}, efc, peaition Indicates
the position of the head relative to the modifier Il can
teke one of the following values {<, >, <<, >>,
<<, , *, 7}, where < (or >} means thal the
head of mod1f1er 15 the first occurrence of the word head
to the left (or nght) of the modifier, << (or >>} means
head 18 the second ocrurrence of the word head to Lhe
left (or nght) of the modifier If position s ‘+, then
the word 18 the head of the sentence If porationis ?,
then the word’s head 1s unknown (cither to the parset or
the human analyst who created the parse Lree)

The dependency trees of (3a) and (3b) (re-wntlen as
(5a) and (&b)) are shown in Lhe first and second column
in {5¢) respectively

4 2 Ewvaluation

Once Lhe answer and the key are both represented as
dependency trees, the answer can be scored on & word-
by-word basis Sinee both the answer and the key assign
a head to every word 1n the sentence we define the error
count of Lthe answer to be the number of words that are
assigned different heads i1n Lthe answer than in the key
For example, there 1n one error i {(5b) 1n contrasi, the

1413 NATURE LANGUAGE

dependency trec corresponding Lo the shallow parse Lro
(3c) (re-written as (6a)) contains 5 unknown heads each
of which 1s counted as an error (see (6bj)

Given two dependency trees key and anaver, the func-
tion evaluete (7) returns the error count of the answor

The error count 158 B Hamming diatance belween the
snswer and the key, because 1t 15 the number of depen-
duncy relationships that must be altered 1n order to make
the answer 1dentical €0 the key Compared wilth scores
such as precision, recall, and the number of crossing-
brackets, the error-count score 1s intuitively more mean-
ingful Since the phrase boundaries themselves are not
used directly in semanlic interpretation, 1t 18 hard to
predict how missing or spurious phrase boundaries af-
fect semantic interpretation On the other hand, since
ihe semantic dependencies are embedded 1n the syntactic
dependencies, Lthe semeantic interpretation process should
be more senmilive to the number of missing or spurious
syntactic dependencies Lthan the number of missing, spu-
rous or crossed phrase boundaries

4 3 Converting constituency trees mnto depen-
dency treea

Since the procedure evaluate takes the dependency
trees as inputs, whereas almost all the broad-coverage

lilt evaluate(DepTree key DepTree anseer)

errorCount
for each word in the sentence
if (the position of the key is not equal to

and the position

or the head of the key is not equal to that at the answer)

errorCount - error-Count

return errorCount

parsers and treebanks use constituency grammars a cru
cial issue that must be resolved is how to apply the
method to constituency grammars

In this section we preterit an algorithm lu transform
the constituency trees into dependency trees IF one or
both of the key and the answer arc represented as con
stituency trees, we first transform them into dependency
trees and then evaluatetc the parser with the resulting de-
pendency trees

The transformation algorithm is based on Magerman's
method for determining heads (lexical representatives) in
(FG parse trees [Magerman, 1994 p 64-66] following
Magerrman thf* transformation is driven bv a Tree Head
Table which contains an entry Tor every non-terminal
symbol in the grammar Given a node in a constituency
tree the corresponding entry in the Tret. Head Table can
be used to determine the head child of the node (the
head child of a node is either its lexical head or a child
that dominates its lexical head)

Untries in a tree head table are triples
direction head-list)

(parent
where parent is a grammat-
ical catagory, direction is either right-to-left or
lett-to-right and head-list is a list of grammati-
cal categories Three sample entries are shown in (8)
(8) (S right-to-left (Aux VP HP AP Pp)>

(VP lelt-to-nght (V VP))

(HP right-to-left (Pron N HP))
The firtst entry means that the head hild of an S node
is the first A.ux node from right to left or if the S node
does not have an Aux child the first VP node from right
to left, For example given the tree head table in (8)
and the constituency tree in (9a) the lexical heads and
the head children of the nodes in (9a) are listed in (9b)

