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Abstract

In this paper we consider constrained and ra-
tional default logics We provide two charac-
terizations of constrained extensions One of
them is used to derive complexity results for
decision problems involving constrained exten-
sions In particular, we show that the problem
of membership of a formula in at least one (in
all) constrained extension(s) of a default theory
is Ef-complete (lIf-complete) We establish
the relationship between constrained and ratio-
nal default logics We prove that rational ex
tensions determine constrained extensions and
that for seminormal default theories there is A
one-to-one correspondence between these ob-
jects We also show that the definition of a
constrained extension can be extended to cover
the case of default theories which may contain
justification-free defaults

1 Introduction

Default logic, introduced by Reiter [1980], is one of the
most extensively studied nonmonotonic systems Sev-
eral recent research monographs offer a comprehensive
presentation of theoretical and practical aspects of de
fault logic [Besnard, 1989, Brewka, 1991b, Marek and
Truszczynski, 1993] Default logic was designed to han-
dle reasoning from incomplete information It allows us
to draw conclusions on the basis of "the lack of evidence
to the contrary" This formalism assigns to a default
theory a collection of theories called extensions They
describe possible belief sets of an agent reasoning with
this theory

All its desirable properties notwithstanding, there
are situations where default logic of Reiter produces
countenntuitive results In particular, this logic docs
not handle well incomplete information given in the
form of disjunctive clauses [Poole, 1989, Brewka, 1991a,
Gelfond et al, 1991, Mikitiuk and Truszczynski, 1993]
To remedy this, several modifications of default logic
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were proposed disjunctive default logic [Gelfond et al,
1991], cumulative default logic [Brewka 1991a], con-
strained default logic [Schaub, 1992] and rational default
logic [Mikitiuk and Truszczynski, 1993] The first system
introduces a new disjunction operator to handle "effec-
tive" disjunction The latter three take into account, in
one way or another, the requirement that defaults with
mutually inconsistent justifications must not be used in
the construction of the same extension Not surprising]}
then, they are somewhat related

Connections between cumulative default logic and
constrained default logic are studied in [Schaub, 1992]
It is shown there that these two systems are, in a certain
sense equivalent At the same time, they are quite differ
ent from default logic of Reiter Both commit to assump-
tions and have such properties as semi-monotonicity and
orthogonality’ In addition in each of these two logics
every default theory has an extension In the logic of Re-
iter all these properties hold for normal default theories
but fail m the general case (in fact, for normal default
theories, Reiter's default logic is essentially equivalent to
constrained and cumulative default logics)

In this paper, we investigate connections between ra
tional and constrained (and, consequently, also cumu-
lative) default logics Rational default logic similarly
as the logic of Reiter, lacks many of the properties of
constrained default logic In particular, default theo-
ries may have no ritional extensions and rational default
logic does not have the properties of semi monotomcitv
and orthogonality The reason is that rational default
logic, unhke constrained default logic does not commit
to assumptions \t the same time connections between
rational and const ained default logics are quite strong
We show thrt every rational extension of a default theory
determines a constrained extension Moreover we show
that rational and constrained default logics coincide for
the class of seminormal default theories — a much wider
class of theories than normal ones, for which all four
versions of default logic mentioned here are equivalent

We also give a useful, proof-theoretic characteriza-

Schaub [1992] uses the term weak orthogonality
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tion of the operator T, which was used in [Schaub, 1992]
to define the notion of a constrained extension Conse
quently, we get an equivalent definition of constrained
extensions This result allows us to design an algorithm
for computing constrained extensions and to establish
the complexity of reasoning with constrained extensions
Since every default theory has a constrained extension,
the problem of existence of a constrained extension is,
clearly, in P We show that the problem to decide, given
a formula ¢, whether  is in at least one constrained
extension (in all constrained extensions) of a given de
fault theory, is Ef«-complete (n*-complete) In view
of a recent result on the complexity of cumulative de-
fault logic [Gottlob and Mingyi, 1994] and our results
on the complexity of ration al default logic [Mikitiuk and
Truszczynski, 1993], it follows that all these modes of
reasoning have the same computational complexity