9)
PR
A
R

v 2
e O

NN
o8 oBem
b node | lexical head | head culd

S v VP,
NPy Pron Pron
VP, v VP
VP, \'f v
NP, N2 N

The function f1pdHeadChild (10) retutns the head

child of any given node in a constituency tree using the
tree head table

Unlike [Magerman, 1994], where lexical heads of
phrase are identified from bottom up wc use a top dovvn
recursm procedure makeDeps to construct dep> ndency
trert, according to parse trees 7 lie procedure returns
the lexical head of the tree
(I1) Tree m&keDepB(Tree root, DepTree depe)

{

if (root is a leaf node) return root

Tree headChild - findHeadChild(root)

Tree lexHead " MakeDepsGieadChild deps)

for each non-head child ol root {
lexHeadOfChild - BakeDepa(child, deps)
addDepRelQejcHead lexHeadOfChild, deps),

>

return leiHead
>
The function addDepReKhead, modifier, depTree)
inserts the dependency between head and modifier into
the dependency tree depTree The main idea of the al
gorithm is as follows

» find the head child of the root

* make a recursive call to construct the dependency
tree according to the subtree rooted at the head
child and return the lexical li<’ad of thf head child
(which ih also the lexical head of the root node)

« for all other children of the root

- recursively construct a dependency tree accord-
ing to the subtree rooted at that child and re-
turn the lexical head of the child
add the dependency relationship between the
lexical head of the root and the lexical head of
the child

5 Modifying dependency trees

In [Black c/ al, 199l1], certain nodes in the answers and
keys arc F ased before they are compared I|he erased el-
ements include for instance auviharies 'not and pre-
ninriitival ' to lhe reason for the removal is that there
are many possible ways to analyse structures involving
ihest elements, all of which are correct m their own way
A evaluation scheme should not prefer any one of the
theories and penalize the others

There are many other kinds of allowable differences
that may not be eliminated by simply removing elements
from parse trees In this stction, we propose a set of op-
erations for modifying dependency trees in a more flex-
ible and principled fashion We then demonstrate, by

LIN 1423

(10) Tree findHead Child(Tree node) node

TreeHeadEntry entry search_entry(label(node)
for each h in headList(entry)

is assumed to be interior

treeHeadTable)

enumerate children of node according to direction(entry)
if (label(currentChild)~h) return currentChild,

if (direction(entry)-'left-to-nght")
else return last Child(node)

means of examples, how these operations can be used to
eliminate inconsequential differences and to allow selec-
tive evaluation

depandency dependency
iree uee

modify

Figure 1 The process of parser evaluation

consutuency Lonsuluency

or

The process of dependency-based parser evaluation is
depicted in Figure 1 The modify module normalize the
dependency trees before they are evaluated The modify
module consists of a sequence of operations Each op-
eration specifies a possible alternation to a dependency
relationship It consists of a condition part and an
action part If a dependency relationship satisfy the
condition, the corresponding action will be performed
on the dependency The algorithm for modify is shown
in (12)

A condition is a triple

(head modifier [relationship])

where head and modifier are restrictions on the head
and the modifier of a dependency relationship The op-
tional relationship component is a restriction on the
type of the dependency relationship The first column
in Table 1 contains several example conditions The sec-
ond column contains the dependency relationships that
satisfy the conditions

The action part specifies the modifications to the
dependency relationship We have implemented three
types of actions {deletion, inversion and transfer]
Deletion delets(head, modifier, depTree)

removes the dependency relationship between head
and modifier from the dependency tree depTree

Inversion invert(head modifier, depTree)
reverses the direction of the dependency relationship
between head and modifier In the mean time, if
head also has a head (called head of Head), then the

1424 NATURAL LANGUAGE

return flrstChild (node)

dependeniy between the head Of Head and head is
replaced with the dependency between headOfHead
and modifier

Transfer tranefer (head, modifier, depTree)
transfers modifiers of modifier to head In other
words, all the modifiers of modifier now become
modifiers of head

Figure 2 shows an example of each of these actions

TN

n the park
deletei{park ¢

deps] LIAnS {in park deps)
anvert {pazkl Ltha deps)
TN N A\
mn the pmk n the park In the purk

Figure 2 Modifving dependency relationships

depaw

In the remainder of this section, we demonstrate how
these modifications can be used to eliminate inconse-
quential differences and to allow selective evaluation