Finally, let us note that Schaub did not allow
justification-free defaults in his definition of constrained
default log/c In this paper, we show how to extend ron
strained default logic to raver theories which may con-
tain justification-free defaults

2 Preliminaries

A default is any expression of the form

a Mo, MBS

7

(1

whert @, §,, 1 €t < k and v are prepositional formu-
las Let d be a default of the form (1) The formula
a is called the prerequisite of d, p[d) in symbols The
formulas #,, 1 <@ < k, are called the justifications of d
The set of justifications is denoted by j(d) Finally, the
formula ~ is called the consequent of d and is denoted
c[d) For a collection D of defaults by p{D), j(D) and
c{D) we denote, respectively, the sets of all prerequi
sites, justifications and consequents of the defaults in D
A default of the form <M. (ﬂ‘:rm, resp ) is called
normal (seminormal, resp )

A default theory is a pair (D W ), where D is a set of
defaults and W ib a set of propositional formulas A de-
fault theory (D,W) is nonnal (semtnormal, resp ) if all
defaults in D are normal (sermnormal, resp ) A default
theor> (D, W) is finite if both D and W are finite

For a set D of defaults we define

Mon{D) = {E%—j—; de D}

Given a set of ml ,ence rules A, b> Cn"‘() we mean
the consequence operator of the formal proof s>stem
PC+A, consisting of propositional calculus and the rules
in A

In [Mikutiuk and Truszczjnskj, 1993] we introduced
the notions of an active set of defaults and a rational
extension of a default theory
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Defimtion 2 1 A set 4 of defaults 13 active with respect
to sets of formulas W and § if it satisfies the following
conditions

AS1 3(A4) =8, or 3{A)U S 15 consstent,
AS2 p(4) C CnMoniAlpy )2

The set of all subsets of a set of defaults D which are
artive with respect to W and S will be denoted by
A(D, W, 5] D
Observe that @ 1» active with respect to every W and
8 Hence, A(D,W,8§) 15 always non-empty An applica-
tion of the huratowski-Zorn Lemma gives the following
result

Proposition 2 1 {[Mikitwwk and Truszezynski, 1993])
Let (D, W) be e defaull theory and let S be o propo-
sttronal theory EBvery 4 € A(D,W, S) s contamed sn a
maztmal element of A(D B, 8) m|

We dehne MA(D, W, §) to be the set of all maximal
elements w A(D, W §)

Defimition 2 2 A theory 5 18 2 rutional eztenswon for
a default theory (D, W) of § = CaM*™™ AW ) for sume
4 MAD W 5 O

Schaub [1992] introduced the notion of a constrauned
extension by means of the following definition

Definition 2 3 ([Schaub, 1992]) Let (D, W) be a de-
fault theory and let T be a propositional theory Then
T(T) 15 the parr of smallest sets of formulas {5*,T”) such
that

CEl1W cScCT,
CE2 §' = Cn(§'), and I* = Cn(T")

CE3 For any default %ﬁ €D fae S andTU{3,v}
15 consstent then y € S’ and A €T

A parr of sets of formulas (2, ) 15 a constrained exten
son of (D, W I T(C) = (E O) =]
[f {E,C) 18 & constraned extension, then we will refer
to E as a proper consiramed eziension
The following example shows that the notions of an

extension, a rational extension and e proper constrained
extension are different

Example 2 1 Let us consider the default theory (D, @)
[Schaub, 1992], where
Do { My M-b M-c M-~d
e’ d e ' f

In [Mikitiek and Truszezytiski, 1993] we used the classical
reducl of A with respect to §, denoted A5, instead of Mon(A)
both 10 AS2 and \n the definition of & retiopal extension 1f
A satisfies AS1, then 4¢ = Mon{A) Since in this paper
we will use a different notion of a reduct (Defimtion 3 2),
we deaded to reformulate the definitions of active sets and
rationel extensicns to avord confusion These defimitions are
equivalent to the omemal anes