51 Eliminating inconsequential differences

Different grammars often treat adverbs differently For
example, in 'she will leave soon", the adverb 'soon' can
either be analyzed as the modifier of 'will' (Figure 3a)
or "leave' (Figure 3b) If the operation

(if ((cat Aux) (cat V)) (invert transfer))

is applied to both trees, they become identical (Figure
3r) In Figure 3a the dependency link from wilT to
'leave' is first inverted, so that "will' becomes a modifier
of "leave" Then, the modifiers of "wiir ("she and
'soon') are transferred to 'leave', resulting in Figure
3c

Conjunction is another syntactic phenomenon that
tends to be treated differently in different theories Fig-
ure 4 shows three alternative analyses of the dependency
tree of "saw A and B " They can be transformed into
an identical form by the operations shown in the figure
Note that such variations in the analyses of conjunctions
cannot be normalized by simply removing elements from
parse trees

5 2 Selective evaluation

The modification to the dependency tree also allows us
to selectively evaluate the performance of parsers with

(12) vold modify (operations

DepTree depTree)

for each operation (condition, action) in operations

for each dependency relation dep in depTree

if (dep satisfies condition) perform action on dep

Table 1 kxample canditions

ondition

Dependeney relationslup belween

((cat N) (cat Det)})

a houn and its deterrniner

((cat T) (or (string "a") (straing "the’')))}

anoun and 'a or Lhe

((cat Con3j) ©)

a connective (¢ g and
other word

or') and anvy

(t (cat P) (type adyn))

any word and its prepositronal adjunct

8) {h)
Vel e N
she will legve roOn the will leave wpon

taf [{cat Auxk i{cat V)

linverl transfer})

N

she will leave SOOI

| Figure I Normalization of auxiliaries

(1f it (car ronall
LineeTL,,

[it L dcar Cunjl)
rangfar Wl el

la] wh

Figure 4 Normaliz ibion of conjunctions |

regard to various syntactic phenomena. Vor example
if we want Lo find out how successfuly a parser deals
with prepositional phrase attachments wo can use the
following operation to delete all the other dependencies
except those in which the modifier is A preposition
(if (t (not (cat P))) (delete))
On the other hand evaluating the result of applying
(if (t (cat P)) (delete))
to dependency trees would tell us how a parser would
fare if attachments of prepositional phrases are ignored

6 Conclusion

We have presented a dependency-based method for eval
uating broad-cover age parsers The method offers sev-
eral advantages over previous methods that relied on
the comparison of phrase boundaries The error count

score is not only more intuitively meaningful than other
scores but also more relevant lo semantic inUrprcti-
lion We also presented an algorithm that transforms
constituent trees into dependency tree so that the val-
uation method is applicable lo both dependency -ind
constituency grammars Finally w< proposed a set of
operations for modifying dependency treeb thd(can ht
used to eliminate inconsi quentnl difference? among dif
ferenl parse trees and allow us to sthctiulv cvaluite
different, aspects of a parstr

References

[Black ti al 1901] L Black, S Ahne> D Thckenger

(Gdaniec, R (irishman P Harrison D llintlle,
R Ingni t Jflinek J Kldvans M Libtrmin
M Marcus S Roukos B Sanlonni and | Str/a-

Ikowski A proc(dur(for quantitatively comparing
Ihe syntactic coverage of enghsh grammars In Pro-
ceedings of Speech and \atvral Language \\tukshop”
pages 306-311 DARPA February 19<)1

[Black el al 1992] E?ra Black John Laffertv and Sihin
Rouko<; Developrmnl d,nd i\?Ju<ilie>u <f i broad-
coveragi probabilistic grammar of ! nglish-language
computer manuals In Proceedings of AC L-9J pa’es

IB') 192 Newark Delaware WJ2

[Magermau, 1994] Davtd M Magirman \atuial Lan-
guage Parsing a& Statistical Pattern Recognition PhD
thesis Stanford University, 1994

[MelVuk 1987] Igor A Melcuk
theory and practice state
Press Albany 1987

Dependent y syntex
University of New. york

LIN 1425