This theory has one extension Cn({c,d}), two rational
extensions S| = Cn({c, f}), 82 = Cn({d, €}), end three
constraned extensions (Cn({e, f}), Crn({e,~c, f,—~d})),
(51,Cn({e,b, £, ~d})), (52, Cn{{d,=b, e, ~c})) O

Schaub [1992] does not consider justification-free de-
faults, so in this paper we do not consider them either
Hence, j{A) = @ only if A = § Moreover, 1n both ra-
twnal and constraned default logic one can replace all
justifications of a default by their conjunction Thus we
assume that every defanlt has exactly one justification
In Section 6 we w1ll show how Schaub’s definition can be
extended to cover the case of justification-free defaults

3 Characterizations of constrained
extensions

In this section we will give two useful charactenzations of
constrauned extensions The first of them will be based
on a proof-theoretic deseription of the operator T (T}
We will use 1t 1 the next se¢tivn w denve complexity
results on reasoning with constramed default logac The
characterization requucs the notion of a generating de-
fault introduced 1 {Schaub 1992)3

DefAnution 3 1 ([Schaub 1992]) Let (D, W) be a de-
fault theory and § and T sets of formulas ‘The set of
generating defeults for (S, T7) with respect to D 1s defined
as

A
GDquTJ:{uﬁ_en €SI U{ﬂ.v}b‘l}

L O

Schaub [1992] proved the following properties of gen-
erating defaults

Theorem 3 1 Let (S T) be a consirgined extenswon of
¢ default theory (D, V) Then

1 S=CnwuGDy ™)

2 T=CaWwuc@ny™yusedy ™)

3 There 1s an enumeralion 6;,6;,  of the defaults 1n
GDLS T} such that for every1=1,2,
WUec({d, 61Dt p(d) O

This theorem umplies the following useful corollary

Corollary 3 2 Let (S,7) be a constramned exlension of

¢ defauit theory (D, ) Then S =Cn Men(C D T)’('lf" )
m|

To present cur characterization of the operator Y (T}
we wil need two more notions

9The notions of a generating default and a reduct used m
this paper are different. from the standard ones [Reiler, 1980
Gelfoud and Lifsclutz, 1988] They are tamlored specifically
to the needs of constrained default logic

Defliution 3 2 We define the reduct of & set of defaults
D with respect to a theory T as

pr={2 M eprufsmye)
v Y
We define the operator (" by letting

2 fﬁ e GDY T]}

C(D,5,T) = {ﬁm,
(m}

These concepts allow us to give & constructive descrip-
tion of the operator T(T)

Theorem 3 3 Lel (D W) be a default theory and let T
be o proposshonal theory Then

T(T) = (CRYT (W ), Cr(W U C(D,CrPT (M) T))

Proof According to Defimtion 23, T(T) 1» the pair of
smellest sees of formulas (S',T) satisfying CE1-CE3
It fullows from CEJ that S' 15 closed under inference
rules from Dr Thus by the definition of the operator
Cn?(), 8 = CnP7 (W ) satisfies CE1-CE3 We need
toprovethat 7' = Ca{(WUC(D CnPr (W), T)) together
with §' = CatT (W) satwfies CE1-CE3

We will first prove that CnPT(W) € Cn(W U
C(D CnPT(W),T)) Let p € CnPT(W) Then ¢ has a
proof from W 1n PC + Dy, that 15, there 15 a finite se-
quence 1, ,Pa = @ such that forevery: 1 <1 <R,
at least one of the followng conditions holds

1 . € W or y, 15 g substitution instance of an axiom
of propositional logic

2 For sume 7,k < 1, i, follows from ; and @, by
modus ponens

3 For some ;3 <1, the rule %— belougs to Dr

We will prove by mdurtiun un the length of this proof
that p € Cr(W U CID,CnPT (W) T)) Ifp € W
Or 15 a4 substitution wstance of an axwoem of propo-
sitwonal logic then it s clear that ¢ € Cn{l U
C(D,CnPT (W, T)) If ¢ follows from o, and
by modus ponens then, by the inductive hypothess,
01, ¢% € Ca(W U C(D,CnPT(W),T)) It follows that
@ € Cn(W UC(D,CnPT(W),T)) If ¢ was obtained
by applywng &n inference rule ¥ from D7 then ¢ €
CnP1 (W) Hence, there 1s e default Y_ré € D such

thet ¥ € CrPT(IW) and T U {B8,¢) ¥ L It follows
that 3 A ¢ € C(D,CnPT (W), T) and, consequently,
@ € Cn(WUC(D,CnPr(W) T)) Thus, CnPT(W) C
Cr(W UC(D,CrPT (W), 7)) and CEL holds

The theory Ca(W uC(D, P (W), T)) is dosed un-
der propositional pruvability, sc CE2 holds To prove
CE3, let us consider a default %’4‘1 such that a € §' =

CaPr(W)and TU (4,7} ¥ L [t follows from the def-
mition of C{2,5,T) that A v € C(D,CrPr (W), 1) C
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Cn(W U C(D,CnPT(W),T)) Hence, the par
(CnPT (W), Cu(W UC(D,CaP7 (W), T))) satisfies CE1
-CE3

Let us assume now that a paur of theories (S, T') satis
fies CE1-CE3 Then 1t 18 easy to see that Cn”T (W) C
S' By CE1l, W € T' Let us consider a formula
BA~y € C(D,CnP7(W),T) Then there 15 a de-
fault %ﬁ € [ such that & € CrP7 (W) € § and
ru{g,y} ¥ L Tt follows from CE3 that A~y € T
Hence, C(D,CnP7(W),T) € T’ Since, by CE2, T' =
Cn(T") then Cn(W UC(D,CnlT (W), T)) C T' and we
are done ]

As a corollary, we get a characterization of constramed
CXtensions

Coarnllary 3 4 (5 T) 15 a constramned exlension of u de-
feult theory (D. W) of and only +f

T =Cn(W U C(D,CnPT (W), T)) ()

and § = CnPr (W) o

This corollary makcs 1t expliat that constrained de-
fault logic works 1n two stages In the first stage, pos-
sible sets of assurnptions {constraints as referred to in
[Schaub, 1992]) are established as solutions of the fix-
pomnt equation {2) Then, each of them umquely deter-
mines the corresponding proper constraned extention

The fixpoint equation (2} imphes that all assumptions
(theory T') needed tu sapport a proper constrained ex
tension 5 In constrained default logic must be “repros -
able® This might be regarded as a weakness of con-
stianed default logie In all versions of default logic it is
required that formulas 1n the extensions heve justifica
tions (1n terms of proofs from W by means of applicable
defaults) But 1t 1= erguable whether the same should

be required of assumptions “3 1s possible® which make
defaults applicable

Corollary 3 4 allows us to strengthen a result by
Schaub on pairwise maximality of constrained extensions
of a default theory

Theorem 3 5 If (S T) and (5',T') are constramned ez
tensions of a defawlt theory (D, W) and T C T/, then
T =T and § = 5§ {in partrcular, “T parts” of con
slroined extensions form an aniichan)
Proof First, observe that if (S, 7" 15 a constramed
extension of {17, W ), then 7' 15 mconsistent If and only
if W 1s inconsistent  Hencee, 1if 77 15 mmconsistent then
T 15 inconsistent as well and, consequently, T = T and
S =5' Assume then that 77 15 (onsistent

Since (5,T) 15 a tonstrammed extension of (D, W), by
Corollary 3 2 we have § = CaMenGDy 1']](W) More-
over, for every default %ﬁ 3 GD(D:; T), B A~ €T and,
smee T C T, Ay € T' Since T' 18 conmstent, 1t follows
that Mor{GD'> 7’) € Dyv  Hence,

S = CnMoC 05 V)W) ¢ Cnbr(w) = §7
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Schaub [1992) proved that if (S,7) and (5', T") are con-
strauned extensions of a default theory and § C §' and
TCT' thenS=8and 7 =T D

Theorem 3 5 implies bounds on the number of con-
strained extensions of a default theory

Corollary 3 8 Let D be a sel consisting of n defaults
Then for every W C L the default theory (D, W) has at

most
(o)

constramed extensions

Proof Theorem 35 mmples that the famdy 7 =
{T (5,T) 18 o constraned extension of (D, W)] 15 an
antichen By Theorem 31, each set T € T 1v deter-
mined by the set GDYY”) Since T 19 an antichan, the

family {GDS; Nre T} 1= elso an antichain It 15 well
known that the size of the largest antichain 1n the alge-

bra of subsets of an n-element set has at most ( [r:;ﬂ )

elements Hence, the assertion follows O

The second characterization of constramed extensions
that we present mn this section 18 closely related to the
property of semi-monotonicity of constreined default
logic It exploits the fact that constrained extensiwons
can be produced by processing defaults according to any
well-ordering Thas 1s very simular to the corresponding
property of normal default theories 1o the logie of Reater
(Theorem 4 3, {Marek and Truszezynski, 1993]) In fact,
our characterization of constrauned default logic provides
an alternative argument that for normal default thecries
constrained and standard default logics comcide

We essume that the set of the atoms of our language
£ 1s denumerable Consequently, the set of all defaults
over the language £ is denumersble

Let (P,W ) be a default theory and < & well-ordering
of D We define an ordinel 5, For every ordinal £ < 1.,
we define a set of defaults AD; and a default d¢  We also
define a set of defaults AD_ We proceed as follows
If the sets ADy, £ < @, bave been defined but 5 has not
been defined then

1 If there s no defaulc d € D'\ g, 4D¢ such that
(m) WUclUgcq ADg)UI U ca AU (@)U {c(d)]
18 consistent, and

(b) W Uc(Uge, 4D5) F pld),

then n, = a

2 Otherwise, define d, to be the =<-least defanlt d &
D\ g<o AD¢ such that the conditions (a) and (b)
above hold Then set ADa = Ugeq ADg U{da}

When the construction termunates, put AD, =
UE‘Q"H AD; S . =Cn(WUc(AD.)) and T, = Cn{WU
(AD<) U3(AD.))

This construction has the following property



Theorem 3 7 Let (D, W) be o default theory and < a
well ordening of D Then (54,7Ty) t5 o constrained ez-
tenmon of (D, W) and AD = GDg"‘ T«

Proof 1t 15 easy to see that if W 15 inconswstent then
A =0and S, =T =Cn(W) = £ Thus, the asser
tion follows Assume now that W 1s consistent Then for
every & < ¢, WU c(ADg) U 3(4D¢) 15 consistent  Con-
sequently, W U c(AD_ ) U p{4D.) 15 consistent Thus,
T 15 consistent,

Let us consider a default 4 = %ﬁ € AD, We
heve B € 3(AD.) and v € ((4D.) Thus, {8,7) C
T. and, smce T, 15 consistent, T U {3,7} 18 consis-
tent Moreover, since d € AD, for some £ < 7.,
WU ec(Usce ADA) F o Consequently, o« € S, Hence,
de gpy<T+

Consider now a default d = 9-%'{—& € D\ AD. Then
one of the conditions (a) (b) above fals for d, that 1,
erther 7. U {3,7} 15 inconsistent or S¢ ¥ a  Henee,
d¢ Gpij< 7<) Thu, 4D =GDY '~

The last equality mmphies that

T,

Cn(W Un(GDL* Tu jGDY < <)
a M3

= Cn(W U{JAy eaDy~ Ty

Cn(W UOCD,5,,7.))

Thus to end the proof we need to show that 5. =
CnPT< (W) Let us notice that the condition (b) above
imples that CnMo AL W Y = Cu(WUd(AD ) = 84

— ¢y Monic 2= T _ o M3
Thus, 8. =Cn o M) Let 4={*¢
D T . U{s~} V¥ L) TIhen Dy, = Mon(4) and
GDp <7< ={de 4 p(d)eS.) Nence GDT*™ C
4 and
'1"‘4”

5‘< - (ﬂnMou(bDf;* (u’)

C CnMoMA Wy = CrPr< (W)

Thus, to show that § = CnP7< (W), we need to prove
that CnPT< (W) C CaMenC ")} ) To this end,
let us consider a formula ¢ € (nP7<«(W) The for-
mula ¢ has & proof from W in PC + Dy, One can
prove by induction on the length of this pruof that

S T
@ € CaMomCPE ™ "1 (1) (due to space restrictions, we
omut the detals of the argyurnent) o

The converse result 15 also true

Theorem 3 8 Lel (5\7) be a constrained eztension of
a default theory (D,W ) Then for gny well ordering <
of D such that defauils from GD‘[;T] precede all other
defaults, AD  =GDS T, § =S and T« =T u]

This result will be proved mn a full version of the paper

4 Computational aspects of constrained
default logic

Corollary 3 4 allows us to design an algorithm for com-
puting all constrauned extensions for a hnite default the-
ory (D, W) Let us consider a set of defaults 4 C D
Let § = CnM" ARy B = {d € 4 pd) € 5},
C={Ay 228 ¢ B}, T =CnW UC) and E =
{%ﬁ € DTU{f,y) ¥ L) It s casy to see that
if E = A then (5,T) 15 au constraned extension for
(D,W) TIndeed, Dr = Mon(F) Thus, if & = 4 then
Mon(A) = Dy end § = CnPT (W) Moreover, B =
GBS T Hence, C = C(D §,T) = C(D,Cn" (W), T)
and T = Cn(W UC) = Cn(W UC(D,CnPT(M ), T))
Thus, {5,T) 18 o constraned extension for (D, W) Con-
sidermg all sets A C D, we will get all constrauned exten-
sicns of (D, W) Indeed, if (8,T) 15 8 conviramned exten

sion then 1t will be found by considering 4 = {%ﬂ €

DTU{A,7} ¥ L} ILhus we have the following algo-
rithm

Forevery 4 C D

1 compute U such that Cn(l/} = CnM™ AW ) (the
theory CaM™A) (% ) 15 mfinite however U 1s finute
see [Marck and Truszezynsk: 1993)),

2 compute B = {de 4 L + pld)] and let C =
{(Bny =L € B),

3 cumputeEZ{i"-_rﬁEE DWUCU{s~}¥ L),

4 f E = 4 then output (Cr{l),Cn(W UC)) as o
constramed extension of (2, W)

The complexaty of the above algonithm 1s determined
by the number of calls to a propositional consistency
checking procedure  Assume that the number of defeults
mPin Given A C D, weneed at most 7 ralls to such
a procedure to compute I/ at most n ¢alls to compute B
and n calls to compute £ Hence, for every A C 1}, we
need Of{n?) calls to & propositionsl consistency checking
protedure, and O(n22“) ralls to such a procedure for the
whole algorithm

We have the following complexity result (sec [Garey

and Johnson, 1979] for a discusmion of complexty
classes)

Theorem 4 1 The follounng problems

IN-SOME Given a finsle defaull theory (D,W) and a
Jormula p, dectde +f 19 1n some consirmned exten-
sion for (D W)

NOT-IN-ALL Gwen a fimie default theory {(D,W)
and a formula p, dectde tf there 1w o constramed
extension for (D, W) nol conlaming @,

are L5 -complete The problem
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IN-ALL Grwen a finste defoult theory (D, W) and a for
mula ¢ decide 1f © 1 1n all consirained eztensions
of (D,W),

1s IT£ -complete

Preof To venfy that a formula ¢ helongs to some
(does not belong to all, resp ) constrauned extensions
of (D, W), we can nondetermimstically guess a set of
defaults 4 C D, vertfy that [Cn{l7),Cn(B UC)) 152
constreaned extension for (D, W) (U and C are as de-
fined in the above algorithm) and venify that U + ¢
(U If ¢, resp }, what requires one more call to a propo-
aitional consistency checkung procedure It follows that
the problems IN-SOME and NOT IN ALL are in &4
Since the problem NOT-IN-ALL 1s m =¥, the problem
IN-ALL 15 1n IIf Observe next that S 1s an extension
for a normal default theory if and only if (5, 5) 15 & con
stramned extension for this theory (see [Schaub, 1992])
Hence, the hardness of all three problems in theyr re-
spective complexity classes follows fron the fact that
the problems IN-SOME, NOQT-IN-ALL and IN-ALL for
extensions of normal default theories are $f-hard and
1% -hard, respectively (see (Gottlob, 1992]} |

5 Connections between constramned and
rational default logics

First, we will show that rational extensions determune
constramed extensions That 1s, we wil show that for
every rational extension S of a default theory, there 15 T
such that (S, T) 15 & constrained extension of this theory

Theorem 5 1 Let £ be a mitonal estension for a de
fault theary (D, W) and let 4 € MA(D,W, E) be such
that £ = CnM VM) (= Cr(W U clA)) Let C =
Cr(EU(A) (= Cn(W Uc(A)U(A))) Then (E,C) u
& constramned extension of (D, W)

Proof We need to show that T(C) = (E,C) We wii
prove first that par (£, () satisfies CE1-CEJ with re-
spect toc C The conditions CE1 and CE2 are obviously
satashed Now let a defanlt & = #ﬁ be such that a €
Eand CU{B ~} s consistent Since C'U{3,~} 15 consis-
tent, then EU (AL {d}) = FuU3(4)U{A}) 15 consistent
Moreover, since p{4) € CnMoM A W)= Eanda € F,
we have p{AU{d]}) = p( 4}U{a)} C E = CnMonla) (i ) C
Cn Mot AUld (M) Thus, (AU {d]) € A(D,W,E) By
the maxumality of A, 2 € 4 Henee, v € ¢{4) C E and
{,v) € e(A) U (4) € C It follows that v € E and
BA~eCn(C) =C and CE3 bolds

Now, we need to prove that if & par (§,7) satis-
fies CE1-CE3 with respect to " then £ C S and
C € T Let us notce that, since c(4) U 3(4) € C,
for d = X2 ¢ 4, CU{B,7) = C By ASI
2(4) =Bor 3(4)UE 1s conmistent Thus, we have either
C = Cn(E U 3(A)) 18 consistent or A = @ (let us recall
that we do not consider justification-free defaults) In
both cases for d = %ﬁ € A, CU {3, ~]) 18 consistent
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Thus, CE3 implies thet S 18 closed under mference rules
from Men(4) Moreover, by CE1, W C S and, by CE2,
& 18 closed under propositional provabibty It follows
that B = CaM™(W)CS Wehavep(d) CECS
8o, 1t follows rom CE3 and CE2 that j{4)Ue(4} C T
Since, by CE1, W C T and, by CE2, T = ('n(T'), then
C € T and we are done 0

The converse statement 18 not true Every default the-
ory has at least one constrained extension [Schaub, 1992)
and there are default theories that do not have rational
extensions [Mikitink and Truszczynski, 1993] We will
gshow that for seminormal default theornes an exact one-
to-one correspondence between rational end constraimed
extensions can be established But first we will prove an
auxthary result

Theorem 5 2 Let (5,7) be o constromed extension of
o default theory (D, W) Then GDY 7' € A(D,W,S)

Proof 1t follows from Theorem 31 that T = Cn(S U

JHGDE ™) If T1s consistent then (G DY 7 )US 15 also
consistent If T 14 mconsistent then it follows from the
definitaon ofGD(I; ™) that GDE T = 9,0 3(GDY ™=
@ Thus, in both cases AS1 holds

According to the defmition of GDS' D IJ(GDS ”) c
S By Corollary 32, § = CaMom(CD5 V(W) Hence,
AS2 also holds C

Theorem 5 3 Let (S, T) be u constramed eztension of ¢
sermmormal default theory (D W) Then S w o rationa

estension of (D,W) end GD ") € MA(D,W,S)

Proof By Theorem 52, GDY, 7' € A(D,1,S) and, by
Corollary 32 § = ('nMon(CPE T (W) Thys we need

to prove the meximality of G‘DE;’ ) 1n ALD,W, S) only
Since every default :n D 15 sernmmormal, we can rewrite
the definitions of G'DE,' T), Dy and O[D,5,7) as

GD(;fT’={3—2ﬁeD aeS,Tu{d}lfJ_},
a o MJj
pr=1{%
cw.sm={s 2 egpy n} 2605 ™)

Let us denote GD[D&' T by 4 Smee, by Corollary 3 4
§=CnPr(W) and T = Cn(W U CD,CnP7 (W), T))
weget T = Cn(W U 3(4)

Let us consider now a default d = E‘-—:ﬁ eD\4 We
have either o ¢ § = CnMo™MA(W) or T U{B} 13 mcon-
sistent If TU {8} 19 inconsistent then W U 3(A)u {3} =
W u;( 40U{d)) 15 1nconsistent and the set AU {d} does nol
satisfy AS1 (since d 1s seminormal, 3({d}) # 9) fa ¢
CnMon[A](W) then CnMan{AU{d})(w) = CnHon(A)(w:
and p(AU {d}) = p(A4) U {a} € CnMemavtell(lf), &
4u{d) does not satisfy AS2 By Proposition 4 2 from ar



extended version of [Muatuk and Truszezynski, 1993]
4 € MA(D ,W,8) and we are done

Schaub ([1992]] proved that every defanlt theory has a
constrained extension, so we have the followmg corollary
(proved first by other methods in an extended version of
[Mskatiuk and Truszczynski, 1993])

Corollary 5 4 FEvery seminormal default theory has a
ralional eTtenston |

6 The case of justification-free defaults

We close this paper with a remark that constrained de-
fault logic can be extended to cover the case of defanlt
theories that may contain justification-free defaults lo
this end, one has to replace CE3 by the following two
conditions

CE3, For any defanlt ﬂ;ﬁi— eD faoae S andTU
{8,7)} 1 consistent then y € $’ and A~ T’

CE3, For any default - € D,if a € §' and TU {7} 15
conmstent then v € §'

The defimtions of G'D(l; T Dy and C(D,8,T) must
be modified in the same way Under such modifications
ell results presented i this paper, except for Theorem
51 reman true Moreover, the following, shghtly mod-
ified version of Theorem 5 1 holds (the assumption of
conslstency of a rational extension 15 added)

Theorem 8 1 Le! E be a conswtent ralrwnal extension
for a default theory (D W) and let 4 € MAD,W E)
be such that E = C‘n""'”"‘“”(t’l?) =Cn{W Uc(d))) Let
C=Cn(EU3(A4) (= Can(W Uceld)u (4))) Then
(EC)wa wmtmmed ettension of (D, W)

Proofs of these results will be meluded i a full version
of the paper

7 Conclusions

In this paper we showed that constrained and rational
default logic* are closely related While Reiter s default
logic and constrained default logic coincide on the class
of normal default theories, rational and constrained de-
fault logics coincide on a much wider class of seminonnal
default theories

We showed that basic problems of reasoning with con-
strained extensions are complete for the second level of
the polynomial hierarchy (with the exception of the ex-
istence of an extension problem, which is trivially in P)
We also proposed algorithms to compute constrained ex-
tensions

Constrained default logic was originally introduced
onlj for default theories without justification-free de
faults In the paper, we proposed a modification of the
original definition of Schaub, which allows for defaultb
to be justification-free Under our definition, all major
properties of constrained default logic remain true
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